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Abstract. A simple phenomenoclogical model for non-
linear interactions of gravity waves on the surface of
deep water is developed. The S,,; nonlincar interaction
term in the kinetic equation for wave action is replaced
by the nonlinear second-order diffusion-type operator.

Apalytical and numerical studies show that the new
model gives a reasonably good description of a real situa-
tion, consuming three order of magnitude less computer
time.

1 Introduction

The leading nonlincar interaction of gravity waves on the
surface of deep liquid is four-wave interaction (Phillips,
1966) satisfying the resonant conditions

KL+ ko = kg + By (1)
Wi+ Wy, = Wey + Wy (2)

where w = /gk is the dispersion law.

The four-wave interactions play a very important role
in the surface dynamics. They arrest the growth of wave
amplitudes, caused by instability of the flat surface in
the presence of the wind, redistribute wave encrgy along
the K-plane and form the basic cascades, governing the
wave kinctics: direct cascade of the energy to large k
and inverse cascade of the wave-action to small & (sce
Zakharov and Zaslavskii (1982), Zakharov (1992)}.

The four-wave interactions are described by the ki-
netic equation for squared wave amplitudes derived first
by Hasselmann {1962). This equation is a natural base
for practical modcls of wave-prediction. Due to this
reason many people during last two decades endeav-
ored to develop efficlent numerical solvers for this equa-
tion (Hasselrnann and Hasselmann (1985) , Hasselmann
at al. (1985) , Masuda (1980) , Komatsu and Masuda

(1996) , Resio and Perrie (1991} , Polnikov (1989} ,
Lavrenov (1991) ).

Due to complexity of the kinetic cquation, cxisting
codes are still time-consuming and hardly can be nsed
for practical purposes. The development of a simplified
model of four-wave interaction describing in an adeguate
way the main feature of this process is, therefore, an
urgent problern.

There is another reason for development of such a
model.  The stationary kinetic equation has remark-
able exact solution: weak-turbulent Kaolmogorov spec-
tra ( Zakharov and Filonenko (1966), Zakharov and Za-
slavskii (1982)). For energy spectrum they arc

u b
E, = Cleg—d, €= Patm_ (3)
W ,O‘um.Ler
Sus
Eu) = Cﬁeg 11 (4)
ws

where 1 i3 the wind velocity.

The spectrumn (3) describes the transport of cnergy to
small scales, while (4) describes the transport of wave
action to large scales. Both spectra are obtained in a
very idealistic assumption of isotropy in angles. Real
wave spectra both in the ocean and in the laboratory
are strongly anisotropic. Meanwhile, there are a lot of
evidences, that at least the spectrum ( 4) fits very well
the real sitnation.

Asymptotic w™? was observed by many experimental-
ists since Toba (e.g. Toba {1973), Donelan et al. (1983),
Phillips (1966)). This asymptotic appears systemati-
cally in numerical experiments {(Resio and Perrie (1991),
Komatsu and Masuda {1996), Polnikov (1989)). But the
complexity of the real kinetic equation docs not allow to
construct analytical angle — dependent anisotropic spec-
tra. A properly simplified model would serve better this
purpose.

In this article we suggest a very simple model of four-
wave interaction of the gravity waves. We replace the
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complex nonlinear integral interaction term by simple
nonlinear elliptic differential operator of the second or-
der.

The whole kinetic equation becomes the nonlinear dif-
fusion equation. Its stationary solution can be easily
found analytically. They describe not only isotropic Kol-
mogrov spectra (3) and (4), but also anisotropic spectra
corresponding to momentum transport to small scales.
We developed the code for numerical solution of new
model equation in the presence of a wind and received
quite reasonable results. Due to simplicity of the model,
it consumes three order of magnitude less computer time
than the model using exact kinetic equation. We hopc
that the new model can be efficiently used in practical
programs of wave prediction.

2 General background

Let n(k)} be a Fourier Transform of the surface elevation
and

Ik + k) = (n(k)n (k') (5)

where I is the spatial spectrum of the surface. It con-
tains important, but incomplete information about the
surface and cannoct satisfy any self-consistent evolution-
ary equation. Morc complete information is contained
in the distribution of wave action

ned(k — k') = (a(k)a(k')) (6)

where @y is the complex normal amplitude ( see Za-
kharov {1968) ) , n_ # ny and

1
Iy = @wk(nk + 1) (7)

Hasselmann showed that ny satisfies the kinetic equa-
tion (Hasselmann, 1962)

on
at
where 3; is the coeflicient describing interaction with
the wind and wave-breaking and

S.”[(H,TL,TL) - ;Bknk (8)

Spiln,n,n) =4n [1Tkk1k2k3|25k+krk2—k3

Gurg iy — iy g (Tohy Tk Tk T TUkTly Ty
g Tig, Ny — nknk,nka)dkl dkz dkg (9)

where Thi, poks 18 the coefficient, describing four-wave
interaction. It is a homogeneous function of the third
degree

T(ek, ek, cky, eks) = T {k, ki, ky, k3) (10)
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A relatively compact explicit expression for Tiy, gk, can
be found in the article of Webb (1978). This function
has the following symmetry propertics

Thkiboks = Thikboks = Thkihake = Thokaki (11)

Due tn these properties, equation (8) formaily preserves
the following quantities of wave action N, wave energy
E and momentum P if 3 =0 :

/ nkdk

f}'c'nkdk (12)

N =

P =

Conservation of these quantities is “formal” because one
have to change the order of the integration in four-
dimensional integrals to prove it. According to Fubini
theorem, this change is permitted if ny vanishes fast
enough at [k| = o0.

For conservation of the wave action NV one has to sat-
isfy the condition

Tig < Ck= 8+ (13)

Conservation of the wave energy E is guaranteed i

ng < Ok~ (14)

and conservation of the momentum P takes place if

ny < Ckli=F+e) (15)

where € > 0.
Corresponding critical behavior of the energy spectral
density

Ewdw = wkﬂkkdkdqb (16)

is £, < w™ 7 for wave action, £, < w™* for energy and
£y < w™ ¥ for momentum.

In reality, typical asymptotic for e, s, = w™ |, and
conditions { 14) and ( 15) are not satisfied while the
condition ( 13) is fulfilled. Thus, in the typical situation
only wave action N is a real constant of motion. Energy
and momentum "leak” to the small-scale region.

Let us consider the equation

4

Sp(n,n,n) =0 {17)

It has obvious thermodynamic solutions
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T
np =

h Wy (18)

where T" and g are the constant temperature and chem-
ical potential. Special cases of this solution are

m _ T _
meo= (1 =0)
. T
?-i’g\tz) = Thy, (T —r 00, it = 00, f-_fw = Tlg) (19)

All motion constants on thermodynamic solutions di-
verge on thermodynamic solutions at & — oo. This fact
makes thermodynamic solutions useless for applications.

Equation { 17) has also non-thermodynamic solutions.
Looking for the solutions in the form

ng = Clk|™" (20)

one can find (Zakharov and Filonenko {1966}, Zakharov
and Zaslavskil (1982), Zakharov at al. (1992)) that =
can take four values

1 23
131:0, 55'2:5, :L'SZE, $4:4 (21)

Exponents 21 = () and z; = § correspond to thermody-

namic solutions ( 19). Exponents z3 = 26—.3 and x4 = 4
give the spectra

ng = Cs3lk|™%, B,=Csw % (22)
g = Calk|™, E,=Cw™* (23)

These solutions are Kolmogorov spectra (3), {4).

Since the equation (17) preserves the momentum, it
must have Kolmogorov solution, carrying the momen-
tum to small scales. From dimensional consideration it
has a form

ne = @)k ¢ (24)

where f(¢) is some unknown function of the angle |
which cannot be found analytically so far. Solution (24)
is realized in the case when there is the source of the
momentuin, but no source of the energy in the region of
small k. This situation is non-physical and therefore one
can’t get much use from the solution (24). The generic
Kolmogorov solution, corrcsponding to given fluxes of
both the energy and the momentum, is much more im-
portant. This solution is anisotropic and non-power-
like. It has the form

ny = Ck™4F (g, k) (25)

3

where F(¢, k) is so far unknown function of ¢ and k.
One can guess that its dependence on & is "slow”. In
the fimit of large & this function should has the form
(Kats and Kontorovich, 1971) :

Flg, k) =1+ a% cos qb\/% (26)

where 5 is the momentum flux, P is the energy flux and
a is a constant.

Complexity of the equation (9) is the compelling fac-
tor for construction of the simplified models of four-
wave interaction. The most popular model is the WAM
model. In this model, five-dimensional variety of reso-
nances satisfying conditions (1}-(2) is contracted to 2-
dimensional manifold describing the resonance of a sin-
gle typc

ki =k, Ey= (1+ &k, K =(1-3§Fk (27)
where § is certain linear operator on the k-plane.

In WAM model, integral equation ( 9) transforms into
nonlinear difference equation. The most basic proper-
ties of this cquation stay the same. In particular, the
stationary WAM equation has the same Kolmogorov so-
lutions {22), (23).

The most weak point of the WAM approximation is
an ambiguity in the choice of the basic resonance. Actu-
ally, there is no particular reasons for preferring of the
resonance ( 27) over others. Some sort of the optimiza-
tion of the chioice of the basic resonance could essentially
improve this “difference” model.

3 Differential approximation

In this article we replace the integral equation (9) by
nonlinear diffusive equation of the second order. In
the contrary to the difference models, the differential
model can be constructed in the unique way. Our model
is quite convenient for numerical simulation and gives
quite reasonable description of the four-wave interac-
tion. Differential approximation in the theory of the four
-wave interaction was offered independently in the pa-
pers of Iroshnikov (1985) and Hassclmann at al. (1985}.
More simple derivation of this equation was done in the
article of Balk and Zakharov (1988). Later, the differ-
ential equation was used in the work of Dyachenko at al.
(1992).

Rigorously speaking, the integral operator in (9) can
be replaced by the differential operator only when
Thkikaka 7 0 and the wave vectors ky, ks, ks are close
to k. In this case, the differential approximation can
be obtained using the expansion of ny , ng,, 7, into the
Taylor series in the vicinity of the points k; = k. This
cumbersome procedurs was done by Hasselmann and
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Hasselmann (1985) who obtained nonlinear differential
equation of the fourth order.

We, following the work of Balk and Zakharov (1988),
offer the more simple way of derivation of this equation.
First, we put g = 1 and introduce the polar coordinates
(¢, k = w?) on K-plane. In these coordinates, eq. (8)
reads

on{d,t

——_((9—14}__2 =32 [ IT(w,wlaw21w31 ¢1 ¢l:¢'2: ¢3N2
Bw+w —wae — w3 )8{w® cos ¢ + w% CO8 by

—w? cos gy — wh cos d3)d{w? sin ¢ + wi sin ¢y
—w2sin ¢y ~ WS sin ¢3) (n1nany + nnany

—nning — nning duw dwsdws (28)

This equation preserves the following quantitics

N = / win(w, P)dpdw (29)
B o= [winwo)éds (30)
B~ [ coson(o,0dsds (31)
Ry, = / w7 sin g n(w, ¢ydpdw (32)

It has the following stationary thermodynamic solutions

1
"= Ci + Cow + Cyw? cos ¢ + Cyw? sin ¢

(33)

where C}, Cs, U3, Cy arc the arbitrary constants. Let us
introduce the differential operator

1 o 1 8
L=—+—=— 4
2 Hu? + w? gt (34)
One can sce that the equation
an 1
5; = Q?LU (35)

preserves all four quantities {29)-(32) if u is periodic
function bounded at w = (), satisfying the condition u —
atw— oo

From the other hand, one can check that

1

g

if n is given by ( 33}.
Since Tii kaky ~ k°, equation ( 28) can be roughly
estimated as

% o pl2-1-2-2493 19 3 (37)
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Let us consider the fours-order differential equation

% = %Ln%%% (38)
This cquation can be treated as a differential model for
kinetic equation (28). Indeed, it preserves the same con-
stants of motion, has the same thermodynamic solutions
and the same dimensional estimate (37) as the exact
equation {8). It is uniquely constructed up to the con-
stant C'.

We have to stress that the equation (38) is heuris-
tic. It cannot be derived from the exact kinetic equa-
tion (8)-(9) for any realistic Tgk, kyks. Thercfore, if the
differential model (38} (or more simple one) is applied
for description of the real situation, there is absolutely
no way to find the constant € analytically. It has to
be found from the comparison of the physical and nu-
merical experiment. This fact was first mentioned by
Hasselmann and Hasselmann (1985).

The cquation (38) satisfies the H-theorem. Let us
define the entropy as

H= /lnnkdE: 2]wlnnd¢)dw

From (38) one gets

, 2
a = ZC’/ n'tw?t (Ll) dwdd > 0
di n

This is an additional argument in favor of this equa-
tion.

The stationary cquation (17} in the simplest axdally-
symmetric case takes a form

L0 w01

W —— =
w? n

w? Ow? (39)

Looking for power-like solutions of the equation ( 39),
onc obtains

n o= w ¥ Y=Y, Ve, Y3, Ya (40)

23
o= 0, =1 us = o yq =8 (41)

Equation { 39) has four power-like solutions

1
ne=—, nzg=w 9§, ng=w " (42)
o

w3

1, = const,

First two solutions arc thermodynamic, the other two
are Kolmogorov spectra (22),(23).

Differential equation (38) coincides with the equations
obtained earlier by Iroshnikov (1985) and Hasselmann
and Hasselmann (1985).
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4 Diffusion approximation

Equation (38) is good for the description of both ther-
modynamic and Kolmogorov solutions. It can be essen-
tially simplified if we are intercsted only in turbulent
solutions of Kolmogorov type. In accordance with (25)

ny = w CF(d,w) (43)

Since F{¢,w) is a slow function of w, one gets approxi-
mately

1 ik 1 & wi 28 28
L= =22 D
n (2 Huw? N ) w? 44

W 847 ) Flg,wy  F° 7

This calculation prompts us to replace { 38) by more
simple equation

10
w? dep?

gt Y T 2000

1 82
=2 [l g }n:jw“ (45)

where ¢ is new indefinite constant. This is a nonlincar
diffusion equation. It preserves the integrals (29)-(32)
and has the correct dimensional estimate {37}. Onc can
easily find its stationary solutions. They are given by
the equation

] 1 6° 1 & —
A general periodic solution of this equation can be pre-
sented in the form

a
gy + 1 + (;1 + byw?®) cos(¢ — o)
o0

+ wi Z(a”w_’\" + bnw)‘") cosn(p — o),

=2

/1 .
Z + 2n? (47)

To find a physical interpretation of this solution, one
should calculate fluxes of the conservative quantities
(29)-(32). Let us denote

Q = '!;;dw/jﬂ d¢w3h(w,¢))/:dw/02ﬂ deLu
= 75—;(1:)8"
e " s (48)

From the physical consideration, one has to assume that
w — 0 at w — 0 together with all its derivatives. Henee

Q= 2w, ) = T (49)

Thus ¢y is the flux of the wave action coming from in-
finity.
In the same way one can find

w 2m
P= —/ dw dé winl(w,¢) = 7q {50)
0 0

where P is the flux of the energy to infinity.
A little bit more complicated caleulation gives

W 2w
5= —/ dw dp w'cosg nlw,d) = 3na, {51)
0 0

where S is the flux of the longitudinal momentum to
infinity.
Thus the special stationary solution

1 18 )

can be easily interpreted. It is the Kolmogorov spec-
trum, corresponding to constant flux of the wave action
from infinity ¢ and constant fluxes of energy P and mo-
mentum S from w = 0.

A general Kolmogorov solution has a form

1

Ny = ————
0 (ra)tw®

(P—I— Qu + LS cosng)E {53)
Juw

If the flux of wave action from infinity is absent, equation
{53) gives the expression for F(¢,w) :

F{¢,w) = LL (P + 1—S—cos )% (54)

T3 3 Lt
It is the "slow function” in comparison to w™%.

If S # 0, Koelmogorov solution (53) becowes negative
for small enough w. It can not be applicd in this range of
frequencies. Asymptotically, at w > %%, this solution
becomes isotropic. At infinity

P = (2)" (14 £ cono) e

Referring to the formula (26} one can find that in this
model o = %
The other stationary solutions have no simple physical

interpretation.
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5 Numeral simulation

We solved the equation

dn a
i JLnL‘wM +T,n (56)

numerically, assuming that the dumping coefficient T,
is the sum of two parts

Fw = F_[ + Fg (57)

Coefficient I'; was nonzero in all experiments. It consists
of high-frequency hyper-viscosity ', and strong damp-
ing I in low frequency region:

—Cilw —wo)?, wo=4, w<w {58)

—Ch(i — 12, w =98, w>uw {59)

Wy

Nw) =
F},_(LL))

where Cy and '}, are the positi{'e constants. Presence of
the low-frequency damping is necessary for the numeri-
cal reasons.

Coeflicient I'; includes forcing due to external phys-
ical mechanisms, and the damping due to the wave-
breaking.

We studied the following variants of the forcing:

Case A. Symmetric forcing

Fo(w) = Cpdlw—8), Cp >0

Cuse B. Point forcing

Ty (w) = Cod(w — 8)3(¢), Cp >0

Case C. "Realistic” forcing

This point should be explained. There is no univer-
sal agreement in the wave-modeling community about
the form of the source of the energy transmitted from
wind to the surface waves. One of the commonly used
expression for I'y is

afete (Y — 1)cosg, c> v
T = Puwater o 60
£w) { 0, < (60)
Here v is wind velocity, e = 5 = f is phase velocity, «

is dimensionless constant.
Therefore we used the following parameters of forcing
corresponding to “realistic” situation:

Zakharov and Pushkarev: Deep fluid surface gravity waves

Ny(w,¢) = TI'y— Chw?

10<w<94
94 < w < 98

w—p4
N

!
Tyw) = { Gl g eoses
Cie™\ 72 cos ¢,
where Cy, C'f and C’g are positive constants.

This means that in the region 10 < w < 94 Ty(w) is
chosen to get the accordance with (60}, while in the in-
terval 94 < w < 98 'y (w) is chosen to provide a smooth
transition from region of forcing to the region of high-
frequency viscosity.

Equation { 56) is not convenient for direct numerical
sirnulation due to the presence of the numerical instabil-
itics appearing from “simple-minded” discretizations. [t
can be regularized and effectively solved by introducing
a new variable y = (w®n)® :

dy 82y 8y
B —P(W,y)—g;.—z+Q(W,y)a¢2 +3Cy (61)

where

s

Plw,y) = gaw y¥, Qw,y) = 3auy
are noulinear diffusion coeflicients.

This “classical” diffusion equation is solved economi-
cally with the help of implicit numerical scheme by simn-
ple recursion in the direction of w and cyclical recursion
in the direction of ¢. The efliciency of the algorithm
is illustrated by the fact that it takes just a few dozen
of minutes to calculate the development of the turbu-
lence from the random noise initial conditions to sta-
tionary state using Pentium 133 MHz CPU on the grid
of 128 x 32 nodes of (w, ¢} domain.

We started with the "free” case (I, = 0) putting as
an initial data the JONSWAP spectrum:

- 2

nlw, ) = —w’e ¥ P oeostd
where wy = 27 fy, frn = 0144Hz, v = 3.3, -5 < ¢ <
5,0 =0.07for w <wp and o0 = 0.09 for w > wy

Fig.1 presents 4%|,—o plotted together with the re-
sults of Resio and Perrie (RP), Masuda (RIAM) and
WAM method. It is seen that the diffusion approxima-
tion results are close to the results of first two groups
and essentially differ from the DIA WAM results.

In the symmetric Case A (see Fig.2, 3) there was an
ample range of frequency with I' = 0 (transparency win-
dow). Stationary isotropic solution in this case is
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Fig. 1. Comparison of the collision terms for diffusion approxi-
mation with RIAM, WAM and RP data taken from Komatsu and
Masuda (1996).

y=Aw+ B (62)
where 4 < 0 is the flux of the wave action to large
frequencies. The stationary spectrum was established
rather soon.

In the case of “point forcing” (see Fig.4, Fig.5 and
Fig.6; () means angle averaging), the stationary spec-
trum is essentially anisotropic. It was reached very soon
as well. ‘

An essential anisotropy also exists in the case of “re-
alistic” forcing (see Fig.7, Fig.8).

It is important to note that in all three abovemen-
tioned cases the angle-averaged spectrum exhibits w™*
Kolmogorov law despite angular dependence in the last
two cases. Temporal evolution of the “realistic” spec-
trum in the form of the wave propagating toward low w
is presented on.Fig.9.

Fig.10, Fig.11 and Fig.12 show temporal behavior of
the integrals V,E and average frequency w = % in the
“realistic” case.

Fig.13, Fig.14, Fig.15 show temporal behavior of the
same functions for the case I'; = 0. We used as an initial
condition the stationary spectrum obtained for 'y # 0
case.

6 Conclusion

The diffusion model of four-wave interaction is the most
simple model presenting the major feature of the phys-
ical phenomenon under investigation — conservation of
the constants of motion and righteous scaling. It is very
convenient and effective for numerical simulation. The
numerical experiments show that this model describes
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evolution of the wave spectra reasonably well and can
be used for development of the new generation of wave-
prediction models. It would be desirable to compare the
new model with numerous accumulated data of the field
observations and laboratory experiments. To do this we
should include in the equation (35) the dependence on
the spatial coordinate @ {the fetch). The new equation
is

on  cos¢ On 1
-+ ———=—L T 63
at N % 0z At (w g)n (63)

The numerical simulation of the equation (63) is sep-
arate and nontrivial problem. We hope to present the

results of the simulation of this equation in the next
article,
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