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Abstract

A one-dimensional Burridge-Knopoff spring-block modetl
with slip-dependent friction was studied to explore the
possibility of a solitary wave solution existing for the
problem of earthquake faulting. The result may be used as
an alternative case of the crack model (e.g., Madariaga and
Cochard, 1996) and the spring-block model with velocity-
dependent friction (e.g., Carlson and Langer, 1989) in the
understanding of the mechanism of the self-healing slip
pulse proposed by Heaton (1990). In general, the
conditions for a solitary wave solution to exist are
discussed by the trajectory in the phase space. By taking
the first order approximation, it is demonstrated that a
solitary wave solution exists in which the slip behaves as a
propagating solitary wave with the propagation velocity
less than that of an acoustic (seismic} wave, and the source
time function at each position remains the same. As an
alternative approach other than numerical calculations, the
analytical solution, although simple, sheds light on some of
the properties of the self-healing slip pulse. From the
solution it is seen that the width of the pulse depends on its
propagation velocity and the friction, consistent with
experience in physics. It is pointed out that the self-healing
slip pulse may exist for a broad class of frictional
constitutive laws which, to some extent, explains the fact
that the self-healing slip pulse may be observed for a
variety of earthquakes occurring within  different
seismogenic environments.

I Introduction

Heaton (1990) proposed that earthquake rupture occurs in a
narrow self-healing pulse of slip that travels along the fault
surface, which is supported by the accumulating results of
the rupture process of earthquakes (e.g., Wald and Heaton,
1994; Irikura et al., 1996; Ide and Takeo, 1997; Nakayama
and Takeo, 1997; Xu et al., 1997). The mechanism of this
phenomenon is still  under discussion, while most
seismologists agree with the idea of Heaton (1990) that the
mechanism of the self-healing slip pulse depends mainly on
the constitutive law of friction, or more exactly, the
coupling between the two walls of the earthquake fault (for
simplicity we use the word ‘friction” in this sense hereafter,

but keep in mind that such ‘friction’ includes both the real
friction in the pure mechanical sense and the apparent
‘friction’ describing the coupling between the two walls of
the earthquake fault). At present, the most promising
approaches to the understanding of the mechanism of this
phenomenon include two classes of models, namely the
crack model within a continuum (e.g., Madariaga and
Cochard, 1996; Beeler and Tullis, 1996; Andrews and Ben-
Zion, 1997; Fukuyama and Madariaga, 1998) and the
numerical implementations of the Burridge-Knopoff
conceptual spring-block model (e.g., Burridge and Knopoff,
1967, Carlson and Langer, 1989; Vieira et al, 1993;
Schmittbuhl et al., 1993; 1996; Espanol, 1994; Chen, 1996;
Langer et al., 1996). In the spring-block model the most
commonly used frictional constitutive relation is velocity-
dependent and the self-healing slip pulse is suggested to be
related to the propagation of a solitary wave (eg,
Schmittbuhl et al., 1993; 1996; Espanol, 1994).

In the perspective of the solitary wave model, an
interesting question is how strongly the existence of a
solitary wave solution depends on the constitutive law of
rock friction. Theoretically, this question is related to the
fact that knowledge of rock friction under the conditions of
earthquake sources is still not complete (see, e.g., Scholz,
1690, 1998), resulting in difficulties in understanding the
self-healing slip pulse in the perspective of rock mechanics.
Practicalty, this question is related to the fact that
observation seems to show that the existence of the self-
healing slip pulse is a common characteristic of large
earthquakes (Heaton, 1990), from interplate earthquakes
{e.g., Wald and Heaton, 1994) to intraplate (continental)
earthquakes (e.g., Xu et al, 1997), occurring within
different seismogenic environments in which there is no
reason to require that the constitutive laws of rock friction
are the same. To investigate this problem, in this paper, we
consider an alternative type of frictional constitutive law,
i.e., the slip-dependent one, to explore to what extent the
existence of a self-healing slip pulse may tolerate the
variation of the type of coupling between the two walls of
the earthquake fault. Also, we take an alternative approach
other than numerical calculations, i.e., we try to give an
analytical solution. The analytical solution, being very
simple, may be of help in the understanding of some of the
properties of the self-healing slip pulse. Also, it may help 1o
avoid limitation at the boundary due to the finite size of the
numerical model.
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2 The one-dimensional model for earthquake faulting

We start with a scaled one-dimensional model for
earthquake faulting (Carlson and Langer, 1989; Knopoff et
al., 1992; Xu and Knopoff, 1994) described by

= ‘?Z’—F(w,u,z}) e
ox

in which = =wu(x,?) is the slip along the fault at position x
and time ¢ . In equation (1), the first term on the right hand
side describes the elasticity and the second term describes
the ‘friction’, including the stick-slip friction in the purely
mechanical sense, the dissipation of elastic energy through
the radiation of seismic waves and the coupling between the
two walls of the earthquake fault; we will use the word
‘friction” in this sense for simplicity. The form of function
F(w,u, i) depends on the understanding of the mechanisms
of the processes as stated above. This model may be
regarded as a contintum limit of the Burridge-Knopoff
conceptual spring-block model (e.g., Burridge and Knopoff,
1967), in which w is the loading velocity. Carlson and
Langer (1989), Vieira et al.{1993), Schmiftbuhl et al. (1993)
and especially Espanol (1994) studied the situation in which
F(w,u,u) includes two terms: the linear coupling term &z,
and the velocity-weakening friction ¢(#) ; they found that

for some combination of parameters there exists a solitary
wave solution to the model earthquake faulting. We
consider an alternative situation where w~ 0 (slow loading)
and ‘friction’ is slip-dependent. In this case equation (1)
becomes

2

cdu
.u—cjﬁ+V(u)=0 (1
in which
AV ()
Ve (uy = 2
() s

3 Solitary wave solutions

Equation (1), being referred to as the non-linear Klein-
Gordon equation, has a solitary wave solution for certain
forms of function ¥ (x) . Considering

u(x,t) =u(&) 2.1)
in which

E=x—ct (2.2)
where ¢ is a constant, one has

2

(cz-cj)%+l/'(u)=0 (3)

Defining
= ﬁ 4}
v 2 (

Equation (3) is easily written as a pair of the first-order
differential equations
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Its equilibrium points (u,,v,) are determined by

v, =0 (6.1)
v (H“) =0 (6'2)
[ts trajectory in the (u,v) -space may be determined by
dv V' (u
b e o

du (cf —cl

‘Integrating (7) leads to

zl(c2 —eg Wi+ V(uy=A (%)
where A is a constant.
From (5)
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It is clear that when
V' (u,)

cl—¢c}

v=0 %

>0 (10)

there will be a periodic solution. On the other hand, as
equation (5) has homoclinity or heteroclinity (as shown in
Figure 1), equation (1) will have a solitary wave solution
(see, e.g., Sagdeev et al., 1988; Liu and Liu, 1994). Espanol
(1994) has systematically studied the situation of velocity-
weakening friction and found that in some regions of the
parameter space the system exhibits periodic solutions,
while for other regions the system has solitary wave
solutions.

(o)

Fig.1 Schematic diagrams demonstrating examples of (a) Homoclinic
trajectory (thick lines); (b) Heteroclinic trajectory (thick lines)
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4 A special example

As a special example, we use the scaled unit, and consider
the first term of the Fourier expansion of function F'(u)
V'(uy= f] sinu (11
Such an approximation leads to a sine-Gordon equation. In
our problem, a constraint that the rupture is irreversible i.e.,
u >0, is imposed. Also from the experimental results (see,
for example, Scholz, 1990), we have the constraint
0<u<ar (12)
where 0O <ea <1. The physical significance of such an
approximation is shown in Figure 2. We use this example to
show how the system may sustain a solitary wave solution.
Since we are considering the situation without any
limitation on the number of blocks, we need not worry
about the threshold condition caused by the boundary
effects. As to the dissipative condition, in which the input
energy is exactly balanced by the dissipation of the system,
we find that the slip-dependent ‘friction’ is simpler to
understand. In physics, the slip-dependent ‘friction’
corresponds to the coupling between the two walls of the
earthquake fault caused by asperities and/or barriers with a

certain kind of size distribution, e.g., power-law distribution.

As the slip increases, there is an increasing probability to
meet a larger barrier, leading to the increase of the coupling
function. In this case, if we are considering a propagating
crack with constant friction, we will find that the farther
away from the crack tip the larger the slip, with which we
are very familiar in the classical theory of a seismic source.
On the other hand, as we consider the slip-dependent
‘friction’, the increase of slip will lead to the increase of the
*friction’. When the force driving the increase of the slip is
exceeded by the “friction’, the slip stops. As a result, the
slip is confined to a limited region, and the propagating
rupture behaves as a solitary wave.

'\_/
A
\\
A
\
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\
\
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Fig.2 Schematic diagram demonstrating the physical significance of the
first order approximation. See text for details. In the figure a scaled unit is
used tor the slip. The thick line describes the stip-dependent friction (from
Scholz, 1990). The thin line gives the first order approximation. The slip
is taken as one-sided (i.c., the rupture has no overshot) and below a
certain value.
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In this case, the equilibrium points of equations (5) may
be determined by

sinw, =0 (13.1)
v, =0 (13.2)
and equation (8) becomes
2
1 b7
(e e (ﬁ—;‘] — £ cosu= A (14)
As
cosu=1-2sin’ =
2
one has
2
1 u P
E(C2 -c; (ﬁ_éf] +21) sm25=B (15)
where
B=A+f]
Considering a special situation that
c<e, (16.1)
B=0 (16.2)
one has
) 2
Gu_y ok (17)
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Since
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2
we have
w(x,ty=4tan™"| exp £ Ju - (x-ct) as)

Je, —¢

which provides a solitary wave solution to the problem of
earthquake faulting. In the standard solution of the sine-
Gordon equation, it is the kink solution (for positive symbol)
and the anti-kink solution (for unegative symbol).
Considering the physical significance of u(x,t) we take the
anti-kink selution. Also from constraint (12), we take the
‘half-anti-kink” solution, as shown in Figure 3. In this case
the slip behaves as a propagating solitary wave with
veloclty ¢ < ¢, , which may be of help to the understanding

of the nature of the self-healing slip pulse. In Figure 3,
taking X as a constant, the ‘half-anti-kink sclution’ shows
the source time function at a certain position, which is
similar to the Ben-Menaham-Toksoez model.

The result with a clear physical significance is that the
width of the solitary wave ¥ may be estimated by

¢l -c?
- 19
7 (19)

implying that the width of the self-healing slip pulse
depends on the friction and the rupture propagation velocity.
The larger the friction, the narrower the pulse. As the
friction becomes very large, the pulse disappears by
W — 0 , which is consistent with experience in physics.
This also agrees with the result of Espanol (1994) that the
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situation with a strong ‘friction’ (or equivalently, weak
elasticity) corresponds to the single block limit. On the
other hand, the nearer the rupture propagation velocity to
the velocity of the seismic wave, the narrower the self-
healing slip pulse. When ¢ —» ¢,, the self-healing slip pulse
vanishes by W — 0, forming a physical barrier prohibiting
the ‘rupture velocity’ from being supersonic.

Fig.3 Schematic diagram describing the solitary wave solution to the sine-
Gordon equation. The thin line indicates the standard anti-kink solution
and the thick line indicates the ‘half-anti-kink solution’ corresponding to
the solution of earthquake faulting.

3 Discussion and Conclusions

By studying a one-dimensional Burridge-Knopoff spring-
block model with slip-dependent frictional constitutive laws,
we analytically explore the possibility of a solitary wave
existing, as a feasible explanation of the self-healing slip
pulse during earthquake rupture. When the frictional
constitutive law has the form such that homoclinity or
heteroclinity exists in the solution of equation (5), there will
be a solitary wave solution to the problem of earthquake
faulting. By taking the first order approximation, we
discussed a special example in which a solitary wave
solution exists. The slip behaves as a propagating solitary
wave, with its velocity of propagation less than that of a
seismic (acoustic) wave, and the source time function at
each posilion remains the same, being similar to the Ben-
Menaham-Toksoez model.

By nature, the Burridge-Knopoff spring-block model has
an origin of continuum fracture mechanics (Rundle, 1991).
However, the Burridge-Knopoff model addresses the
overall properties of the earthquake faulting process. The
role of the B-K model in earthquake dynamics is just like
the lsing model and/or percolation model in statistical
mechanics. In observation, the self-healing slip pulse
behaves as a universal, overall property of earthquake
faulting. In this sense, the spring-block model is useful in
the description of overall properties far away from the edge
of the fracture, especially the crack tip; this is useful in the
understanding of the nature of large earthquakes in which
the overall dimension of the seismic source is much larger
than the size of the ‘process zone™ near to the crack tip. For
the same reason, the present model is not able to provide
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the details of how the earthquake rupture organizes itself
into a self-healing slip pulse, although the model shows that
there exists a self-healing slip pulse solution (the solitary
wave solution) to the problem.

In the spring-block model, the self-healing slip pulse may

be explained as the propagation of a kind of solitary wave

{e.g., Schmittbuhl et al., 1993; 1996; Espanol, 1994). A
characteristic of such an idea is that, in other models, the
rupturing and the healing are generally considered as two
relatively independent processes while, in this model, the
rupturing and the healing are considered as the components
of a common physical process, in which the width of the
Heaton pulse has clear physical significance, providing the
earthquake catalogue with another useful source parameter.
The common outstanding problem associated with the idea
of solitary wave is that, generally, higher modes of the
solitary wave, which are usually weaker and slower than the
preliminary mode, may also exist. Present models consider
only the preliminary mode, as in this paper. At present, the
existence of the higher modes cannot be resolved due to the
limitations on the resolution of seismic inversion technigue.
Testing the idea ‘of a solitary wave will depend on
enhancement of the resolution of seismic observation and
interpretation.

In the present paper the idea of a solitary wave as a clue
to understanding the mechanism of the self-healing slip
pulsc is the same as that in previous works, especially that
of Schmittbuh] et al. (1993, 1996) and Espano! (1994);
meanwhile, some alternative approaches have been
undertaken. First, we take an analytical rather than
numerical approach to the problem. The analytical solution,
being very simple, may provide some simple and direct
understanding of some of the properties of the self-healing
slip pulse. We found from the model that the velocity of
propagation of the self-healing slip pulse is less than the
velocity of the acoustic (seismic) wave. [t should be pointed
out that our model does not forbid the existence of
supersonic rupture propagation, only that the supersonic
state cannot be reached by increasing the velocity of rupture
propagation from the state of ¢ < ¢, . The dependence of the

pulse width on the strength of the friction is also consistent
with experience in physics. Secondly, we consider a slip-
dependent frictional constitutive law to explore whether a
solitary wave solution may exist for situations other than the
velocity-dependent fricticnal constitutive laws. We take this
approach because thecretically knowledge of rock friction
under the condition of earthquake sources is still not
complete (see, e.g., Scholz, 1990, 1998) and, in observation,
it seems that the existence of the self-healing slip pulse is a
common characteristic of large earthquakes (Heaton, 1990),
from interplate earthquakes (e.g., Wald and Heaton, 1994)
to intraplate (continental) ones {e.g., Xu et al, 1997),
occurring within different seismogenic environments in
which there is no reason to require that the constitutive laws
of rock friction are the same. So an interesting question is,
how strongly does the existence of a solitary wave solution
to the problem of earthquake faulting depend on the
constitutive law of rock friction. We consider this problem
only for a special alternative case, i.e., slip-dependent
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coupling, which is by no means superior to its competing
models, e€.g., the velocity-weakening model, which is
commonly cited, and the slip-gradient-dependent model
which has not been fully studied so far. In future studies, it
will be necessary to consider more realistic coupling
constitutive laws. But, without losing generality, the
implications of our result is double-sided. The pessimistic
implication is that study the behavior of the self-healing slip
pulse is not sufficient to determine the type of coupling
constitutive laws along the earthquake fault, at least based
on the present resolution of seismic observation. The
optimistic implication is that the explanation of the self-
healing slip pulse may not require detailed knowledge of
the coupling constitutive law as well as the friction.
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