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Abstract. The rupture on a fault resulting in an carthquake is
clearly a complex process. In order to belter understand this
process the continuum version of the slider-block model has
been considered in some detail. In particular, the role of a
cobesive breakaway zone is considered. Solulions of a
“piston” problem and a “shock-tube” problem are obtained,
For the “driven” problem the cohesive breakaway solution is
combined with a viscous resistance on the fault to obtain
solutions that are reasonably realistic in terms of fault rupture,

1 Introduction

Earthquakes are generally associated with ruptures on
preexisting faults. Onc of the remarkable features is that there
are no teliable precursors to warn that an earthquake is about to
occur; for example, there is no consisient precursory seismic
activity or strain. In order to better understand earthquakes, it
is essential to develop a better understanding of how
earthquakes nucleate and how rupture proceeds

Although it is generally accepted that earthquakes arc
associated with displacements on precxisting faults, it must be
recognized that both the fault and the media in which it is
embedded are extremely complex. The fault itse!f is a zone of
granvlated materiat (fault gouge) that is neither planar nor
uniform is physical properties. The surrounding media is also
extensively fractured and contains other faults on all scalcs.

Despite the recognized complications, it is clearly
desirable to study relatively simple rupture models in order to
belter understand earthquakes. As a first approximation, it is
acceptable to assume that the friction between fault surfaces
dominates the physics of rupture initiation and propagation,
Extensive laboratory studies have been carried out to deterinine
the frictional behavior of rock surfaces and fault gouge but the
applicability of the results to actual faults has been guestioned
{Scholz, 1990, pp. 91-96).

It is recognized that velocity weakening is a nccessary
condition for stick-slip behavior, rather than stable sliding on a
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fault. Amonton’s law is generally applied to faults so that the
shear stress T on a fault is given by

T=f(pgh-p,) (h

where f is the coefficient of friction, pgh the lithostatic
pressure, and p, the fluid pressure. The simplest approach to
friction is the static-dynamic model. If the slip velocity is
zero, v = 0, the static coefficient of friction £, is applicable; if
the slip velocity is' non zero, v>0, the dynamic coefficient of
friction f, is applicable. As long as f, > f,, stick-slip behavier
is expected. But this model is clearly an oversimplification,
the pext degree of complexity is to have a funclional
dependence of friction on slip velocity, an example is

" )
[1 4 V_J
Ve

where v, is a characteristic velocity. However, laboratory
experiments have shown that friction does not immediately
adjust to a new slip vefocity. This led to the introduction of
one or more state variables (Dieterich, 1978, 1979: Ruina,
1983; Blanpied and Tutlis, 1986; Koslolf and Liu, 1980;
Linker and Dicterich, 1992; Weeks, 1993; Okubo and
Dicterich, 1986). A typical example with a single state
variable is (Okubo, 1989)

F=f,+blog (b O + 1) - alog (2+1) 3)
a8 _q . By
= @

where O is the statc vardable and f, b, b, a, a,, and D_ are
empirical constants

The state variable is generally associated with the time
dependence of surface adhesion (Dhetrich, 1972; Pollock,
1992). Dieterich and Conrad (1984) describe the physics as
follows: “A change in slip velocity produces an immediate
change in frictional resistance that is of the same sign as the
change in velocity, However, as slip progresses al the new
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velocily, the age of the load bearing contacts begins 1o evolve
to a new population with an average age that is characteristic
of the new velocity”,

The essential question that must be addressed is whether
the empirical friction laws based on laboratory studies are
applicable to actual faults. Of necessity, the laboratory
experiments must be camied out at much lower velocitics
{typically 10" m/s) than slip velocities on real faults {up to 1
m/s). However, it has also been questioned whether the results
are applicable in terms of static friction. Based on their own
experimental results, Beeler et al. (199d) argue that the
presently accepted friction laws are inadequate to predict real
fault behavior. They suggest a much stronger time dependence
with a “healing” of a rupturcd fault to prevent a subsequent
slip.

Onc immediate objection o (he rate and state friction law
given in (3) and (4) is that the friction coefficient is infinite
when v = 0, it.e. the static coefficient of friction is infinite.
This has led some authors to suggest that faults are always
slipping at very low velocities, a very doubtful suggestion.
However, modifications of the friction law can be made
relatively easily to overcome this abjection.

A much more serious objection to the applications of the
laboratery derived frictions laws to actual faults is the predicted
high stress levels and low stress drops. Garthquakes often
nucleate at a depth of 10 km where the lithostatic pressure is
250 Mpa, a typical static failure stress would be 10 Mpa,
giving a coefficient to static friction { = 0.04 while typical
laboratory values are f = 0.6. Recognizing this major
discrepancy a number of authors have proposed that the low
stress is due to a high fluid pressure (Byerlee, 1990; Blanpied
et al., 1592; Sleep and Blanpicd, 1992, 1994), This requires
an impermeable fault zone and several mechanisms have been
proposed; but at best, this proposal must be considered ad hoc,
The stress paradox strongly reinforces other objections to
currently accepted concepts of friction on faults.

The rate and state equations predict measurable slip on
faults in the interscismic period between major earthquakes.
Since the lithostatic normal force increases linearly with depth,
it is also expected that the frictional resistance to slip also
increases with depth. As the stress on a fault increases during
as earthquake cycle it would be expected that slip would ocour
on the upper portion of the faull while it remains locked at
depth (Tse and Rice, 1986; Lorenzetti and Tullis, 1989; Rice,
1993). While there are exceptions, observations, either
directly or geodedically, of such fault offsets are quite rare.
The locked northern and southern sections of the San Andreas
fault are not slipping. On the basis of high resolution strain
and tilt data Johnston et al. (1987) found no precursory fault
displacements prior to several earthquakes in California. These
authors suggest: “that rupture initiation occurs at smaller
regions of higher strength which, when broken, allow runaway
catastrophic failure”.

Many authors have recognized that classic laboratory
frictional behavior may not be applicable to real faults and a
variety of alternative hypotheses for rupture mechanics have
been proposed. It has been proposed that the granular fault
gouge becomes acoustically fluidized during rupture (Mclosh,
1979, 1995). Under rather restricted conditions sufficient
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energy is available to fluidize a narrow zonc of fault gouge.
Heaton (1990) pointed out that self healing “Heaton” pulses
are inconsistent with classic friction experiments and suggested
that faull gouge may become acoustically fluidized when a
crilical slip velocity is exceeded. Fluidization could certainly
reduce the dynamic friction on a fault but would not be
expected to reduce the static friction,

A second approach to dynamic rupture on faults invokes
interface waves. Brune el al. (1993) and Anooshelpoor and
Brune (1994) have proposed interface waves involving fault
surface separation during slip (Schallamach, 1971, Mora and
Place, 1994). ‘They also suggest that normal interface
vibrations associated with these waves cun explain the high
comer frequency. A number of authors have considered the
role of normal vibrations on friction (Tolstoi, 1967;
Comnjnou and Dundurs, 1977, 1978; Freund, 1978) and
several have concluded that the excitation of Rayleigh waves
on a rupture surface can lead to periodic pulses of separation;
however, this mechanism is controversial and has not been
demonstrated experimentally in a conclusive manner.

Scveral authors ‘have recently included a linear viscous
resistance on the slip surface (Nakanishi, 1994; Morgan et al.,
1997). A Barenblatt cohesive zone is introduced at the crack
tip and this cobesion models the static friction. With a
viscous resistance o slip on the crack surface, the tip
singularity is rcduced below the value 1/2 associated with the
classic stress intensity factor and the velocity of crack
propagation is a function of the crack “viscosity”. Ruplure
always initiates al the same value of the cohesive force
independent of the viscosity and the rupture velocity increases
towards the relevant sound speed as the viscosity is decreased.
These authors suggest that there are two slip-mode regimes
during earthquake rupture. In the immediate vicinity of the
crack tip, slip velocities are small and cohesive {orces
dominate. This is the regime that has been studied in the
laboratory; plastic deformation of the surfaces and gouge
dominate and the “frictional” stress is relatively high. At
higher slip velocities, away from the crack tip, there is a
sccond [rictional mode with low frictional stresses. This
second mode may be due to acoustic fluidization or separation
waves. A linear viscous rheology is consistent with the
fluidization of fault gouge (Savage, 1984; Campbell, 1990).
As the driving stress drops, the slip velocity decreases, there is
a return to the cohesive mode, and the fault heals.

Solutions of the full equations of elasticity for a
propagating fracture are obscured by the mathematical
difficulties associated with the crack tip. A model that retains
the physics while considerably reducing the mathematical
difficulty was introduced by Burridge and Knopoff (1967).
They considered a series of slider blocks which were pulled
over a surface by driver springs and connected to each other by
conneclor springs. The simplest model is to consider a pair of
interacting slider btocks. It has been shown thal this system
can exhibit chaotic behavior (Huang and Turcotte, 1990, 1992;
Narkounskaia and Turcotte, 1992).

This model was extended to long linear arrays of slider
blocks by Carlson and Langer (1989) and Carlson et al.
(1991). They used a velocity-weakening [riction law and
considered up to 400 blocks.  Slip events involving large
numbers of blocks were observed, the motion of all blocks
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involved in a slip event were coupled and the applicable:
equations of molion had to be solved simultancously.
Although the system is completely delerministic, the bchavior
was apparently chaotic. Frequency-size statistics were obtained
for slip events and the events fell into two groups, smaller
events obeyed a power-law (fractal) relationship but there were
an anomalously large number of large events that included all
the slider blocks.

Nakanishi (1990, 1991} proposed a model that combined
features of the cellular-automata model and the slider-block
model. A linear array of slider-blocks was considered but only
one block was allowed to slide at a time. Thus interactions
were only with nearest neighbors, which would then be
sliowed to slip in a subsequent step, until all blocks were
again stable. Brown et al. (1991) proposed a modification of
this model involving a two-dimensional array of blocks.
Other models of this type have been considered by Takayasu
and Matsuzaki (1988), Tio and Matsuzald (1990), Sornctte and
Sornctte (1989, 1990), Langer and Tang (1991), Carlson
{19914, b), Carson et al. (1993a, b), Matsuzaki and Takayasu
(1991}, Rundle and Brown (1991), Shaw et al. (1992), Huang
et al., (1992), Feder and Feder (1991), Vasconcelos et al.
(1992), Christensen and Olami (1992), Knopoff et al. (1993),
Rundle and Klein (1993), Pepke and Carlson (19%94), Pepke et
al. (1994). The behavior of linear arrays of slider blocks
without a puller plate has been considered by de Sousa Vieira
(1992), de Sousa Vieira et al. (1993) and by de Sousa Vieira
and Herrmann (1994),

If the conmector springs arc stiff compared to the driver
springs a continuum approximation ¢can be written (Langer and
Tang, 1991) and the governing equation becomes the telegraph
equation. A variety of studies in this Timit have been carried
out (Langer 1992, 1993; Langer and Nakanishi 1993; Myers
and Langer 1993). A series of studies in this fimit will be
carried out in this paper.

2 The model

Consider the infinite array of slider blocks illustrated in Fig. 1.
Each block has a mass m and is connected to a driver plate by
a spring with spring constant k; adjacent blocks are connected
by springs with spring constant k,. The displacement of the
driver plate is w, and the displacement of the nth black in the
+x-direction is w,. The motion of the nth block is resisted hy
the frictional force F,. The equation of motion of the ath
block is

m =—2 & kg (Wn - Wa 1+ Wn - Wni1)

- kp {wp - wa)=Fy (5)

For stiff connector springs, k, large, the variation of w, with n
will be small so that it is appropriate to make the
approximation
w
Wn 4 -wn'W||+Wu-|:52———— (6)
ax?
where & is the separation between blocks. We further assume
that the stiffness is sufficiently high that we can assume that
variations in & are small, we assume 8 is a constant, A wave
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Fig, 1. Hlustration of an infinide linear array of stider blocks. Each block
has a mass m, and is attached to a driver plate with a spring (spring constant
ky). Adjacent blocks are separnted by a distance & and are connecled 1o
each other by springs (spring constant k). The blocks are listed sequentially
.. -1,n,n+l,.. und the frictional force resisting the forward mation of
block nis F,. The position of the driver plate ig w, {6 and the position of
block nis w,.

speed can be defined hy

azkc)]f).
¢= (T {7)
5o that in this limit (5) becomes
2w 2w
m-—--mc" —--ky(wp-w)=-F 2
o W (wp - w) (8)

In terms of a medel for a fault, the first term represents inertia,
the second term elasticity, the third term the driving stress, and
the right side the frictional resistance and/or cohesicn.

In order to relate the simple slider-block model to the
behavior of a real fault we introduce the density p and elastic
modulus P of the material and write

c=pASd (9}
_ 8k,
W == (10)

where A is the area of a block. Combining (7), (9), and (10)

gives
2
¢ (E_)" (11)

which is a standard result for a onc-dimensional sound speed.
Typical values for rock are i = 30 Gpa and p = 3,000 kg/m?
which gives ¢ = 3km/s.

Our governing equation has been given in (B). We will
now consider a number of solutions in onder to better
understand the basic physics of the rupture propagation
problem as modeled by (8). We will consider three effects:

I) The role of cohesion at the erack tip. The cohesion will be
shown to be equivalent to the Griffith energy criteria for the
onsct of fracture, It is also one way to represent the transition
from static to dynamic friction.

2) The role of a viscous resistance on the rupture surface. We
will consider a frictional resistance that increase linearly with
the slip velocity. The linear assumption is a mathematicai
convenience to maintain the linearity of the equations, but we
will conclude that a frictional resistance that increases with
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velocity is a necessary feature of any model for the propagation
of earthqnake ruptures.

3) The role of the driver springs in models of rupture
propagation. Without driver springs realistic solutions can be
obtained without a viscous resistance, with driver springs a
viscous resistance is essential.

3 Piston driven motion with cohesion

As our first specific example we will assume that the linear
array of blocks are driven to the right by a piston as illustrated

in Fig. 2. The blocks are connected (o each other but not to a.

driver plate so that the governing equation (8) becomes

F*w Fw
ma—2~ln02 =-F (12)

The piston moves at a constant velocity u, so that its position
is w, = u.t. If the frictional force F is zero a breakaway wave
moves to the right at the speed of sound ¢ and the velocity of
the blocks behind the breakaway wave is u,, i.e.

w=10 if x> ct
w=u, (t - x/c) Hw, < x <ot {13)

The force F, on the piston is given by

F,=- 8k %"—Z-z Skcu?p = (k)2 up {14)

And the work done per unit time by the piston, power input
P, is given by

Pi = Fy up = (mke) ' u} (15)

The number of blocks that breakaway per unit time is ¢/8 so
that the kinetic energy imparted to the blocks per unit time
Pgg is

P = mup &= (ko) 2 up (i6)

And the potential energy per unil time imparted to the sprinps
Ppgp is

aw 1 b 2
Prg =L k. 52(__] L=l {mk)" v 17
2 3] 5 M) ()
And as expected we have
Py = Py + Ppg (18)

Half the energy input from the piston goes into kinetic cnergy
of the masses and half into the potential energy of the
connector springs.

We assume that the driving stress o is given by

Fp

o= (19)
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B X

Yp
*%ﬁm-m-rﬁm

x

Fig. 2. Mustration of a semi-infinite, linear aray of slider blocks driven to
the right by a piston moving at a constant velocity u. The breakaway wave
propagates fo the right with a speed u,. In (a) the position of the blocks w is
given as a function of position x at{ = t,. In {b) the positions of the piston X,
and breakaway wave x,, are given as a funetion of time.

Substitution of (9), {10), and (14) into (19) gives
a={(p ity {20)

A typical velocity for an earthquake is u, = 1 m/s. Tuaking this
value along with those given above we have 6 = 10 Mpa, a
very typical value for shear stress prior to an earthguake, Thus
a simple force balance without either static or dynamic friction
produces values typically observed in real earthquakes.

On faults, breakaway is resisted by the cohesion of the
fault surfaces. We will apply the Barenblate (1968) criteria and
assume that the force resisting breakaway is a constant g,
until a breakaway displacement is reached. That is

F =g, for 0 < w < w,
F=0 for w > w, 21)

The ultimate propagating breakaway wave will now have
structure and propagate. at a constant speed u, which is less
than the sound speed, u, < c¢. In order lo determine this
structure we transform to a wave-fixed coordinate system using

E=x-qyt 22

In terms of the new variable & and (21), (12) becomes

(02 - UE) _2_“'_. = gn f(_)l'é > O

gt m (23)
(Cl_ug)dl_\;’zo for & > 0

d

We assume breakaway occurs at £ = O so that w = wyat E=10,
In the upstream region £ > 0 the solution of (23) is

1 ‘;gc &2
(cz-0p L 2m

w = +CE 4 Cy (24)
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We satisty the boundary conditions w = dw/d = 0 at & = &}
where &_is the front of the traveling wave and w = w, at £ = 0
and obtain

w=m(%gz-ggu)+wb for 0 <& < & (25)

where

B [ 20 (c2 )] (26)

Bao

In the downstream regions £ < (0 we require as the solution of
(23)

w=C" +C'2§ (27)

And as boundary conditions we require w=w, at £ = 0 and in
order to have the constant piston velocity u, we have

dw . 177 ® (28)

With these conditions (27) becomes
Up
W=Wb-u—h§ E_,<0 (29)

In addition we require the continuity of dw/dE at & = 0 so that

w:[_z_gw_b_]‘” 30

Up m (c2 - u%)

And this can be solved for the wave speed v, with the result

LSS S 31
€ (I ngwb)m (31)
4+ ZB0 b
m ug

The nondimensional quantity 2 gy wy/mu,® is the ratio of the
work required to overcome cohesion g, w,, to the kinetic energy
of a moving block mupzﬂ. The larger the cohesive work, the
more the propagation velocity is reduced below the sound
speed ¢. The solution in the vicinity of the breakaway point is
given in Fig. 3.
The force F, on the piston is now given by
n
Fp=38k. ul A (m kc)] |1+ M‘l)l (32)
Uy mug

which reduces to (14) when the cohesive force is negligible.
The power input is

m U%

172 2g0wp |2
Pi= (rn kc) u% (1 + £80 --"—) (33)

The number of blocks that breakaway per uait time is u,/3 so
that the power that goes into kinctic energy is
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[

2 0 E1E, !

Fig. 3. Upstream solution in the cobesion zone, 0 < £/, < 1, from (23)
watched to downstream solution from (29). Hreakaway takes place at £ = 0.

1 172 2
pegelpg Wi _ 2 (m k) ™ o
KE=-m e Y7) (34)
2 & - 2 8o Wt
m uj

The potential energy imparted to the springs is

142
(m k) o2 (1 + Zli—u‘;’b) (35)
[

And the energy per unit time required to break cohesion is

Pc = Bo Wo U_b = _“-gc ng('krjm)la (36)
(1 + 8¢ w")
m up

As expected we have
Pi=Pyp+ Pra+ P (37
It is also interesting to note that
Poy = P + Po (38)

The potentiat energy in the springs is equal to the sum of the
kinetic energy of the blocks and the energy required to
overcome cohesion.

It is convenient to relate the cohesive force g, to a cohesive
stress g with

gozo’cﬁﬂ (39)

Introducing (39) into the definition of the nondimensinal
cchesion parameter C we obtain

2gowy 2 Gc wh
= = —_— 40
m U p YA up (10)

Taking the cohesion parameter equal to unity we obtain
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(a)

X

Fig. 4 Nlustration of the “shock-tube” problem in an infinite linear array of slider blocks. For € < 0 all blecks are stationacy, springs in x > 0 are
uncompressed, and springs in x < 0 are compressed so that they have a uniform compressional force F,, At t = G the restraint at x = U is removed and
breakaway waves move npstrcam and downstream at the sound speed ¢, Between the breakaway waves all blocks are moving (o the right with a speed
u,. In (a) the positions of the blocks w (x) are given at t = 0 (dashed line) and st t = £, (solid line). In (b) the positions of the breakaway waves x, and the

movement of the block initially at x =0, x,, are given.

o wy=Lpuj 4K 1)

Taking p = 3,000 kg/m®, u, = 1 m/s, and VA = i km we find
that ¢, wy, = 1.5 x 10° Pam. If g,= 30 M Pa we require w, =
0.05 m, probably reasonable values,

4 "Shock tuhbe" problem

In order to further illustrate the behavior of breakaway waves
we consider a "shock tube” problem. In a shock tube, a high
pressure gas is separated from a low pressure gas by a
diaphragm. When the diaphragm is broken a compression
wave propagales upstream into the low pressure section and an
expansion wave propagates downstream into the high pressure
section. If the pressure difference is small, both waves
propagate at the speed of sound in the gas.

We consider an infinite linear array of slider blocks
connected by springs. Initially, at t = 0, all springs in x > 0
arc uncompressed (F, = 0) and all springs in x < 0 ame
compressed by a force B, i.e.

0 att=0,x<0
w:—fn_ X

dlk,

W (42)

att=0,x<0

There is a discontinuity in the spring force at x =0 for t < 0,

at t = 0 this forced discontinuity is removed, this is equivalent
1o the breaking of the diaphragm in the shock tube,

Once again (12) is applicable. If the frictional force is
zero, hreakaway waves are expected o propagate both upstream
(compressional) and downstream {(expansion) at the speed of
sound ¢ as illustrated in Figure 4. All blocks between the two
waves are expected to move to the right with a constant
velocity u,, i.e.

u=>0 X > ct
u=u, ct<x<ct 43
u=0 % < -ct

'The force compressing the blocks behind the compressional
wave F, is given by ({4) and can be written

Fy = (m k)2 u (44)

And the force compressing the blocks behind the expansion
wave I, is given by

F, Fyc (m kc)uz "y (45)

Howeaver we require u, = u, = u, and F, = F, =¥, and from (44)
and (45) find that
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Fy= 1 F, (46)

TR
2 (m k,_-)m (47)

The springs in the breakaway region have one-half the force F,
in the driving region. In direct analogy with (13) the solution
to this problem is

w =0, X >ct
—-_Fo (. .
W= ct-x set < X<t
261{0( ) (48)
w-z—F—“x— Xx<-ct
0 ke

This solution is illustrated in Fig. 4.

Again we carry out an energy balance. The input energy
comes from the potential energy of the downstream springs
that enter the breakaway zone and is given by

= Llrac=1 (49)

The kinetic energy imparted to the blocks in the breakaway
wave per unit time is

F2

_1 1
Z (kc m)m (50)

Pkg=1mui?2
2

c
3

And the potential energy imparted lo the springs in the
breakaway region per unit time is

Fe

Fi 1
fazC_1_ -
ke 5 4(km)? 6h

Ppg =

oo =

Apgain the energy balance (18} is satisfied and half the energy
input goes into kinetic energy and half into potential energy.

We will next expand the shock tube problem 1o include
cohesion forces in both upstream and downstream breakaway
waves, We again assume the Barenblalt {1962) condition {21)
and the solution given ahove for the piston problem is directly
applicable to the upsiream breakaway wave and it can be easily
modified to provide the structure of the downstreamn breakaway
wave, The upstream breakaway compression wave propagates
to the right with a velocity u,, the downstrcam beakaway
expansion wave propagates to the left with a velocity - u,.
The force in the breakaway region F, is one half the driving
force F,, F, = F /2, as was the case without cohesion.

The entire solution can be written

w =0, X >upt+Eo {(52)

=80 l(x_uytVP-(x-u o + W
w_m(cz-u%)[z( 0" - (x h[)§]+ b,

Upt<x<unt+&,

(53}

&7

w=~__F_°_(x-ubt)+wb,

—pt<Xx <yt 54
25k, i vt B9

__F g 1 2
e ey e P e g

(55
+wp, -tp - B < x <yt

L Fox

3 ke

W=

x<-ubt-5m (56)

wlere the thickness of the cohesive zones is again given by
(26). The continuity of dw/ox at x = + u, t again gives the
wave speed with the result

12
Up=c¢C {I - .EH{—"“;’_EA&) (57
Fa

The nandimensional parameter 2 k, w, g,/F is the ratio of the
work requited to overcome cohssion of a block w, g, 1o the
potential energy initially stored in a downstrean spring
Fy /2 k.. In order for a breakaway wave to propagate in the
shock tube configuration the stored energy per spring must be
greater than four times the cohesive energy per block.

It is again of interest to examine the analogy to a real
fault.  Introducing (10), (19), and (3%9), the propagation
condition becomes

. (8 Wb Gc }L)ln (58)
YA

This relation is closely related to the standard theory for
stress-intensity factors, The definition of the stress intensity
factor in terms of the stress G, a distance r from a crack tip is

a,=—k& (59)

And using the Barenblatt {1962} cohesive relation to specify
the stress intensity factor gives in the simplest configuration

K =(u1 e wp)? (60)

Associating r with YA, (59) and (60) correspond to (58).
Fram (54) the velocity of the moving blocks in the
breakaway regicn is

) 8 k. wy o112
F 1_ C bg] (61)

2 rlik;;)l oy 2 (mk.;)”2 ( F%

And this reduces to (47} in the limit of zero cohesion.

Again, it is of interest to consider the energy balance. The
input energy from the potential energy of the downstream
springs that enter the breakaway zone is

112
_ Ta (1_Bkc wi, go) )
G

B2
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The kinetic energy imparted to the blocks in the breakaway
wave per unit time is

. 2 32
PKE: é— mua u F“ 7 (1 - 8 kc Wh go) (63)

Up . 1
5 4 (kc m) JRES

And the potential energy imparted o the springs in the
breakaway region per unit titne is

2 2
Fu (1 _ 8 kc Wh gn) (64)

1
4 (k, m)'? F3
And the energy required per unit time to break cohesion is

172 172
Pe=gowp2Ub=2g, wb(&) (I—MB e Wy gﬂ) (65)
& ™ Fa

Once again the overall energy balance given in (37) is satisfied
as well as the energy division given by (38).

5 The role of driver springs

The solutions given in the two previous sections did not
include the driver springs that were included in the derivation
of the original model equation (8). We now include the driver
springs but must also make further modifications to our basic
model. With the driver springs our governing equation (8)
becomes the telegraph equation rather than the wave equation.
The telegraph equation yields penedic solutions only for
supersonic u, > ¢ waves, these waves have been discussed by
Langer and Tang (1991). For a propagating wave, as
considered here, supersonic solutions are not acceptable.

In order to obtain acceptable propagating solutions we will
include a linear viscous resistance on the rupture surface. Thus
we will assume

F=g, for0<w<w, (66)

dw

F:'[’]......;
ot

for w > wy, {67)

Substitution of (66) and (67) into (8) and transforming into a
wave fixed coordinate system using (22) gives

m(cz—ug)dl—";+kp(wp-w):gu for £ >0 (68)
d

2
m(cz-u%)(llerubndlwhkp(wp-w):O,
dg dg

for € >0 (69)

As in the previous sections, upstreamn £ > 0 and downstreamn &
< 0 solutions will be obtained and they will be maiched at the
breakaway point £ =0,

In the upstream region & > () we have the solution
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W= Wp - ﬁ— + O %+ C, ek (70)
P
with
ol K (1)
m (¢? - uf)

We again satisfy the boundary conditions w =dw/d =0 at £ =
Lo and w = wy, at £ = 0 and obtain

w= (ﬁ—P - wP) (cosh [ox (8 - £a) - 1} (72)
wy = (ﬁ—; - wp) (cosh {aga) -1) (73)

This solution must be matched to the downstream solution.
In the downstream regon & < 0, the solution of (69} that is
finite as & — - == and satisfies the condition w = w, at § = 0 is
w =Wy - (Wp - wy) ™ (14)
with

m(cz—u?‘,)l+ubnl-kp=0 (€R))]

The requirement that dw/dg be continwous at € = 0 requires:

A(wp - wy)= (ii' WD) o sinh (e &o) {76)
P

From {73) we obtain

2 1”2
sinh (&) :( wh kp AL kp) an

(20 - wp kp)z (80 - wp ko)

It is convenient o introduce nondimensional parameters: The
ratio of propagation speed to sound speed

(=8

M= {78)

nig

the ratio of the available potential energy to the cohesive
energy

E= kP (WP B Wh)z (79)
2 wh{go - kp wp + kp wi/2)
and a viscosity parameter
ut
. {80)

Substitution of (77) and (79) into (76) gives

= ﬁ (81)
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Fip. 5. The ratio of the propagation speed {o the sound speed M is given as a

function of the energy parameter A for several vatoes of the friction
parameter R,

Using (81) to eliminate A? in (75) we obtain

a=ke(B-1) o 82)
up T B E]/Z

Since A must be positive we require E > 1 for propagation.
Substitution of (71), (78), and (80) into (82) gives
1 12

|4 _ER _
(B-1)

M= (83

The nondimensional progagation speed M is related to the
energy patameter E and the viscosity parameter R. This result
was previously obtained by Langer (1992, eq. 2.11) The
dependence of M on E for several values of F is given in Fig.
5. It is seen that we requirc E > 1 for propagation to oceur,
This propagation threshold is independent of the frictional
resistance parameter R. If there is no friction, R = 0, then
propagation takes place at the speed of sound independent of
the potential energy parameter E as long as E » 1. As the
friction parameter R increases the speed of propagation
decreases,
The condition E = 1 is equivalent to having

Wb (go - kp wp + i kp Wb) = % ko (wp - wo)’  (84)

This is an energy balance between the energy required to
overcome the cohesion of a block w,(g, - ky w, + k, w/2} and
the avaifable potential energy in a driver spring k, (w, - w72,
The right side of (84) must be larger than the left side for a
wave o propagated,

39

We will consider the physical implications of this
propagation condition, In order to do this it is appropiiate to
assume k, w, << g, and w, << w, 50 that the condition for
propagation is

kp wh
Wb o

>1 (85)

Taking F, =k, w, this becomes

i

— P (86)
kp Wb go

which is essentially identical to the condition given in (57).
It is appropriate to introduce a shear stress

F

=1 (87)
Al 3
and a shear modulus
ko
=— (88)
H )

Introducuing these into (80) along with (39) we obtain

Tz(w)”? (89)
VA

This is our form of the stress intensity factor in analogy with
(58).

In order to consider the wave structure and block velocity
we infroduce the following nondimensional variables along
with (9}, (11), and (87) and have

_& k ll?.— E_,
X*z(ﬁ) == (90)
W ¥ (91)

Wp - Wb

Sfmf2 1 dw_ YA dw g
v (kp) (wo-wo) at e(wp-w) o«

From (77) the downstream structure of the breakaway wave is
given by

= 1 RM? Y1 g ]X]
" exp{[(l-M’+4(1-1»11)1) 20| ] OB

with M being determined from (83). The decay is exponential
with a 1/e length

_[fa rRM?_ 7 _R'M ]m 94
Xc"[(1~1v1’+4(1-1\ri1)’) 2(1-MY) O

This nondimensional width of the breakaway X, wave is given
in Fig. 6 as a function of A for several values of F. The
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"Fig. 6. Dependence of the nondimensionat width of the breakaway wave X,
"on the ratio of the propagation speed fo the sound speed M for several values
of the friction parameter R.

nondimensional maximum block velocity at § = 0, U, is
given by

Goaml(l o, BML ? g }
[(1-M2+4(1-M1)1) 2(1-mY) (93)

The nondimensional maximum slip velocity is given in Fig, 7
as a function of A for several values of R.

We once again consider a specific example. With o = 10
Mpa and JL = 30 Gpa we have the strain £ = ¢/} = 3000 '. The
initial spring displacement is then w, = e A"’ = 0.333 m,
certainly a reasonable value, For the cchesion parameter we
have (g/k,w,) = (0 A"/)L w) = 3. Thus from (79) we find E
= 1.67. Taking M = 0.5 we find from (81) that R = 0.80.
The parameter & defined in (71) has the value o = [A (1 -
MH1'? = 1/0.87 km. The decay length in the downstream
region A defined in (74) is evaluated using (82) with the
result A = B"Yq = 1 2km. The slip velocity at £ = 0, v, is
given by v, =u, w, A, =0.45 m/s. Again a typicat value of
the slip velocity on a fault. The viscous stressat £ = 0, o, =
R I v, fc =4 Mpa. This is essentially the stress associated
with dynamic friction and compares with the stress ¢ = 10
Mpa before rupture. The general behavior of this model
appears io be a good representation of the behavior of an actual
fault,

6 Conclusions

In this paper the problem of dynamic rupture propagation on a
fanlt has been studied using a simple one-dimensional slider-
block approximation. The advantage of this approach is that
the basic principals of friction are separated from the
complexities of a stress concentration at a crack tip. In our
models of rupture propagation we consider steady-state rupture
propagation and focus our attention on two aspects, surface
cohesion and surface resistence. These in turn are related to the
concepts of static and dynamic friction.
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Fig. 7. Dependeace of the maximum nondimensional slip velocity U, on the
ratio of the propagation speed to the sound specd M for several values of the
friction parameter R,

We directly associate static {riction with surface cohesion.
If surface displacements are less than a critical value w, then
there is a cohesion force g, beiween the grannlar materials (hat
constitute & fault. The fault is locked and no displacement
takes place. We argue that laboratory measurements carried
out at vey low sliding velocities are a measure of these
cohesion factors. Locally cohesion is broken but continuous
reheals as the constant velocity boundary condition is applied.
We [urhter argue that these experiments are not relevant to
actual faults. The rupture front breaks the cohsive forces in'a
breakaway zone where the displacemnts and velocities are
small,

We associate dynamic friction with a velocity dependent
force. 1If this force decreases with increasing velocity the
rupture velocity will approach the sound speed. Since it is
known that fanlt ruptures take place at a fraction, = 0.5, of the
sound speed we argue that the dynamic friction force increases
with increasing velocity. In this paper we have considered a
linear dependence of the shear stress on the slip velocity. The
mechanism responsible for the dynamic friction is not yet
established. It could be acoustic (luidization of the fault gaupe
as proposed by Melash (1979, 1995). Or it could be interface
waves as proposed by Brune et al (1993 and by
Anooshelpoor and Brune (1994),
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