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Abstract. When a pollutant is released into the ocean
or atmosphere under turbulent conditions, even a steady
release is captured by large eddies resulting in local-
ized patches of high concentration of the pollutant. If
such a cloud of pollutant subsequently enters a stable
stratification—either a pycnocline or thermocline-then
internal waves are excited. Since large solitary inter-
nal waves have a recirculating core, pollutants may be
trapped in the sclitary wave, and advected large dis-
tances through the waveguide provided by the stratifi-
cation. This paper addresses the mechanisms, through
computer and physical simulation, by which a localized
release of a dense pollutant results in solitary waves that
trap the pollutars or disperse the pollutant faster than
in the absence of the waves.

1 Introduction

In this paper, coraputer and physical simulations of at-

mospheric and oceanographic stratifications are disturbed

by the introducticn of dense tracers, simulating the noc-
turnal release of a dense gas from an industrial accident
or the sudden rslease of a pollutant into an oceano-
graphic pycnocline or thermocline. The simulation can
also loosely model steady releases where the flow up-
stream of the stratification is turbulent. Intermittency
breaks up the plume into localized clouds of pollutant
that then enter the stratification separately. The simu-
lations are of an initially static stratification, and thus
the waveguide is unsheared. The purpose of this pa-
per is to determine if there is a common asymptotic
behaviour of solitary waves generated by the initial re-
lease in capturing the dense disturbance and advect-
ing it along the waveguide large distances largely un-
changed in concenetration. Alternatively, it can be de-
termined if the solitary waves arc an effective disper-
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sal mechanism, resulting in low concentrations of pollu-
tant smeared along the waveguide. This is an important
question for regulatory bodies since legislation concern-
ing industrial releases of dense toxic gases is written for
daytime conditions, where convective rolls excited by so-
lar heating lead to strongly turbulent, largely unstrati-
fied background conditions. In this case, turbulent wind
tuniel studies have demonstrated generally rapid down-
wind mixing, with the inevitable intermittent behaviour
leading to some outliers in high concentration (see e.g.
Zimmerman and Chatwin, 1995). Nocturnal releases,
however, are more likely to have low wind shear and
strong stratification.

The solitary waves simulated in this paper emerge from
initial disturbances designed to model industrial releases—
dense gases from a tank rupture leading to a gravity cur-
rent that breaks up into solitary waves or simply a lo-
calized, brief momentum source. In theses simulations,
the strength and height of the stratification is varied.
Waves are generated either by seeding a patch of fluid
with: vertical momentum or by imtroducing cold fluid
into the waveguide. Mixing is monitored by "coloring”
some of the fuid—numericaily this is achieved by a pas-
sive tracer with low diffusivity. Initially, a mixed region
occurs and one or more solitary waves emerges.
Although the initial conditions are well characterized,
all theories for solitary wave evolution are asymptotic.
They assume that the wave-like disturbance has a char-
acteristic amplitude and wavelength, and thus a nonlin-
ear evolution equation (NEE) is derived with solutions
exhibiting, self-consistently, that amplitude and wave-
length (see Zimmerman and Haarlemmer (1999a) for a
discussion of the predictive capacity of existing NEEs to
predict the properties of solitary waves). For practical
purposes, one would like to correlate the size of the ini-
tial disturbance with the subsequent mixing downwind
actuated by the emerging solitary waves. This paper
discusses the extent to which such correlation is possi-
ble.
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1.1 Solitary wave propagation

Although there are several NEEs for weakly nonlinear
wave equations, in this paper motivation and interpre-
tation are made with reference to shallow layer internal
wave theory. Weakly nonlinear internal waves in shal-
low layers evolve according to the Korteweg-de Vries
(KdV) equation. The phase speed can be predicted un-
der the conditions of the simulations by solving a bound-
ary value problem. The eigenvalue is the phase speed
(co) of an infinitely long wave. This boundary value
problem,

[p(co ~ u(w))*dyly + PNZ¢ = 0 (1)

with boundary conditions: #(0) = é(y) = 0, is known
as the Taylor-Goldstein equation. Here y is the vertical
coordinate of the eigenfunction ¢; p is the density; p is
the reference density, and N is the Brunt-Viisila fre-
quency. An increase in the strength of the temperature
stratification will cause an increase in the phase speed of
the wave. This is clearly shown in the simulations pre-
sented hereafter. When the wave is not infinitesimally
small, the phase velocity ¢ is corrected as follows:

c=cp+ %sah (2)
Here a is the coefficient of the nonlinear term in the
evolution equation and  is the fluid height (more on this
can be found in e.g. Rottman and Einaudi, 1993). The
parameter ¢ is the relative size of the wave (42 /h), the
ratio of the maximum amplitude to the layer height.

In real fluids, viscous damping of the waves will play
a (sometimes small) part in the evolution of the wave.
Various damping mechanisms have been studied (see e.g.
Zimmerman and Velarde, 1994 and 1996). In these sim-
ulations it is assumed that only bulk viscosity acts on
the waves. '

1.2 Organization of the paper

In section 2 an cverview is given of fluid trapping ob-
served in laboratory experiments and in the field. In
addition, an indication about the size of solitary waves
in natural waveguides is given. In the same section an
overview of intensities of stratifications often found in
natural waveguides is given. Section 3 outlines the nu-
merical procedure and gives an overview of the simula-
tions presented in section 4. In section 5 the experimen-
tal procedure and case studies are presented.

2 Literature overview

2.1 Large amplitude waves

A large amplitude solitary wave has closed streamlines.
Weakly nonlinear waves have no such recirculation, but

they do play a role in advection. Linear waves, how-
ever, give rise to no net displacement of fluid during
propagation. The more nonlinear a wave, the larger the
distances over which its convective processes are notica-
ble.

Davis and Acrivos (1967) performed numerical simula-
tions and laboratory experiments of solitary waves prop-
agating on the interface of two miscible fluids. They
found recirculation in waves with an amplitude larger
than the stratified layer. Similar observations were made
by Maxworthy (1980) and Amen and Maxworthy (1980).
They created a mixed region with a tracer fiuid that was
released in a stratification. Initially the region spreads
out as a gravity current. Subsequently, the gravity cur-
rent breaks down into a train of solitary waves (see
also Rottman and Simpson, 1989). Maxworthy observed
that the leading wave transports the tracer away from
the source. When the tracer is left behind this wave, a
second trailing wave picks it up. This process becomes
less pronounced with subsequent smaller trailing waves.
In atmospheric observations, large amplitude waves are
common. Rottman and Einaudi (1993) reported that
the amplitudes of the Morning Glory solitary waves in
Northern Australia were up to half the height of the
waveguide. Doviak and Christie (1989) report simi-
lar large amplitude disturbances. Many of the solitary
waves observed in the lower atmosphere are highly non-
linear and are of the same order as the height of the
waveguide. It turns out that small amplitude (weakly
nonlinear) waves are very difficult to discern amongst
the normal pressure variations in natural waveguides.

2.2 Modelling the waveguide

The model studied here is for a nocturnal inversion layer.
During the night the temperature profile may become
inverted due to radiative cooling of the earth surface.
Due to normal adiabatic expansion, air cools as it rises.
The potential temperature accounts for adiabatic cool-
ing. A neutrally stratified atmosphere has a uniform
potential temperature even though the absolute tem-
perature may fall with height.

The strength and height of this inversion layer varies
a great deal. Rees and Rottman (1994) repaort solitary
waves propagating on the Brunt Tce shelf in Antarctica.
They found a waveguide which was approximately 30m
in height, with a temperature difference between top and
hottom of about 20° C. These waves were found under
the extremely stable conditions of the Antarctic winter.
Elsewhere, the temperature profiles are usually less ex-
treme. Ueda et al. (1981) examined the stability of the
nocturnal atmosphere of the Tateno district in Japan.
For the first 300m of altitude they find that the temper-
ature increase varies typically from 1° C in the evening
to 3°C in the early morning. These values are consid-
erably smaller than those found for the Antarctic night.
Mahapatra et al. (1990) report temperature increases of
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No | Temp. Height Amplitude e [-] | Fr*[-]| Description
profile waveguide disturbance[m)]
{km)] {at time [s])
1 10-11°C 2 408 (1000) 1.02 2.3 No background stratified up to 400m. passive tracer present
i0-11°C 1 94.7 (800) 0.31 1.9 Background velocity 5m/s, stratified up to 300m, 5,000 La-
grangian particles, passive tracer component, grid moves at
Sm/s.
3 10-14°C 1 129 (400) 0.43 1.1 Background velocity 5m/s, stratified up to 300m

Table 1. Numerica! simulations performed, with the amplitude of the initial disturbance and the particularities of the simulations.

10-15°C in a waveguide of circa 3km, in Norman, Okla-
homa. Other typical values found are 5°C per kilometre
(Monserrat and Thorpe, 1992) on the Balearic Islands
and 5-10°C in waveguides varying in height from 100-
800m in Northern Australia (Smith et al., 1986; Smith,
1988).

All of the stratifications reported above were associated
with solitary waves. A trapping mechanism is needed to
create a waveguide in which waves can propagate with-
out radiating off vertically. Some trapping mechanisms
are rapid changes of the temperature profile or shear
layers.

3 Simulations

In the simulations, the full momentum equations are
solved. The equations are solved using a general pur-
pose equation solver PHOENICS(©. The discretisation
was done using a second order upwind scheme ( QUICK,
Leonard, 1988) to minimise numerical dissipation. More
detailed accounts of the simulation methods and the
equations solved are found in Haarlemmer and Zimmer-
man (1996) and in Appendix A. The viscosity of the gas
is set to the natural viscosity of air (10~% kg/ms). The
density was computed using the ideal gas law

-z .

where K=288.3m:%/(°C s%). In this paper, potential
temperature is used. The actual temperature (T, ), when
adiabatic cooling is accounted for, is found from

p {(v—1)/v
T,=T (_> (4)
Po

where 7 is the gas compressibility and po is the reference
pressure.

Where a backgrcund velocity is applied, the pressure
must be specified at the outflow boundary. It is as-
sumed here that the pressure at the outflow boundary is
built up solely from hydrostatic contributions. Further
upwind in the flow, dynamic pressures are computed.
A characteristic dimensionless number in the flow is a
modified Froude number Fr* = ¢/v/hg. Here ¢ is the
characteristic velocity (phase speed), h is the height of
the stratified layer and the reduced gravitational accel-

eration § = g(p1 — p2)/pr. Fr* represents the dimen-
sionless phase speed. This is concurs with the definitions
found in Rottman and Simpson (1989) and Haase and
Smith (1989).

Initially, the computational domain contains a stably
stratified ideal gas at rest or in uniform motion. Then, a
localized disturbance is introduced, evolving into a soli-
tary wave. The domain is 10 to 40km in the horizontal
direction and typically 1000m in the vertical. The com-
putational mesh has 100 to 200 grid points horizontally,
equally spaced apart. In the vertical direction there are
50 grid points. The initial stratification has a linear tern-
perature profile in the lower part of the domain, the top
part is left unstratified. The temperature profiles used
in this study varied from 10-11°C (top layer 11°C uni-
form) to 10-14°C (top layer 14°C uniform). The height
of the waveguide taken as either 1000m or 2000m.

4 Numerical results

Several simulations have been done with a variety of
waveguides and waves. Some case studies will be high-
lighted (see Table 1). The first deals with a disturbance
propagating through a stratification in a closed system.
The second and third examples give a wave generated
by introduction of cold air in a waveguide with a uni-
form background velocity. In both cases a tracer com-
ponent was followed in time. The tracer is transported
according to an advection-diffusion equation. The phase
velocity of the simulated waves is compared to velocities
predicted by the KdV theory. Koop and Butler {1980)
argued that a wave propagating on a stratified layer with
a depth of 1/6 of the total depth of the fluid can still
be described with the shallow fluid approximation.

4.1 Simulation 1: Closed system

In this first simulation, a weakly stratified waveguide
is perturbed with a vertical velocity component. The
wave is initially of the same order of magnitude as the
stratified part of the waveguide (¢ = 1.02). The mesh
has 200 grid points horizontally (40 km) and 50 verti-
cally (2km). In the first time step a patch of 5 x 5 cells
(1000 x 100m) was perturbed with a vertical velocity of
50m/s directed downwards. In the same patch a tracer
was introduced in the fluid. The disturbance was left to
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Fig. 1. The temperature profile {left), the tracer concentration (center) and vertical velocities {right) after 1000s in simulation 1.
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Fig. 2. The temperature profile (left), the tracer concentration {center) and vertical velocities (right) after 4000s in simulation 1.

develop into a train of solitary waves.

A mixed zone with strong vertical velocity components
is created. Although initially no horizontal momen-
tum is introduced, shortly thereafter a strong horizontal
wind arises. This mixed zone flows into the stratifica-
tion as a gravity current, (see Fig. 1). It is clear that
the head of the gravity current develops into a large am-
plitude wave. The tracer is trapped in the wave and is
convected away from the site of the disturbance. The
contour lines of the tracer clearly show the wave-like
structure of the disturbance.

When the simulation is taken further in time, the weak
viscous and dispersive forces have acted on the leading
solitary wave in the gravity current. Recirculation is still
visible after 2000s. The wave amplitude decreases until
recirculation disappears completely. The resulting wave
is weakly nonlinear and will propagate away without
having a significant effect on the tracer, as shown in
Fig. 2.

The phase speed of the wave is computed to be 2.7m/s.
This is somewhat higher than the phase speed of 2.3m/s
predicted by the weakly nonlinear KdV theory for this
wavegtide and amplitude.

This simulation clearly shows that the disturbance ini-
tially creates a highly nonlinear wave with the ability
to trap and transport a part of the fluid. As the wave
evolves, it decreases in amplitude. In smaller waves, less
fluid is trapped, and slowly the tracer is expelled from
the wave. When the wave becomes sufficiently small it
can be described by the weakly nonlinear KdV theory.
The phase speed predicted by this theory is smaller than
the observed phase speed.

4.2 Simulation 2: Uniform background wind

In chis simulation, the wave was created in a waveguide
witn a background velocity of 5m/s. The potentisl tem-
perature varied from 10-11°C in the lower layers up to
306m altitude and was left unstratified above. A wave
was created by introducing air with a temperature of
16°C at a velocity of 17m/s for 40s. This created a
diziurbance that propagates downwind. The frame of
refzrence travels at the same velocity as the background
wird. During the simulation the coordinates of 5,000
Lagrangian fluid elements were traced in time, The par-
ticies travel along the streamlines which remain constant
during a time step, Between timesteps of the simulation
algorithm new locations of the particles are computed in
twi steps. These particles were located near the origin
of the wave (see the cloud at t=0 in Fig. 3).

It is clear that the wave in this simulation is not as
larze as the wave in Simulation 1. There is no recircula-
tiorn visible in the isotherms. Furthermore, the vertical
velocities of the waves are small - the same order of
magnitude as the velocities in Fig. 3. There is a large
depression trailing the wave and this appears to push
the tracer forward. This is also shown by the motion of
the Lagrangian fluid elements. The cloud of particles is
pushed away from the source. Some rotational element
is rresent in the center of the wave though it is rather
weak.

The phase velocity in this simulation is initially very
higit (5m/s) but then rapidly decreases to 1.85m/s. The
wewnkly nonlinear theory predicts 1.95m/s. As can be
seen in the figure for the concentration the center of
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Fig. 3. The temperature profile with vertical velocities after 800s (teft), she tracer concentration (center) and the location of 5,000

Lagrangian finid elements (right) in simulation 2.

the tracer, with the highest concentration, travels at
a velocity of 1.75m/s. The Lagrangian fluid elements
display a similar behaviour.

The generation of this wave was fundamentally different
from the first simulation. An amount of cold air was in-
troduced in the waveguide creating a wave. The wave
propagates away from the source with a velocity close
to the phase speed predicted by the weakly nonlinear
theory. The wave clearly convects the perturbing fluids
away from the source. As the wave decreases in ampli-
tude, convective effects become weaker and a long trail
of the tracer is the result. A large release of dense gas,
as after an industrial accident in a nocturnal inversion
layer, may trigger a wave of this kind. The pollutants
thus introduced may travel significantly faster (or slower,
if the wave opposes the wind) than can be ezpected on
the basis of background wind velocities.

4.3 Simulation 3: Strong stratification

In a stronger stratification, nonlinearity will play an in-
creasingly important role. In addition the phase speed
of the waves should increase as predicted by nonlinear
theory. In this simmlation a shearless stratification was
set up. The lower 300m has a linear temperature pro-
file increasing from 10°C to 14°C. The top 700m was
left unstratified. To maintain numerical stability at the
boundaries, the grid was held stationary. A disturbance
was released with a velocity of 20m/s for 40s (temper-
ature 10°C, concentration tracer unity). This creates a
wave with an amplitude of 129m.

The disturbance develops into a train of solitary waves
as the weakly nonlinear theory predicts. The head of
the tracer appears to be pushed forward by the wave
although as the wave decreases some of the tracer slips
out of the back of the wave. The presence of the solitary
wave appears to have a significant effect on the horizon-
tal spreading of the tracer. The leading wave develaps
a phase speed of 9.5m/s. The KdV theory predicts in
this case a phase speed of 9.2m/s. The tracer velocity
is 8.3m/s, slightly slower than the wave but still consid-

Height (m)
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+{ 900
4 800
0.05 4 700
0.1 4 800
0.2 4 500
Temp. 0.4 4 400
13.8 300
’ 200
10.0 — . L . .
5 0 15 20 25 30 35 40
Horizontal distance (km)

Fig. 4. Temperature profile and concentration profile in simula-
tion 3 after 400s
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Fig. 5. Temperature profile and concentration profile in simula-
tion 3 after 2000s
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Fig. 6. Video stills of experiment 1. Top frame: Wave at t=t ;. Bottom frame:Wave at t=t, +55. A 40cm section of the wave tank,
40cm from the origin of the wave. The concentration pattern is similar to the simulation in Fig. 5.

erably faster than the background wind (5m/s).

More solitons are generated in stronger stratifications.
The leading soliton traps the perturbing cold fluid in the
same way as in simulation 2. The phase speed is in good
agreement with the weakly nonlinear theory. Stronger
stratifications imply that pollutants are convected faster
when trapped in a wave of this kind.

5 Experiments: Solitary waves with recircula-
tion

The experimental system, a wave tank with denisity
probes and a dedicated optical system, was purpose-
built. The tank is a rectangular channel made of trans-
parent U-PVC. The dimensions are 200x25x 10cm. Data,
is collected using conductivity probes and a video cam-
era. The results are presented in the form of video stills.
A stratification is set up by introducing fluids of different
densities in the tank. First fresh water is put in place af-
ter which batches of brine with increasing densities and
different colours are introduced near the bottom of the
tank. The different fluids organise themselves vertically
with the lightest fluid on the top. The interfaces are mis-
cible and so a nearly linear stratification can be set up
with a known density distribution. The intensity field
from light transmission through the tracer dyes forms a
gray scale correlated with density.

It is possible to generate solitary waves in a great many
ways. Almost any disturbance in stably stratified fluids
produces waves of some sort. Gravity currents are cre-

ated by an area of fluid with a high density separated
frem the stratification. When the separation is removed,
the dense fluid flows into the stratification creating a
train of solitary waves (see also Maxworthy, 1980 and
Rottman and Simpson, 1989). In most experiments a
localised solitary wave is created by introducing a small
but finite volume of dense fluid in the stratification. This
results in a solitary wave without generating a gravity
current.

5.1 Shallow layers

A rypical example of a wave propagating in a relatively
shallow layer is given first. The highest fluid layer is
undyed. The second and third fluid from the top were
dyed. The interface between the different layers blurred
scmewhat. The stratification was therefore nearly lin-
ear. The tank was filled with fluids (from top to bot-
tom)with heights (cm) and densities (kg/m®): 4, 998;
1, 1G08; 1, 1015 and 1, 1023.

A wave was created by introducing a finite amount (100ml)
of dyed dense fluid (1050 kg/m?®). This disturbance
evolved into a train of solitary waves. The fluids that
caused the disturbance were trapped and convected away
from the source. It is the presence of the waves that
cause this horizontal spreading of the fluids. In the ab-
sence of the waves the dense fluids developed a very
weak gravity current that did not produce any signifi-
cart wave motion. The video stills of this experiment
are given in Fig, 6. The black fluid in the experiment is
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in fact not a gravity current, but a trail of dye left by
the leading wave. The leading wave has a strong recir-
culation that causes mixing of the dense fluid with the
higher layers. The dye and thus the dense fluid pene-
trates into the stratification. This gives the dye pattern
the appearance of a gravity current.

From the wave in Fig. 6 it is clear that the fluids in the
center are recirculating. This recirculation causes local
shear instabilities that form the irregular structures in
the center of the leading wave. It appears that this is the
only mixing mechanism that is available. The amplitude
of the wave measured at the top of the stratification is
A = 1.3cm, with = = A/H = 0.19. The surface of the
fluids in the wave tank remained calm even though large
amplitude waves were propagating under the surface.
The phase velocity of the wave in Fig. 6 is circa 6cm/s.
The KdV theory predicts a long wave phase velocity of
cg = 4.7cm/s. The coefficient of the nonlinear term is
o = £1.4s7!. These are used in the expression for the
actual phase velocity: ¢ = ¢p + taH , with H = Tem
total fluid depth. The prediction for phase velocity
is ¢ = 5.2cm/s. Phase velocity is under-predicted by
the weakly nonlinear theory. The wave has a recircu-
lation and is therefore strongly nonlinear. In addition
the stratification was assumed to be linear in the the-
ory. This assumption may only be an idealization of the
stratification in the experiments.

5.1.1 Wave evolution in deep water

The second deep fluid wave experiment deals with a
light un-dyed stratification. The stratification was set
up with two fluids. The top fluid was 5¢m of fresh wa-
ter (998 kg/m?) with the bottom layer more dense at
1008 kg/m®. The wave was created using a dense fluid
(1050 kg/m?), dyed with black negrosine. The result
of the experiment was a wave propagating through the
stratification and advecting some of the original tracer
fluid.

The structure of the wave is more complex than a simple
sech?; after the initial wave there is a slight depression.
In addition it is clear that tracer fluid escapes from the
leading wave. This gives the appearance of a gravity
current, when in fact the leading solitary wave is not
forced by a gravity current. The wave develops a bore
like appearance because some dyed fluids mix with the
upper layer and slip out of the leading wave. Streaks of
dye near the leading wave indicate shear instabilities.
The phase velocity of the wave in Fig. 7 is 3cm/s. When
it is assumed that the density profile is nearly linear the
shallow fluid theory predicts a long wave phase velocity
of 2.6cm/s with the coeflicient of the nonlinear term
o = £2.557 1. Assuming the wave amplitude A =~ lcm,
the phase velocity is given by ¢ = ¢o + 30H = 3.3m/s.
This is somewhat over predicted. The estimate for the
amplitude of the wave and the degree of nonlinearity
can account for the difference.

5.2 Summary

These two experiments, and many others like them (see
Haarlemmer (1997)), show that the mechanisms iden-
tified in this paper do indeed occur in real fluids. The
recirculation slowly disappears. The wave is very ef-
fective in horizontal dispersion of the perturbing fluids.
The fluid surface is not significantly affected by the pas-
sage of the internal wave and remains calm.

6 Discussion and Conclusions

Clearly, this paper gives only a cursory presentation
of the experimental investigation, reporting qualitative
features in a handful of case studies about mixing and
dispersion by internal solitary waves. It is regrettable
that more quantitative measures of mixing and disper-
sion are not presented. There are two chief reasons.

1. The initial releases were not easy enough to con-
trol for reproducibility. Indeed, the asymptotically
emerging solitary waveforms were typically rather
different for the initial conditions of nominally the
same parametric description in the experiments.

2. Neither the density probes nor the optical system
were sufficiently accurate to give reliable measures
of density disturbance.

The limited scope of the experiments was to provide
some physical validation of the computer simulations,
which has been achieved. The much more quantita-
tive simulations have been surprisingly unable to, draw
generalizations about dispersion from the initial releases
other than small amplitude solitary waves are efficient at
short range mixing, and large amplitude solitary waves
disperse fluids much further and fairly uniformly due to
the slippage from the aft of the solitary wave. Eventu-
ally, the tracer fluid is completely released after a fixed
length.

The difficulty in making generalizations is twofold:

1. The characterization of the initial disturbance. The
simulations give an idealization, where the experi-
ments have internal heterogeneity.

2. The lack of a predictive theory for internal solitary
waves emergent from an initial disturbance.

There is an inverse scattering paradigm for solitary waves
satisfying the Korteweg-de Vries equation-a train of soli-
tons emerges from an initial disturbance with the largest
and fastest leading, and the train follows in descending
order of amplitude. Indeed, atmospheric observations
have mimicked this paradigm [Doviak and Christie, 1989].
However, each emergent solitary wave from an initial
disturbance sets up its own Korteweg-de Vries equa-
tion due to the parametric dependence of the coefli-
cients of the KdV equation on its amplitude and wave-
length. Thus, there is no unique KdV equation that
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Fig. 7. Video stills of experiment 3. Top frame: Wave at t=t 1. Bottom frame:Wave at t=t;+7s. A 40cm section of the wave tank,

40cm from the origin of the wave,

governs the horizontal propagation in the waveguide of
all of the emergent internal waves. Given our experience
with setting up solitary waves in wavetanks, it is clear
that the emergent solitary waves are sensitive to fluc-
tuations in the initial condition. The extent to which
the inverse scattering transform provides meaningful in-
formation about the dynamics of the emergent internal
solitary waves is the subject of our companion paper
[Zimmerman and Haarlemmer, 1999b)].

It was shown in the simulations and the experiment that
solitary waves do indeed play a role in the convection of
fluids. The effects are stronger for simulations where
the wave was created by introducing dense fluids in a
waveguide. After creation of the wave some of the per-
turbing tracer fluids are picked up and transported away
from the source. This mechanism was confirmed by the
experiments.

Waves larger than weakly nonlinear display no uniform
waveform on every streamline. This implies that there
is no unambiguous criterion for the size (such ase > 1)
of the wave for which convection by waves is important.
Furthermore, this defies the explanation of all dynamical
theories based on separation of variables.

In the experiments, the fuid surface is not significantly
disturbed by the presence of internal waves. Thus "rigid
lid” boundary conditions in the simulations are therefore
not too severe a restriction on the dynamics of the waves.
The proposed mechanisms may be of particular inter-
est in the nocturnal inversion layer. After an industrial
accident at night a large wave may be triggered and
transport fluids away from the source much faster than
can be expected on the basis of the background velocity.

| Equation: [ ¢ IR |
Momentum u = {u, v, w) n | —V(p) +gravity
Continuity 1 0 | Boundary Condi-
tions
Energy T k | Source
Concentration | C D | Source

Table 2. Variables used for the generalization of the governing
equations

Appendix A: Discretisation Scheme

A commercial computational fluid dynamics package,
PHOENICS(C), was used. The transient simulations are
performed in a two dimensional domain. The discreti-
sation scheme for governing equations is given below for
a one dimensional situation. The value of the variable
in cell p can be given as a function of the values of the
neighbouring cells. The previous time step is treated
as a neighbouring cell. Effectively, time is treated as
an extra spatial dimension. The equations all have the
same form and a general variable ¢ can be defined. The
generalised governing equations are be given by:

d{pe)

S 4V (pug) - V- [TV(g)] = (5)

All equations have the same form and are discretised in
a simnilar fashion with a second order upwind finite dif-
ference scheme: Quick (Leonard, 1988). The variables
and source terms S are given in Table 2.

Now (5) can be integrated once in the control volume.
For a 1D steady state example this yields:

do dep
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The index e means the value at the cell face "east’ (right)
of node P, w indicates the cell face 'west’ (left) of P.
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The value of ¢; (where f is either e or w) must now be
computed from a finite difference approximation such as
QUICK:

1
b= 5(6p + 00) = 5(65 — 200 + 0)

Here D stands for downwind and U7 for upwind nodal
points. When this approximation is used in (6) it is
possible to express the value of ¢p in terms of values
of its neighbouring cells. The time integration is fully
implicit. The matrix equations that now arise are solved
using a conjugate gradient solver. The algorithm used
to solve the pressure linked equations is SIMPLEST (see
e.g. Patankar, 1980).

The numerical setup has been tested for accuracy by
doubling the number of grid points and time steps for
a given simulation. It was found that the scheme pre-
sented here was stable and sufficiently accurate for the
given number of grid points. Typical simnulations take
24-50 hours on HP-700 workstations.
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