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Abstract. The paper concerns the temporal evolution
of the Rayleigh-Taylor instability of two superimposed
fHuids in a vertical channel. At large times the insta-
bility results in the formation of a wide nearly-steady
bubble of the lighter fluid rising through the channel,
and thin long unsteady jets of the heavier fluid flow-
ing down the channel walls. The jet flow appears to
e tractable asymptotically by the method of matched
asymptotic expansions. The solution has been obtained
with the planar tips of jets characterized by the jump of
the interface slope.

1 Introduction

The Rayleigh-Taylor instability occurring when the
Leavier fluid is superimposed over the lighter one has
been extensively studied experimentally, and the gen-
eral features of the system are well known {Davies and
Taylor, 1950; Lewis, 1950; Zukosky, 1966). After an
initial transient period, the system enters the asymp-
Lotic stage where the wide bubble of the lighter fluid
acquires a fixed shape and rises through the channel
at a constant speed. Simultaneously thin long jets of
the heavier fluid are observed that slide down along
the channel walls at a constant acceleration (Fig. 1).
"I'he problem has also been explored thecretically both
in the time - independent and unsteady formulations
(Birkhoff and Carter, 1957; Garabedian, 1957; Vanden-
Broeck, 1984a b: Gertsenshtein et al. , 1989; Cherniavski
and Shtemler, 1994; Baker et ai. , 1980; Gertsenshtein
and Chernlavski, 1985).In the former case, as was found
by Birkhoff and Carter (1957), the bubble rises at the
dimensionless speed w = 0.23, where w = w?/\/hdg4,
with w®, h? and gd as the dimensional bubble speed,
channel width and gravity acceleration.

It is well established by now that the solution of the
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Fig. 1. Diagram for the advanced stage ol the Hayleigh-Taylur
instability. The bold line {S) corresponds to the steady-state inter-
face, the thin line (C} to the interface of the associated unsteady
interface.

steady - state problem exists for any value of the bubble
speed w smaller than some critical value w,. Garabe-
dian (1957) showed that w, = 0.24, while Vanden-
Broeck (1984a) , in his more accurate analysis obtatned
w. = 0.36. Note that in the absence of viscosity and
surface tension effects, the solution with the sinooth tip
of the bubble occurs only for w = 0.23 {Gertsenshicin
et al. , 1989; Cherniavskl and Shtemiler, 1994). This 1s
also in compliance with the results ol Vanden-Broeck
(1984b) where w = 0.23 was obtaiued as a linit at van-
ishing values of surface tension.

The solution of the steady-state problem is singular
since the falling jets are of infinite length. [u the at-
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tempt to simulate the pertinent dynamical system nu-
merically, the presence of unstecady continuously shrink-
g jets leads to computational complications in the un-
steady problem {Baker et al. | 1980; Gertsenshtein ancd
C'hermavski, 1985}, The flow within the jets has been
approximalely resolved analytically by the integral rela-
tions technique ((Gertsenshtein et al. | 1989; Cherniavski
and Shtemler, 1994}, The iutegral method, however,
fails to yvield the jet interface shape.

The main goal of the present work is to describe
the unsteady flow and the interface shape in the jet
at long times, the numerical calculations of which
et with computational complications, and to match
them with the steady-state solution. The well-settied
downward-sliding unsteady jets are described asymptot-
ically, where the time reciprocal is regarded as a param-
eter of expanstons. The problem is solved by means of
the method of matched asymptotic expansions and for
comparison by a scimewhat modified integral approach
developed in the previous studies (Gertsenshtein el al. |
198Y; Cherniavski and Shtemler, 1994).

The explicit description for the unsteady jets obtained
hy the method of matched asymptotic expansions in ad-
dition to the steady-state solution [or the bubhle per-
mits to describe the solution in the whole region of How.
The method developed here can be employed to study
a wide number of systems. Thus, a similar procedure
has recently been employed in the context of a physi-
cally related problem concerning the upward propagat-
ing Hames (Shtemler and Sivashinsky, 1994).

2 Basic equations

The present study is limited to the case of a negligi-
bly small deusity of the light fluid, when the interface
i5 actually the free boundary of the heavy fluid. In the
two-dimensional formulation discussed in this paper, the
potential flow of the inviscid incompressible fluid entails
the vatidity of the Clauchy-Riemann relations for the po-
tential and stream function, as well as of the Bernoulli
integral for the pressure. In the frame of reference Oy
moving upward at a constant speed w. the appropri-
ately scaled (see below) set of the governing equations
and boundary conditions reads

i1} equations for the flow-field

0.0 = 0,0, 0,0 = ~0.v, !
Ly L{To)? + gy + 0o = 0. (

{11} conditions at the nterface 5{z, y,8) = 0

Gy A deo doy + dye Sy = 0, (2]
p=1.

i) impernmeability conditions at the walls @ = 9 and
&= h

dyu =0, (3)
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{1v) condition at infiuity
O —= —wy + . {t) as oy = . it

Here the vertical axis s chosen mosech woway tha
coincides with the wall & = 0: /i 15 tiwe channel widrh;
g 1s the gravity acceleration; p is the heavy fhiid den-
sity; (&, y} are the spatial coordinates: {15 the thne; o
and 0 are the potential and stream funcron: the addi-
tive constant in the stream function ¢ ix sel to be zero
at the wall & = 0; p is the pressurc: ~le g t) = U 1s
the interface profile. Since we shall he concerned with
the long-tine assumption. ¢ = . the mitial data are
assumed to be irrelevant and not specillod
Dimensional values of the channct wichth, 04 of the
gravity acceleration, g*. and of the sl density. p9. are
taken as the basic scales of the svstent Henceo eversy-
where below
w -

h=1l,g=1p=1 w= ()

i

where w15 the dimensional speed of the rising bub-

ble. Here the supersceript @ denotes corresponding i
mensional variables, the dimensionless spreed e ol the
rising bubble may be regarded as the Frowde mmber
ot the problem. To fix the arbitrary constants by the
chotce of the horizontal axis and the addirive constant
in the potential function, the following additional con-

ditions are intraduced:

Vo =10 at r =+,

2 u=0, ()
welt) = G, o (t) =0 ‘

as §{ — o

Here g (0) 1 the height of the bubble tip o the reler-
ence frame wOy (Fig. 1) The tip of the settled bablble
therefore belongs to the axis O,

Setting time derivatives in Eqs. (1] {4} to zero
and ewmwploying the condition of the mass-tlux conservi-
tion, one ends up with a steady-state lormulation of the
problem .

(1) equations for the flow-field

ded® = dy*, Gyot = —d.0, 7]
Pyt (Vo) =0 ’
(1} conditions at the mterface =% e g1 -0
S R (=
o= = = ) [Eal]
5 1

(111) impermeahtiity conditions al the walls

vt =0 as w = 0, .
iy y ]
v o= as » = |, '
(iv} condition al wmfinity
ot = -y as Y — 2 (10}

Here the superscript ¥ denotes the steady-state solu-
tion. Bue to the symunctry of the problem relative to

the chanuel midline » = /2, owr discussion is hmited
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to the left half of the channel. According to the mass
conservation law and the Bernoulli integral the fluid en-
tering the channel inflow crossection (y — +oc) at the
velocity w forms an infinitely long thin jet near the wall
(r =0 and y — —oc). The asymptotic structure of the
steady-state solution near z = {) is given by the relalions
(Birkhoff and Carter, 1957)

o' (x.y) = 0*(x.y) + O(2%),
e y) = 4 )+ 0,
s ( ):f‘(g y) (.1‘[)‘ (11)
" /)= 5, y) + Olat) = 0

as v — 0 {(y — —o0).
Here
o*(r.y) = 5(=29) %,
viir.y) = (— Jy)% |
ix) =0, 1 (12)
ey = e = g2y

3 Integral description of the falling jets

The steady-state jet has an infinite length. However, in
the unsteady case its length is clearly finite for any
fixed instant of time and increases as time grows. For
further analysis it is useful to write out the integral
conservation laws {Benjamin and Olver, 1982).
Presuming non-zero values of the pressure and the
normal speed at the surface bounding the flow region,
the pertinent relations ay be written as

(1) cnergy conscrvation

difiy + ()] = 1, (13)

w
T Poe
2

(i)  mass conservation

dyin = w + by, (i4)

(i)  vertical momenturmn conservation

. | .
delis — ¢ () +wm(t)] = —gw — i + b3, (15)

(iv) conservation of height of mass centroid titmes
1118858

drig = ?'3+wyb(t) + by (16)
Here

i = 3 j[_ &0, dds + %IL y2d.’l

iy = f ydx

iy = j; LdJ

{4 = yidz, . )
b = f{pr_‘ {tn _('jnt?)atgﬁ}ds, {1.‘}
b'_’ = -[L Uy — (}”@)d&“

by = Oy, )0y ods)

S l-pde + (v, —
fL

(vn, — Ondlyds,

where L (¥(x, y, 1) = 0} 1s the free boundary or a curve
approximating it, both with positive clockwise

by =
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direction of traversal; d, 1s the norinal derivative;

ds = /(dz)? + {dy)?; vy is the normal velocity of L:
dndds = —Opipde — 8yﬁ’dy§ .
— EINTERR S (1&)
Up = — T3y,

When deriving Egs. (13) - {17) the boundary
conditions at the walls, infinity and the problew
symmetry were employed (Benjamu and Olver, 1932}
The values i and by (k= 1,....4) are
pafts of encrgy, mass, vertical momentuin, height of
mass centroid times mass and their fluxes, respectively.
Relations (13) — (186) are actually the integral
identities for the exact unsteady soiutiun of the
problem for arbitrary L and ¢ (0 <! < >c). In
particular, if L is the unsteady free )()Llllddl\
the kinematic {v,, = J,@) and dyunawmic {p = 1)
conditions, some terms in Egs. (13) - (17} can be
dropped.

the interface

due to

Note that the solution of the steady-state problem (7)
- (10) is not a uniformly valid approximation of the
unsteady problem {1) — (4) at ¢ = x. This can be
easily shown by substituting the steady-state solution
of order {° (as t — o0) into the conservation relations
{13) - (i6) where L is regarded as the mterface. For
instance, the steady-state solution violares the mass
conservation relation (14). Indeed. the left and ngln
Lhand parts of Eq. (14) are equal (o zero and

w (by = 1)), respectively, and therefore cannot balanee
each other. The source of the nonunilorniy is the
{formation of infinitely long and thin jets.

Within the jet, the region of the steady-state solution
nonuniformity, the unsteady solution may be described
integrally., Assume that at { — > the solution of the
unsteady problem becomes time-independent.
Approximate the interface boundary by a portion of
the steady-state interface S5 and by the moving
control-surface ¢ (Fig. 1)

L2 0 L“: b, _ }
Yoyt = { Z—(iytl) i: 2 U£</ri<(ji(f). L)
Here +*{z,y) is given by Eq. (11), and the unknown
functions z,(t) and y.(¢) are Lo be found.
Set the mean velocity of the control surlace (7 relative
to the Quid, ¢., as zero, Le. 1 such a way that the
kinematic condition on C'is met integratly

(o= Oue)d .
fotenztuerds (20

Telf) = Soo————— —
(1) L.. 1s
The flow parameters at S are found by qolvinw the
steady-state problem (7) — (10}, while at {7 they are
given by the asymptotic expressions (11) emd
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definitions {18), (20) of v, and q.

o= ,u+0(),w=ﬁ%w+mr%

p= 0™, v = ~diga (1),
C’.Ozwauqﬁ—a;—(—)"i'()( )

g-(1) = 3 \,)d:[r @ 1= o + O (21)
O"“) = T.’z‘(t) w +O(t‘ ]'

vlt) = — gy + 074,

ro{t) = 45 + o) as t— 00,

where x is a constaut calculated in Gertsenshtein et
al. {1989); Cherniavski and Shtemler (1594}.
According to (21) p= 0 at " and such an approach
also guarantees satisfaction in the integral sense of the
dynamiec boundary condition at . Morcover, since
p=0and ¢g. = 0 at (" in the present case, the fluxes
through the control surface € are equal to zerc. The
expressions for functions z. (1) and w.(f) o (21)
determine the control surface C (in the expression for
r. the additive constant of integration is set to zero
corresponding to arbitrary choice of the time origin).
Employing the relations (21) , one observes that
within the jet all variables are of the following t-orders:

o~ 13,
as { —r 0o.

y~ 15,
pwig

RS ‘
e (22)
Suppose that at ¢ — oo all the integrals (17) may be
approximated by the sums of integrals over 5 and 7

by = b+ 05 (B=1,2,3,4) as 1 — oo.
In compliance with (20}, (21} at # — oc for integrals
over {7 one obtains,

= Sedl) — yX (e (1) + O3,

= =2 (28] + O,

iy =0(t). o
o = —yE02.(0) + O, 24

b =07, 6 =0(t°),
b = Ot?), 8 =0171).

Arrange the expressions for ¢ and &) (k= 1,2,3 4} as
the sums of the asymptotic parts (1 2) and the
corresponding remainders. The contributions of the
asymptotlc terms at ¢t — oo are given by

=1y = #—7+U+O(t‘)
@=4Jn+m+0uﬂ.g—uﬁm, (25)
h=0=0b=0,=0

When deriving Eq.
used:

(25) the following identities were

tny = 0! an@l) = 0\ Y= U.

o=l at §. (26)
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The values of b} (k= 1,..4) and i arc evaluaicd
exactly; iutegrals rn and 1 can be calculated by solving
the steady-state problem (7) — (10)

v = =) e+ 5 (27}
m= -2 fr) n(.z (.z dz - 5;
Here y = y(x) and y = f{x) are the exact
{v*(x,n(z)) = 0) and asymptotic (7°(«, gia)) = U]
profiles for the steady-state wnterface (see g, (12) ).
From Eqs. (22}  (25) at t -+ > one obtains,
h=x+v+ O(t—B),
iy = 2;:'” +n+ Ot ),
. w? -t
B = g T o, . (2]
i-‘{ - _48:.:5‘(.‘) + v -+ ()(iii]
by = Q™). ba = O,
by = Q7). by =01,

Substituting Eq. (27) nto the conservation relations
(13) - (16) and employing Eq. (5} .
of vertical momentum (15) at ¢ — > yields,

Lhe conservation

'L!'2

m4+ — = 0. (29)
2
For the exact solution of the steady-state problem the
relation (29} is an integral identity {Gertsenshtem et
al. . 1989; Cherniavskl and Shiemler, 19943 Thus at
t — o0 the unsteady solution may be dese ’(‘ll)(?(i
integrally by the steady-state solution (discussed above
in Sect. 1) and the moving control surface, in the sense
of satisfying the associated dynamical conservation
laws. For example, taking into account Eq. {6) and
the choice of the dimensional variables. one concludes
from Eq. (21) that at ¢ — > the jet falls with the
gravity acceleration. The relations (21} provide the
asynuplolic expressious of the jet length and width
[Towever, in the general case. 1L fuils 1o yicld the
interface shape.

4 Asymptotic shape of the falling jets

To describe the shape of the nterface in the fluid jet at
long times, the problem (1) - {4) may aiso be tackled
by the method of matched asympiotic expansions.
where the time reciprocal 7' is eniploved as a
parameter of expansion. To ensure that the outer
problem is reduced Lo that of the steady-state as

I — oo, the outer expansion may be writlen as

o5 (@, y) + 17 e ) +

olz.u,1) &
1) )

Yl yt) = 30( y) + 1 ey + (30}
("” vt} = oa)(l y)+ )(I,y)+~~.
(2. t) =157 (2 y) + T e+

Here the superseript @) corresponds to the auter
sohiution. For the leading order approximation the
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original unsteady problem (1) - (4} is reduced to the
steady-state problem (7) — (10). As has been already
mentioned, the steady solution 1s not a unifermly valid
approximation to the unsteady one due to the
singularity developing near the walls as ¢ — oo,
Following the estimates (22), introduce the inner
variables

Pl =g U =¢r

g =177y, b (), 48, 001) = 136z, 4,0,

e ety ) = (e, y, ), (31)

})':ff(Jai'!‘y(’)’j()) t~ple, y, 1),

F 0 = (e g, ),

Here the superseript Y corvesponds to the inner
solution. From Eq. (31) one obtains

dp = By 4t *’>a (- 201y
')!:i”@(,} Oy =0 _“d(
d,u—f 33,006 f +dt(” ga(‘)
TG, el — 2002404, m¢“)
iy = f}“,,"/("} +tm71 d i’y
=20yl G 5

W0,

(32)

t'he inner expausion for the solution of the unsteady
problem may be written as

R A e NN
+t(i)_1¢)&1)(x(‘)‘y(1))+.”’
O ), pol ¢y = L,((] J(_
+= T 0 gy 4
Pl y0) 40y = pl) () )
H“‘*lf"( )y g

W f“f) = ,gﬂ(mym)
A ;‘1 (] ( )

RN

H.I‘tll(i,l?,i

Substituting (31)  (33) into the system (1) - (4) for
the leading order approximation one obtains,
(1) equations for the flow-field

()g-(r)'tr = ‘6y(=)¢(i)
()IUJU =,
]r”\ + 3ot — 2yl 6) Mcbm + oyl
+ ,\Uw.u N =0,
{ii) conditions at the interface U2l 47y =@
.1!“(')14 -(-) N 'Zy“ d ( 7(
+,047 w () gt + ()J(x)‘Y () =1, (35
pU =0,

(iii} Dpermeability condition at the wall () =0
AT a— (363
Here the subseript zero is omitted. From (34) one
obtains

('“(t\! y(i)):@(l)[y(z)):

ot ‘(.v“:‘.y“"‘) = —pl )dym@”(i).(ym),

Pyt —3@( + Q;U(i)ciy(.)d)m

1)((1' .)(79 )J

2

yt
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Substitution of Eq (37) into Eq. {35} yiclds the
potential d) J{y') and the interface equation

~E ey = 0. Indeed, from the second relation in
Eq. (35) oue obtains

1

dy o™ =1+ C (=204 + C7 =z (38)

The outer and inner solutions should be matchable at
the interface. The inner expansion of the outer
solution is supposed 1o be equal to the cuter expansion
of the inner solution (Van Dyke, 1964). The outer
expansion (30) written in terms of the inner varnables
(3%) up to order ¥ yields, due to Eq. (11).

dy 0t = (=238, £39)
In view of Egs. (38), {39) the matching a'y(.,cpm and
dy(o)c;':("’ is possible only provided ) = 1. Henee,

Rk

dy ) = (=25 (40)

Substituting Eq.  (40) into the first condition ol (35).

and employing Eq. (37) one obtains

(1= (=243 2] (#0007

¥ SN {11}
243,07 =0
Lquation {41) has two fammlies of solutions
) o=yl = :

v+ =0,

fquations (42) determine the mlf rlace with the jump

of the shape slope at the point yt! = yt' 21 = 1
T B L Y o S (A LT S e,
= () (i) " o {13)

/AN T it <
with
3
y’(}:]:_,%’ (41)
=y

Oy and AV g i Bgs.

(30) and  (43) up ro order ¢V yields, due va ey (1

The matching of ~ K

(¥ (15)
G4 o— 2 . iy
Finally from Eqgs. (37). (40) and {43}, (4D) one
obtalns
cb“J(J.‘("A) ylih) = %(mi_y“))%
L(T)(‘L(z)‘y(:}) — Ir(:)(_:zyu))i-:
])(I'J(lg(i):y(f)] =0, 16
i "‘(,IJ —su(=2y") T e s el
J G I
where
W=ol o=y (47)
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Hence, returning to the outer variables, for the jet
length and width, one obtains

— il 1,4
Un = g 7= —5t, .
. 2 48
r. = ;r(f)f‘l = % (48)

The comparison of Egs. (11) and {46) shows that the
outer solution is invariant o the change of variables
{32}, Thus, the unsteady fiow field at t — oo is
determined by the steady-state one. The surface of the
jet is made of the steady-state one (outer solution) and
the plane segment that is orthogonal to the wall and
descends with the gravity acceleration along the
stecady-state interface. Note that the flow parameters
in Eq. (48) are identical to those obtained by the
integral method.

5 Councluding remarks and discussion

The methed of matched asymptotic expansions
described in Sect. 4, where the time reciprocal 71 is
employed as a parameter of expansions, provides an
effective means to capture the description of the
unsteady jet developing at the advanced stage of the
Rayleigh-Taylor instability. This description is
corrohorated via a more simple perturbative approach
of Sect. 3, where the integral approach provides an
effective means to capture some basic features of the
unsteady jet. In particular, it was found that the
interfare shape in the jet coincides with the control
surface used in the integral approach, the width and
tlie length of the heavy fluid jet evolve in time as
t~land t*, and the jet falis down with the gravity
acceleration of the jet tip. Thus, the overall
configuration of the well-settled rising bubble and the
unsteady falling jet appears to involve two planar
gradually shrinking segments in the falling jets. These
segrments produce the corner points on the descending
jet interface. The jump of the jet interface slope stems
[rom neglect of the viscosity effects. When the jet
becomes thin, the effects of viscosity can becorne
predominant. Direct numerical simulations {Baker et
al. . 1980: Gertsenshtein and Cherniavski, 1985) shows
that | the asymptotic stage of the Rayleigh-Taylor
instability occurs already at values of dimensionless
tirne ¢(g¢/h?) ~ 3. The model adopted is assuned as
an intermediate asymptotics, which is valid for
moderately large times, i.e. for times large enough to
form the well-settled jets, but small enough for
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neglecting the viscosity cffects. Such an mermediate
asymptotics periiits us to avoid employvment of a more
complicated boundary-layer maodel.
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