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Abstract. In this paper we investigate whether observed
intraseasonal variability in the equatorial Pacific can be at-
tributed to finite amplitude waves resulting from unstable air-
sed interactions. Within a Zebiak - Cane type mode! of the
coupled equatorial ocean - atmosphere, the nonlinear equili-
bration of instabilities of a simple basic state is considered
with periodic conditions on the ocean boundaries. Three
mechanisms exist which can induce a finite amplitude equi-
libration on a time scale e?t. Here ¢ is the characteristic time
scale of growth of the disturbance and e the relative distance
from the instability threshold. For each equilibration mecha-
nism, the finitec amplitude and period of the equilibrium state
are computed as a function of ¢ and substantial amplitude can
be reached for a reasonable degree of supercriticality. There-
after the analysis is extended to include time-dependent ex-
ternal forcing. It is shown that interannual variability may
result through the interaction of the response of a weak an-
nual external forcing and the finite amplitude development of
the intraseasonal instabilities,

1 Introduction

The equatorial ocean-atmosphere system is a strongly cou-
pled dynamical system displaying spatic-temporal variabil-
ity on a number of scales. One of the important origins of
this variability is the existence of coupled feedbacks between
the ocean and atmosphere (Bjerknes, 1969). Apart from
the much studied El-Nino/Southern Oscillation phenomenon
(Philander, 1990), there is considerable variability in the Pa-
cific Ocean on intraseasonal time scales.

In earlier studies (Enfield, 1987; Spillane et al., 1987) it
has been suggested that intraseasonal variations in sea level
along the west coast of the Americas is remotely forced by
atmospheric variability in the western Pacific. Further anal-
ysis of temperature, wind and current observations (Johnson
and McPhaden, 1993; McPhaden and Taft, 1988) showed in-
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traseasonal variability in subsurface temperature and zonal
current which could be well described in terms of propa-
gating (first baroclinic) Kelvin type modes. The discrepan-
cies between the observed spatial pattern and that of the free
equatorial oceanic Kelvin mode were attributed to wave/-
mean flow interaction. No local coherence between subsur-
face anomalies and wind stress anomalies was found (John-
son and McPhaden, 1993), but in a recent study Kessler and
Weickmann (1995) demoenstrated a non-local coherence be-
tween windstress and sea surface temperature (SST) anoma-
lies.

They proposed that ocean-atmosphere coupling is involved
in the forcing and maintenance of the Kelvin modes.

It has been known for some time that positive feedbacks
in the equatorial ocean atmosphere system may cause strong
amplification of small disturbances which may, when grown
to finite amplitude, modify the evolution of the seasonal cy-
cle or spatial structure of the annual mean state. The instabil-
ities of a simplified annual mean state have been well identi-
fied in intermediate coupled ocean/atmosphere models. One
of the models which is believed to capture most of the essen-
tial physics of the coupled system is that of Zebiak and Cane
(1987), referred to below as the ZC-model. For a spatially
constant climatology the most unstable traveling wave modes
were determined by Hirst {1986) and Neelin (1991)in a ZC-
model with periodic boundary conditions at the meridional
ocean boundaries. The latter boundary conditions can be as-
sumed in studies of intraseasonal variability since the reflec-
tion at the ocean boundaries is not important. Hirst (1986)
focuses on two types of coupled long wavelength traveling
waves which can become unstable under favorable condi-
tions (i.e. sirong coupling). Both classes are related to free
ocean waves, i.e. long Rossby waves and Kelvin waves, and
have corresponding frequencies. Although Hirst (1986) men-
tions that a third class of traveling waves — related to the
evolution of the sea surface temperature (SST) — is possi-
ble, Neelin (1991) demonstrated the relevance of these SST
modes for the variability of the equatorial system.

In Neetin {1991) the different classes of modes are nicely
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classified with help of the coefficients in the linearized SST-
equation, e.g. written as

6ssta + Kot — Krph+ K w4+ wg?T =0

where T, u, h and w are the SST, zonal advection, thermo-
cline and vertical velocity anomaly, respectively. Further-
more, the subscripts z, T'h, u and d in the coefficients & re-
fer to zonal advection feedback, thermocline feedback, up-
welling feedback and damping, respectively. The coefficient
g5t 15 the relative time scale of development of ocean waves
to that of the SST anomalies. Using this equation, coupled
Kelvin waves are preferred when x, = &, = 0, coupled
Rossby waves when xpp = K, = 0 and SST-waves are pos-
sible whenever é,,; is unequal to zera. Each mechanism of
destabilization is directly related to the coefficients above, for
example when the term x7ph causes the destabilization the
wave is said to become unstable through thermocline feed-
back. These basic results for the stability of zonally constant
basic states in the periodic basin case have been extended in
subsequeat studies to include more detailed physics both of
the atmosphere and the ocean. For example, in Hirst and Lau
{1990) the effect of wave propagation in a moist atmosphere
is considered. The Hirst (1986) modes may be strongly mod-
ified by the inclusion of more detailed physics in the atmo-
sphere but the basic characteristics and destabilization mech-
anisms remain the same,

Although much is known about the linear stability of a
number of different basic states, relatively little is known
about the nonlinear evolution of the coupled traveling waves.
The study of the equilibration of unstable coupled modes
and their subsequent transitions is important to determine
whether these modes can obtain sufficient amplitude to be re-
lated to the intraseasonal variability in the equatorial ocean-
atmosphere system. The key to study this equilibration of
the instabilities is model reduction through projection of the
dynamical system on the dynamically active modes. In this
paper, such a reduction technique for the pericdic basin case
is presented and applied to study the finite amplitude equili-
bration of the Hirst (1986) coupled instabilities. The focus
of the study is on the method of reduction, which has a large
application potential, and on the qualitative aspects of the
results, rather than on a more detailed comparison with ob-
servations which will be presented elsewhere.

In section 2 the coupled model is shortly recalled and the
methods of analysis are presented in quite some detail. Next
the linear stability of a simple basic state and the weakly non-
linear equilibration of the instabilities is studied. The nonlin-
ear evolution of the instabilities is shown to be governed by
a complex Ginzburg-Landaun equation of which we consider
only the (stable) Stokes wave solution. The latter solution
shows how nonlinearities balance the exponential growth of
the instability which results in a finite amplitude bounded
state. '

Observations of the intraseasonal Kelvin modes also in-
dicate a consistent low-frequency modulation and are there-
fore thought to be important in the initiation and sustain of

ENSO events by affecting SST (Lau and Shen, 1988). In the
last section, the reduction technique is extended to include
an annual period weak external forcing in windstress. 1t is
demonstrated that such a small amplitude windstress fluctu-
ation may transfer energy to interannual frequencies during
equilibration of the instabilities.

2 Formulation of the problem
2.1 Model

The intermediate model used in this study is similar to that
used by Hirst (1986). The atmospheric component consists
of a linear Gill model (Gill, 1980) forced by latent heat re-
lease proportional to sea surface temperature (SST) anoma-
lies.

U+ AU — ByV + P, =0
Vi + AV + ByU + P, =0 (1a)
P+ AP + AU, +V,) = —KoT

where (U, V') are the horizontal velocities and P is the geo-
potential height, A is a damping coefficient and ¢, the wave
speed of the first baroclinic Kelvin wave. The ocean com-
ponent is a 1.5 layer nonlinear reduced gravity model for the
zonal and meridional velocities u and v and the thermocline
depth £ without the usual mixed layer as in the ZC- model,
forced by wind stress anomalies proportional to the atmo-
spheric surface winds. The governing equations are

uy +ru— Byv + g'hy + vug + vuy =7 U
v + v+ Gyu + ¢’ hy +ury Fvvy =%V (1b)
hy+7h+ug + vy + (uh)y + (vh)y =0

In the equations above, nonlinear ocean dynamics is taken
into account because of its potential influence on the nonlin-
ear development of the coupled modes, as is known for the
uncoupled ocean case (Boyd, 1980a.b). The evolution of the
SST anomalies T on a basic state (indicated by the barred
quantities) with constant upwelling W, constant thermocline
depth & = H and constant zonal temperature gradient Ty is
governed by

— ki) 1 — T _E T
best Ty +dT +Tou+ ET + I{"(T — Is(h))w HTb(h)h
1 Tk
+ETw—%wh+uTm+vT =0 {le)

where T, is the (subsurface) temperature of water just be-
low the thermocline assumed proportional to h, just as in
Hirst (1986). The vertical velocity component w is obtained
from the continuity equation and the constant d is a damping
(Newtonian cooling) coefficient.

The boundary conditions for the ocean atmosphere cou-
pled system are periedic in the zonal direction and all quan-
tities are bounded in the meridional direction, i.e.
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Tuble 1. Standard values of the dimensional parameters.

g 0.03ms2
a 233 % 1071 1 51
To 1.5%x 1055
Lg 2.50 % 105 m
H 150 m
Co 2.0ms!
o 30.0ms~!
r 1.3 x 107 %2
A 5.9 x 10-8 =1
d 1.3 x 1076571
T, —50x 1077 Km~!
AT 14K
h 150 m
w 1.7x 1075 ms!
T 28 K
Ts(h) 4K
T!(R) 003 K m!
kg | T0x 1073 m2sd K}

(v v h TUV ) =0 , [y—o
(1d)
The coupled system is nondimensionalized using the time

scale 7, and lengthscale £, defined as

/1 [c
7;: YR o = =
Beo £ 3

where cg, the characteristic phase speed of an oceanic Kelvin
wave,
Co = Q'H,

is the horizontal velocity scale. The thermocline depth is
scaled with H and the sea surface temperature by a char-
acteristic temperature difference AT'. In the atmosphere, the
geopotential height and the horizontal velocities are nondi-
mensionalized by c2 and coﬁ'%lf&, respectively. Using

these scales, the dimensionless parameters in the system are

€o = Tor €a = ToA ke = Tod
_ ¢ . _T.L - 2.2
c=& Ry =55 p=71KeATT /c

_ THR)H _ T-T.(h _ W,

RTh = AT Ky = AT Koy = I3

Estimates of the dimensional quantities obtained for the
basic state are based on Hirst (1986) and given in Table 1.
The dimensionless S8T equation becomes

(558128: + Ry + !‘Cd)T + KaU + KW

Table 2. Standard values of dimensionless parameters in the model.

g 0.2 [ 0.9
Ky 0.42 e 15.0
Kz | —1.01072 || wry | 0.21

Ko 0.02 Ky 1.71

—Kpkreh +uly, + ?.’Ty + (T - nThh)w =0

in which the governing processes can be identified by its
dimensionless parameters. For example, &, represents the
strength of zonal advection, the term s, x75h controls the
effect of thermocline feedback, «, the upwelling feedback
and &y + x4 is the damping coefficient. Standard values for
these parameters are given in Table 2,

The nondimensional system of equations can be written
into the general form

(MEZ +L0)2+N(@)® =0 5
B(®) =0 2)

where the operator B specifies the boundary conditions. For
the specific problem, &® is given by

@=(u v b T U V PY (31

and the linear operators M, £ are defined as

M =diag( 1,1,1,68.5,1,1,1 ) (3b)
L=
Y €o ay 0 0 — O
8: By €o 0 0 0o 0
Kpthuds  KuBy —RKukTh Kethw 0 0 0
0 0 0 0 €a -y O
0 0 0 0 €2 Oy
0 0 0 1 c?8; 28, €
(3¢)
and the nonlinear operator A'(®), given by
N(®) =
uds + vdy 0 0 00 0 0
0 udz + 18y 0 0 0 00
hdyg hay udy+vdy 0 0 0 0
T8, +T, T3, +T, —kraw 0 0 0 0
0 0 0 0 0 0 0
0 & 0 0 ¢ 0 0
0 0 0 0 ¢ 0 0

(3d)
with w = @,u + Oy, contains the quadratic nonlinear inter-
actions.

Three different types of nonlinearity will be compared
with respect to the finite amplitude equilibration and phase
modulation that they generate. First only nonlinear upwelling
feedback will be taken into account {case A), i.e. advection
of perturbations is absent in both ocean and SST equations.
This type of nonlinearity is found, for instance, in Wakata
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and Sarachik (1994} to be the dominant equilibration mecha-
nism. The second case (B) includes advection of SST pertur-
bations, as it is taken into account in intermediate models of
ZC-type. In case C, nonlinear ocean dynamics is also active
in addition to the other two equilibration mechanisms.

2.2 Linear stability analysis

A linear stability analysis is the basis of any weakly non-
linear analysis. Within this analysis sufficient conditions for
instability are determined by considering the evolution of in-
finitesimally small perturbations € in (2). For these pertur-
bations, nonlinear terms can be neglected and the equations
{2) reduce to

(ME+L)® =0
{ B(®) = 0 @

The geometry allows for traveling wave solutions in the z -
direction with wavenumber & and complex growth factor o,
ie.

®(z,y,t) = Bly)e*tot Lo

where c.c. indicates complex conjugate. On substitution into
{4} we obtain the two-point boundary value problem for the
eigenpair (o, ®),
(M(k) o+ L(k)® =0 (5)
Py =+o0)=0

where the operators M (k) and £{k) are the Fourier trans-
forms of A and L in the 1 - direction. For the stability prob-
tem of the model under consideration, the operators M (k)
and L(k) are given by

Mik) =M
EA —_
£y —y ik . 0 -4 0 0
Yy €a Oy 0 0 —p 0
ik ay €0 0 0 0o 0
KatHkiky  thKy —KwlTh KgtRy 0 0 0
0 0 0 0 €a -y ik
o 0 0 0 Oy
0 0 0 1 ike? 28y e

The eigenvalue & is written as & = A + iw and considered
as a function of the wavenumber & and a control parameter y;
the latter can be any parameter in the system. The real part A
determines the stability of the basic state with respect to the
small perturbations. If A > 0 these grow exponentially and
the basic state is unstable. The neutral curve, Ak, i) = 0in
the (k, 1) plane provides sufficient conditions for instability.
In many applications, the neutral curve has a minimum at
(kc, jic), at which

dA 132D

)\(km .uc) =0, ”a_k(kc» .uc) =0, @

Physically, k. is the wavenumber of the first wave to become
unstable as @ 1s increased beyond p..

(koo 1) <0 (6)

2.3 Weakly nonlinear analysis

The linear theory shows that, under conditions (6) and if
is larger than y., wavelike perturbations exist with exponen-
tially growing amplitudes. This description is only valid in
the initial growth stage, where the wave amplitudes are in-
finitesimally small. To describe their evolution to finite am-
plitude, the nonlinear interactions between the various wave
components must be taken into account. Further analysis
is possible if the control parameter 4 is considered slightly
above its critical value yu., i.e.

po= jie + me? (Ta)

where
el , m=0(1) (7h)

The approximation of the neutral curve by a parabola near
its minimum, then implies that

|k — k| = Oe). (7c)

The unstable waves are thus limited to a narrow band around
the critical wavenumber £, and this band can be interpreted
as a wavepacket, with central wavenumber k.. This wave-
packet evolves on a time scale which is large compared to
the typical wave periods and is characterized by scales

T =€, X =elz—cyt) (7d)

where ¢, is the group velocity, which is determined by the
dispersion relation at criticality. The long spatial scale X is
a slow moving coordinate, traveling with the group velocity
of the unstable wavepacket. This scaling leads to the trans-
formations

o g d 5 0 0 o a

o — €y €T,

ot ot X ar 7 dr dr 0X
The finite amplitude of the perturbations will be small com-
pared to that of the basic state, for u close to (i, so the so-
tution vector ® is expanded Newell and Whitehead (1969)
in terms of the small parameter e and Fourier modes of the
marginally stable wave E = exp(ik.x + wt]}, i.e.

P = eBUVE + -
+ 62(@(02) +eU2E 4+ @2NE24L .
+ L ) 4+t

(8)
where & = ®(z, X, y,t,T) and 8 = @0)(X, y, 7). In
the expansion (8), only the terms relevant to obtain the final
reduced model are taken into account. By substitution of the
expansions (8) into (2) and collecting terms of like orders in
¢ and F one can reduce the full equations to a scalar equation
for the envelope of the most unstable wave packet. Because
some of the steps within the analysis have interesting phys--
ical interpretations, and the analysis is applicable to a large
class of stability problems, we present it here in more detail.

At O(eE) the linear stability problem (5) is recovered

(iw M) + L(k))BY =0 (9a)
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The equations at O(¢*E),
(tweM(ke) + L(ke)) 81 =

11
LA
ax
where a subscript indicates differentiation of the operator
with respect to the indicated parameter, can only have a so-
lution, if the righthand side satisfies a Fredholm orthogonal-
ity condition. This solution is non-unique, for we can add
the solution of the homogeneous problem. The latter will be
omitted here since it does not play a role in the derivation of
final amplitude equation.

At O(e?) and at O{e? E?) two invertible problems describe
the nonlinear self-interaction of the marginally stable wave.
This results in a modification of the basic state and a sec-
ond harmonic contribution given by ®02) and &2, respec-
tively, which satisfy

_(ﬁk(kc) + iwak(kc) - ch(kc))

ﬁ(o)@(oz) — —2Re(N(<I>(“))q>(“) * (9¢)

(Qiwe M{2ike) + £(2ik.))B P = ~N(@1N)PID (9q)

where Re indicates real part and * the complex conjugate,
Since the linear operator iw. M + £ does not act on the
long scales X and T, the eigenvector @11 is written as
A(X,T)¥. Substitution of this expression into the equa-
tions at higher order leads to the following dependencies on
the amplitude A.

D = A(X TYE(y)

eU2) = ;; (X, )& (y)
O = |AX, )PP (y)
% = A2(X, Ty (y)

The vectors (12} | w{02) 4nd ¥(22) sarisfy

(iweM(ke) + £(ke)) WD) =

—(Lrlke) + iwe M (ko) — coM (ko)) {10a)
L(0)POD = _2Re(N () T) (10b)
(2w M(2ike) + L(2ik)) PP = N (T)F  (10¢)

and these equations are complemented with the appropri-
ate boundary conditions at this order in the expansion. The
group velocity of the unstable wave packet appears as the
Fredholm solvability condition in the righthand side of the
singular problem (10b). From differentiation of the eigen-
value problem and inspection of the right hand side of equa-
tion { 10a) it is observed that the solution W%} and the group
velocity are given by

43

O Buw
—2'5? y Cg = a (11)

both evaluated at criticality. The equations (10b) and {10¢)
are regular and can be solved directly for ¥(02) and Ww(22)
At O(e3E) a singular problem is obtained for which the

right-hand side now depends explicitly on the amplitude
A(X,T) and the vectors ¥ , ®{12) ¥(02) gpd P22} o

Pil2)

(tweM(ke) + L(ke)) @) =

9A 1. 0%4
~(M(k)T 91,+mI‘A+ Eaxz + A A4 (12)

where

= (ﬁu(kr:) — iweMp(ke)) P, (13a}

% = (iwe Mk (k) ~ Liw(ke)

+2i(iwe My (k) — cgM{ke) — Lo(ke) 1B, (13B)

and the vector A contains all nonlinear interactions at this
order

— 2, M (k)W

A = N@)TOZ L A(E0)) g
TN (BN ¢ N (g 22 (13c)

In general, the right hand side of (12) is not contained in
the range of iw.G + £. Valid solutions to (12), on an O(1/€?)
time scale, are possible if the right-hand side is orthogonal to
the kernel of the linear operator in the left-hand side. This
so called sclvability condition is a direct result of the Fred-
holm alternative. Since the kernel of this operator has dimen-
sion 1, it is spanned by 1 vector, say Q, which implies that
Q¥ (iweG + LYW = 0 under the appropriate innerproduct,
where W is an arbitrary vector and H indicates Hermitian
transposed.

The amplitude equation resulting from the solvability con-
dition for (12) is called the Ginzburg-Landau equation :

a4 A 8% A
BT——'YI ’YzaX

where the three coefficients in (14a), all evaluated at critical-

— 1 AlA2 (14a)

ity (k = ke, 1 = p.) are given by
7= Q?,HMF‘I, e (145)
e = _Q?i% = —(A, +iAs) (14d)

It should be noted that the theory above is applicable if, in
addition to (6), the modes at k = 0 and £ = 2 k. are damped
at criticality. This condition validates the expansion (8) and
has to be verified as part of the linear stability analysis. In
case of a supercritical Hopf-bifurcation, i.e. Re{oyy,) > 0,
non- trivial bounded solutions to (14a) exist, if the coefficient
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73 has a positive real part. If these conditions are satisfied,
(14a) can be rescaled into a standard form for analysis, by
introducing new time, space and amplitude variables

T=pT, £=4X; a(€,7) = az A(X, T)e T

(15a)
The quantities g, 77 and a, are given by

[ 2mA / Ay
=, n=4/— LA —mIE
p=mi,n o ;) Qoo m (15b

and again a subscript indicates differentiation, i.e. A, =
Finally, the standard Ginzburg-Landau equation

d#

da
—=a+{1+ ml) — (1 + i) ala)?

p (16a)

8{2
is obtained where the two coefficients (aq, az) which deter-
mine the properties of the finite amplitude evolution of the
wavepacket are given by

wek oA
Akk Ay’
I'm indicating imaginary part.

When a characteristic dimensionless time scale 1y, a di-
mensionless length scale £, and an amplitude ap are found in
the computed trajectories of solutions to (16a), these trans-
late to physical quantities according to

ap = {165)

(@%)* = (1 ~ ue) " ag (16¢)
._ 0 .

O uc)/\# (164)

_ TRk i .

L gy (1ee)

2.4 Numerical implementation

To reduce the boundary value problem associated with the
linear stability analysis to an algebraic problem a pseudo-
spectral method is used. The solutions are expanded in Ra-
tional Chebychev polynomials (Boyd, 1987)

T Bn(y) = cos [n(arccot(y/L)}] (17)

Expanding the eigenfunctions of the linear stability prob-
lem into a sum of the basisfunctions (17) up to order N and
applying the two-point eigenvalue problem at the colloca-
tion points leads to a generalized 7N -dimensional eigenvalue
problem of the form

(Go+L)¥ =0 (18)

where the eigenvalue o is a function of, among other param-
eters, k and p. In the derivation of amplitude equations the
critical point plays a central role as was seen above. It is

important to determine this critical point with high accuracy,
since the coefficients in the Ginzburg-Landau equation are
evaluated at this point. Writing x = (k, ) for notational
convenience and A is the real part of the eigenvalue ¢ , a
function F is defined as,

F00 = ( B0 )=0

Applying the Newton-Raphson method to determine solu-
tions of this system of nonlinear algebraic equations gives

{1%a)

Xir1 = xi — (DF) " oa)F () (19b)
The Jacobian DF is given by
0 B2

52\ ZERN
gg_kf(X) _ak_au(X)

The components in (19¢) are accurately and efficiently cal-
culated from the generalized eigenvalue problem (18) and
details are given in the appendix. If the Newton process has
converged, the critical point (&, ) is obtained and simul-
taneously the critical frequency w.,., the groupvelocity ¢, and
the coefficients ) and 4 in the Ginzburg-Landau equation.

A crucial step in the weakly nonlinear analysis is the ap-
plication of the Fredholm alternative to the singular not self-
adjoint system (12}. Following Chen and Joseph (1990) and
Newell et al. (1990), the vector Q in {!14b-d) is obtained from
the singular value decomposition of the discretized linear op-
erator in the left hand side of (12), i.e.

iw.G + L = WSVH (20)

with 8 = diag(s;), 7 = 1,..., TN being the diagonal ma-
trix containing the singular values, and hence 57 = 0. The
matrices W and V are orthonormal and the vector Q satis-
fying Q@ (iw.G + L) = 0 is given by the last column of W
In Appendix A a discussion of the convergence properties of
the eigensolutions ¥ in (18) and the coefficients o, a2 in
(16a) for the standard parameter values is provided. The re-
sults presented below were obtained with N = 35, which
guarantees sufficiently accurate solutions,

3 Results
3.1 Linear stability Analysis

We investigate the linear stability of system (2) along the
path in parameter space that is shown in Fig. 1. The loca-
tions indicated with K ({855, 52, kTh) = (0,0,1))and R
({8ast, K2y iTh) = {1, Kz, 0)) correspond to reductions of the
SST equation to Model I and Model I'V of Hirst (1986). The
standard values of the parameters correspond to the case la-
beled with M in Fig. 1 and are at k; = —0.01 and K7 =
0.15. For these conditions the neutral curve, separating re-
gions of growth from decay in parameter space, is plotted as
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Kz Dy + Ky + k@ T +au=10
RY
M7 .
’
A &h‘—h—-—____(dr + Ky + KT -k kTRh + kzu=1 4 )
I 0.0 02 04 06 08 1.0 00 0.2 04 06 08 1.0
| X X

&
Lt t
1 55

K

ko]

Ky + KT - kywrph = €

Fig. 1. The path in parameter space along which the calculations have been
performed. The governing sea surface temperature equation is shown for
each regime.

a function of the wavenumber k and the coupling parame-
ter i1 in Fig, 2. Since this neutral curve has a minimum at
ke = 0.11, u. = 1675, it allows one to identify the domi-
nant mode in the system, i.e. the first mode to become un-
stable when the coupling strength is increased. The patterns
of thermocline depth , 88T, zonal surface wind and atmo-
spheric pressure perturbations of the dominant mode just at
criticality are shown in Figs. 3. These spatial patterns show
the mixture of Kelvin, Rossby and SST mode character.

The critical point is followed along the path in Fig. 1 and is
plotted in the plane of wavenumber & and coupling strength u
in Fig. 4a. The wavelength of the dominant mode increases
from 7300 &£m for the coupled Kelvin mode to 15.000 kmn
for the coupled Rossby mode. Tn Fig. 4b the growth rates
of the two most unstable modes are plotted along the same
path. The dominant mede has zero growth rate, the second 1s
damped. Clearly, there is only one mode which is deformed
in a continuous way from a coupled Kelvin mode via a mixed
S8T-mode into a destabilized coupled Rossby mode. This
is confirmed by the phase - and group velocities of the first
mode as shown in Fig. 4c. Here negative values of the phase
w indicate eastward propagation. The dominant period of the

5000
000 ,_- unstable ]
w o |
000 b 4
1000 - 4
L stable
n 1 | 1
h] 01 02 03 04
k
Fig. 2. The neutral curve of wavenumber versus coupling strength
(8352, Kz, 87R) = {1,—0.01,0.15) and the parameter values as in
Table 2.

00 02 04 06 08 1.0 00 02 04 08 OB 10
X X

Fig. 3. The eigenvectors of the most unstable wave, comresponding to the
minimum of the neutral curve of Fig, 2.

The eigenvectors of the most unstable wave, corresponding to the minimum
of the neutral curve of Fig. 1. (a) Thermocline depth, (b) sea surface temper-
ature; the drawn (dotted) contours indicate positive {(negative) anomalies.(c)}
Zonal atmospheric surface wind anomaly, the drawn (dotted) conlours indi-
cate eastward (westward) winds. {d) Low level pressure anomaty, the drawn
(dotted) contours indicate high (low) pressure.

critical mode increases slowly from 90 days {(dimensional pe-
riod is 227,) for the Kelvin mode to a standing wave as ad-
vection is balanced by upwelling feedback. In the advective
regime a 120 day period westward traveling coupled Rossby
wave is found. The energy of all the coupled instabilities
travels eastward, as is indicated by the sign of the groupve-
locity ¢, (Fig. 4¢).

The picture of one coupled mode which changes character
when parameters are varied, and where different instability
mechanisms dominate the growth is in agreement with the
continuous connection of eigensurfaces in the ocean basin
case, as was shown in Jin and Neelin (1993). It puts the
results of Hirst (1986), where it seems as if essentially dif-
ferent modes are destabilized for different SST-equations, in
a much simpler perspective. It is also found to be robust
against variation of the other system parameters such as the
atmospheric damping strength and the Kelvin wave speed ra-
tio (¢a /o)

3.2 Weakly nonlinear stability analysis

The results of the linear theory of the previous section pro-
vide the basis to investigate the effects of different nonlin-
ear interaction mechanisms to equilibrate the exponentially
growing instabilities. If the initially unstable modes equi-
librate on a @(1/¢?) time scale, these nonlinear effects de-
termine both the amplitude and period of the finite ampli-
tude traveling wave. The three different types of nonlineari-
ties considered are (A) only nonlinear thermociine feedback,
{B) both nonlinear thermocline feedback and advection in the
SST equation and the full model (C) which also includes non-
linear ocean dynamics.

The nonlinear analysis is carried out along the path of
Fig. 1 and the coefficients of the resulting Ginzburg-Landau
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(b) The growth rates of the two least stable modes along the path of Fig, 1.
The dominant mode has a zero growth rate and appears as a straight line.
(c) The frequency and group velocity of the critical mode along path of
Fig. 1. Negative (positive) phase speeds {group velocities) indicate eastward
(westward) traveling waves (energies).
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Fig. 5. The correction to the growth rate at neutral conditions along the path
of Fig. 1. Note that the vertical scale differs for gach panel.

are calculated along this path in parameter space. From a
physical point of view, solutions to the Ginzburg-Landau eq-
uation describe the modulation of instablities in both time
and space. Tn the previous section we have considered in-
stabilities with wavelengths in the order of the Pacific zonal
basin size. This implies that there will be no wavenumbers
available for spatial modulation, without taking into account
the effects of reflections at the meridional boundaries. This
is beyond the scope of the reduced model presented here.
Therefore, the term in (14a) associated with the spatial mod-
ulation, Ax x, will be neglected from now on. Tt turns out
that for the parameter regimes considered, where the scaling
(15) is valid, the Stokes wave solution given by

a(r) = e”*2T (21)

is stable solution. Physically, this solution introduces a fre-
quency modulation of the most unstable mode in the zon-
ally unbounded domain, whereas the amplitude is stationary.
There are three important scales associated with finite ampli-
tude equilibration. The e-folding time of the linear unstable
mode sets the time scale of growth to finite amplitude and is
given by (16d) :

1
(nu - Hc)/\.u

For each of the cases A-C this time scale is the same, since
the underlying linear stability problem is identical. The fac-
tor A, controls this growth, given the distance beyond criti-
cality. In Fig.5 this factor is plotied and it is small because it
is relative to the coupling strength g, which, as can be seen in
Fig.4a, is large. As a measure of the strength at finite ampli-
tude of the coupled anomaly in the system for each nonlinear
scenario the dimensional value of SST at the equator is taken.

T* = /(a3 AT )

Whereas. the time scale of reaching finite amplitude is set by
the linear theory, the amplitude itself is set by —A,. Hence, if
this quantity turns out to be positive, solutions on the equili-
bration time scale ©(1/¢?) assumed in the weakly nonlinear
theory, are not valid. In the latter case, finite amplitude equi-
libration occurs on a longer time scale. For fixed Ay, the
magnitude of —A, measures the strength of the nonlinear in-
teractions and the final amplitude. A large (small) value of
—A. indicates strong (weak} interactions and a small (large)
final finite amplitude. Obviously, for fixed — A, the instabii-
ities grow faster (slower) with large (small) values of A, and
a larger (smaller} amplitude is reached.

In Fig. 6 the real and imaginary parts of A have been plot-
ted for the cases A, B and C respectively along the path in
Fig. 1. The nonlinear thermocline feedback is able to balance
nearly all unstable modes along the path, except a small inter-
val within panel 2 (Fig. 6a). Apparently, the westward prop-
agation tendencies introduced by the zonal advection feed-
back are more difficult to balance by the thermocline feed-
back. The nonlinear zonal advection feedback widens the

*

e

T, (220)

(22b)
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a) case A: only nonlinear thermocline feedback.

b) case B: nonlinear thermocline feedback and advection of SST.

¢} case C: in addition to b) also nonlinear ocean dynamics.
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¢) case C: in addition to b) also nonlinear ocean dynamics.
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Fig. 8. The period (a) and the amplitude (b) of the stable limit cycle as a
function of the distance from the critical conditions in Fig, 2, for the three
nonlinear equilibration mechanisms.

regions where equilibration at the assumed time scale is not
possible (Fig. 6b). The intervals over which A, is positive be-
come larger which indicates that the nonlinear interactions of
advection and thermocline feedback cancel each other result-
ing in a net weaker interaction. This weakening is stronger
when the instability is westward propagating. When nonlin-
ear ocean dynamics is included, this weakening is seen, in
Fig. 6c, for eastward propagating instabilities, but a strength-
ening results for westward propagating instabilities which
are consequently more easily balanced. The Figs. 7 show

the finite amplitude ¢ = 4/ _—AAE for the cases A, B and C re-
spectively along the path in Fig. 1. The regions of validity of
the weakly nonlinear theory (where A, < 0 ) are separated
by asymptotes in the amplitude g. For the westward prop-
agating disturbances, the amplitude is systematically larger
due to the larger value of A, and the smaller value of —A,..

The period of the stable {imit cycle attained by the linear
instabilities is a third measure for comparing the effects of
the different nonlinear interactions. This period is in dimen-
sional units defined as

2m
we + (B = pe)(wy — Auoo)

P = 7o (22¢)
In this expression w, is the frequency of the linear unsta-
ble mode at critical conditions and w,, is its linear correction
above criticality. For the standard parameter values corre-
sponding to the neutral curve of Fig. 2 (and the patterns of
the coupled mode in Fig. 3}, the periods (Fig. 8a) and the fi-
nite amplitudes (Fig. 8b) for each of the three cases A, B and
C, are plotted as a function of g — .

As can be seen from the expression for p}, the actual pe-
riod induced at finite amplitude may depend strongly on the
particular nonlinear interaction through the coefficient cra. In
case (A), the period of 4 months set by linear theory grows
slowly to 8 months as u is increased from critical conditions
to a value of 2800. The amplitude of the SST-perturbations at
the equator approaches (.5 K. The addition of advection of
SST-perturbations (case B) shows a dramatic impact on the
period of the limit cycle. The initial peniod of the westward
propagating instability increases through several years to a
steady state near p = 2300. For even larger values of p the
propagation changes from westward to eastward. Nonlinear

ocean dynamics generate stronger interactions resulting in a
significantly smaller amplitude of the perturbations. The pe-
riod of the oscillation responds much slower to increases in

i

4 Low frequency time-dependent forcing

In the previous section, we have shown that the computa-
tion of finite amplitude traveling waves of the fully coupled
model was reduced to the computation of coefficients of the
Ginzburg- Landau equation. Amplitude and period then fol-
lowed from properties of the Stokes wave. It was found
that the typical time scales of instability were in the order of
months. In this section, we study the possibility of deriving
reduced models in case a time-dependent external forcing is
present, for example the seasonal forcing on a time scale of
about one year. In this case, the period of the external forcing
is longer than that of the instabilities and one might ask how
the finite amplitude equilibration of the perturbations, during
their growth, alters due to the modifications of such an exter-
nal influence. It turns out that under a certain scaling of the
external forcing, as shown below, a similar reduced model
can be derived.

4.1 Derivation of the reduced model

In the case under study, we imagine a time-dependent exter-
nal forcing, for example in the zonal wind stress, which is
zonally constant and has a prescribed meridional and tempo-
ral structure. The amplitude (and frequency) of this exter-
nal wind field is small and scaled in such a way that it does
not influence the linear stability properties, since the mean
state remains the same. However, the response of this wind
field may interfere with the growth of the disturbances. The
strength of the external forcing has the same order of magni-
tude as modifications to the basic state due to nonlinear self-
interactions of the perturbations. In this way, this correction
to the basic state at O(€2) becomes time-dependent and has
its impact on the equilibration of the instabilities.

Hence, consider the general system (2) extended to include
a small amplitude forcing term, ie.
{ (ME + )P + N(B)P = °F(y, ve?t) (23)
B(®,y=2400)=0

The vector function F in the right hand side contains the
forcing terms. After scaling of the system they appear to be
small with respect to the terms on the left. This is expressed
in the fact that the amplitude €2 < 1, F = ©(1) and has
no z- dependence. The scaling implies that the forcing acts
on the long time scale similar to that of the equilibration of
the instability in the unforced system. Consequently, it does
not change the initial mechanism of growth of the instability.
The forcing frequency v is (1) and the derivation of the
amplitude equation is analogous to section 2a, except now
the forcing term enters at @(e2). If the forcing function has
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the following structure

F(y,ve’t) = F{y)f(vT) (24)
the solution &2 can be decomposed into
&0 = |AX, )2 ¥ - WF (D) (25a)

where we retain the part consisting of the nonlinear self-
interaction ( ¢f. equation (10b) )

LOYPOY = _2Re(N(T)F*) (25b)

and a part caused by the external forcing

- -

£(0)TF = F(y) (25¢)

Since the operator ﬁ(O) is invertible, both contributions to
the solutions at @(e?) are unique. Following the approach of
section 2 one finds at O(e*E)

(weM(ke) + Lk ))BEY =

- 04 - A 9
—(M{k;) T +TA+ X el + A AlA]®)  (26a)
where )
'=mI-Cf(vT) {26b6)
with T, ¥ and A as in (13) and
C =N(TH)T + N (¥)BF (26¢)

Note that if f = 0, the equations (26) reduce to those in (12).
Application of the Fredholm alternative to (26a) results in a
modified Ginzburg-L.andau equation

BA | 2A )
3T = T1(THA + Yegxa ~ 734l {27a)

where the, now time dependent, coefficient 4, is defined as

1= —cf(vT) (27h)
with "
Cc=cp +ic = %, {(27¢)
QH MT

while the other coetficients -y; are identical to those in (14).
Writing in general

f@T) =48+ h(vT)

where £ is now a 2 /v-periodic function with zero mean and
& a constant, eq. (27a) can be written as
da a

— = (1 —aph{Bor))a+ (1 + ml)a_gz

= (1 + i )alal?
5 (1 +iaz)alal

(28a)
where time and amplitude have been rescaled according to

T = (mh, = 8¢.)T,

al€,7) = g LA(T, X)exp(—imw,T + i%F(uT)) (28b)

The amplitude g is now given by

Ay — 8
g= mi—‘{\crv (280)a
and the real coefficients avg, 5g in (28a) are defined as ag =
m,)\:i 7o and 3 = m The function F{v1") appear-

ing in (28b) is the primitive function of the function f. The
amplitude equation (28a) reflects the equilibration of the dom-
inant mode at finite amplitude affected by the oscillating na-
ture of the applied low frequency forcing. Compared to
(16a), one observes that in (28a) the growth rate is influenced
by the time-dependent forcing on a time scale 7, due to a
modification of the basic state.

4,2  Results

For the forcing term f‘, the following structure is assumed

Fo)=(r(y) 0 0 0 0 0 0)° (200
with
z
Tz(y) = eu%ay ; b= %
We now study the response due to a special form of h(vT) =
sin(vTY and all three equilibration mechanisms balancing
linear growth (case C in section 3). The spatial derivatives in
the modified Ginzburg-Landau equation (27a) are dropped
at this point in the analysis, for the same reasons as given
in section 3.2 for the reduced model without time-dependent
coefficients. We focus on the parameters for the Landau-
equation for the same case as in Figs. 8 and u¢ = 2000,
the forcing period is chosen to be approximately one year
(¥ = 1.4). The original instability has a period of about
three months (Fig. 8a) at neutral conditions. Solutions of the
modified Landau equation are presented in Figs. 9 for three
values of the offset §. The power spectra derived from the
time series for each of these cases are shown in Fig. 10.

For § = 0, the time-series in Fig. 9a indicates that very
low frequency variability appears due to the presence of the
external forcing. Note that if » = 0, the amplitude would
be purely periodic with a period determined as in Fig. 8a of
about 0.5 year (for 1 = 2000). The spectrum in Fig. 10
shows that indeed higher as well as lower frequency variabil-
ity is introduced in the response. When the offset § is posi-
tive (negative), this shifts the peaks in the spectrum te lower
(higher) frequency and slightly decreases (increases) the am-
plitude. The latter is easily observed from the expression for
g {in (28¢)) because ¢, > 0. The wind forcing has a fixed
meridional structure and varies on a time scale of a year with
a small amplitude. Although the instabilities would develop
to limit cycles with a period of about half a year in the ab-
sence of this external forcing, the interaction of the nonlinear
equilibration of the instabilities and simultancous response
to the external forcing give rise to very low frequency vari-
ability. To understand how this response is generated, closed

(290)
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equation shown in Fig. 9. (a) 6 = 0, (b} § = 0.2 and {¢) § = —0.2,

form solutions to (28a) of the form
a(t) = R(r)e*(") (30)

are obtained in appendix B. It is shown that the phase ¢(7)
can be written as a sum of a linear function of 7 and a pe-
riodic function of 7 (the function P(7) in appendix B). It
is easily demonstrated that this periedic contribution to the
phase is responsible for for the energy transfer towards lower
frequencies as observed in Fig. 10. A simple example to con-
sider is that I%(7) = sin(§7) in which case the amplitude a
would oscillate as sin{7 + sin(57)). which obviously gives
a low frequency signal. Hence, the periodic nature of the ex-
ternal forcing alone is able to induce much lower frequency
behavior of the finite amplitude instabilities than would oc-
cur without it.

5 Summary and conclusions

The weakly nonlinear evolution of equatorial coupled oceun-
atmosphere instabilities was considered in this paper. The
basis for the nonlinear analysis are the Hirst (1986) coupled
instabilities of a simple basic state within a model having
a periodic ocean basin. The results found by Hirst (1986)
suggest that for different limits of the SST-equation different
waves become unstable related to dynamical modes of the
uncoupled ocean/SST spectrum. Here we have connected
these limits of the sea surface temperature equation, by vary-
ing its key parameters and calculating the dominant unstable
mode along this path in parameter space. We found that there
is only one mode dominating the dynamics, 1.e. between the
distinct regimes of SST-dynamics no exchange of stability
oceurs.

Qur approach implies an extension of the Hirst (1986)-
mode] to include nenlinear terms in both the ocean com-
ponent and the SST-equation. This involved the derivation
of a (Ginzburg-) Landau equation which describes the evo-
lution of slightly unstable modes. Three different types of
nonlinearities were considered to equilibrate the instabilities:
nonlinear upwelling feedback in the S§T-equation {case A),
nonlinear advection of S8T (case B) and nonlinear ocean dy-
namics (case C). In all three cases there exist regimes where
finite amplitude equilibration is possible on a O{1/¢?) time
scale, where ¢ measures the relative distance from criticality.

Over a range of parameters, eastward coupled Kelvin mo-
des can become unstable due to coupled feedbacks induc-
ing spatial patterns and frequencies similar to those in ob-
servations of intraseasonal variability in the equatorial Pa-
cific. The subsequent equilibration can lead to considerable
amplitudes of the deviations from the mean state, having a
square root dependence on the distance from the onset of
instability. The period of oscillation corresponding to the
stable limit cycle was found to be increasing with coupling
strength. The strength of each nonlinearity is completely
measured by the value of the real part of the nonlinear co-
efficient — A in the Ginzburg-Landau equation. For the same
growth rate of the instability, a stronger nonlinearity will
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finally induce a smaller finite amplitude. Apart from the
methodology, which has a large application potential, the re-
sults for the periodic basin indicate that coupled processes
in the ccean-atmosphere may substantially contribute to the
intraseasonal variability in the equatorial Pacific.

The weakly nonlinear analysis also allowed for the study
of the effect of annual frequency external forcing on the evo-
lution of the unstable modes. Assuming that this forcing
has a small amplitude, a modified Ginzburg-Landau equation
can be derived to describe the equilibration of the instabili-
ties. The analysis of its solutions for the case of a slowly
varying external wind stress reveals that the forcing intro-
duces interannual variability due to the periodic nature of
the phase correction. The reduced model is attractive be-
cause the interactions between nonlinear equilibration and
low frequency external forcing can be analyzed in consider-
able detail. In particular, the interannual frequency response
is shown to be generated because the growth rate contains
a periodic component, which induces a periodic correction
in the phase of the solution for the amplitude. The results
are suggesting that unstable air-sea interactions, through in-
traseasonal waves and weak external annual forcing are able
to influence the development of ENSO events although the
exact connection obviously requires further study.

Appendix A. Convergence properties

The orthogonal basis of rational Chebychev polynomials in-
troduces, due to the meridional unboundedness of the equa-
torial F-plane an extra parameter L. Since both the ocean
as well as the atmosphere have different Rossby deforma-
tion radii, one would like to expand variables of both com-
ponents of the system in basisfunctions that inhibit these nat-
ural scales. However, comparisons of solutions obtained for
different values of L for ocean and and for the atmosphere
variables indicate poor convergence properties with the num-
ber of polynomials. For this case, it was found that although
the actual eigenvectors ¥ in (18) showed exponential decay
in their spectral coefficients, the adjoint vector Q¥ did not
show any sign of convergence. This results in poor conver-
gence properties for the coefficients of the Ginzburg-Landau
equation.

Therefore the calculations presented here were done for
L = 3 for both ocean and atmosphere. The solutions were
not very sensitive to larger values of L. The numerical code
used has been validated against the linear stability results
in Hirst (1986). Furthermore the results have been checked
against a discretization using a basis of Hermite functions.
In Fig. A1, the convergence of the critical wavenumber %,
and the coefficient o in ((16a) is shown as a function of the
number of rational Chebychev modes (V) for L = 3. All
calculations presented in this paper were done for N = 35.
Although &V = 20 is sufficient to solve the linear stability
problem accurately encugh, this number of modes is neces-
sary to obtain sufficient accuracy in the coefficient as.

02038

75
0.2025
0.2034
Q2032 _: &8
0.203

Q2028

02026 H

zmas Diaasdaiay
n 0 30 L R 60

o

Fig. Al. The convergence ol the wavenumber k al a critical point and the
nonlinear cocfficient of the (Ginzburg-) Landau equation as a function of the
number of Chebychev modes V.

Appendix B. Solutions to the forced Landau equation

The forced Landau equation reads

da . 8% ]
5= (1 - aph{Boiia+ (1 + zal)@ -1+ wzg)r;'.|a|2
(B.1)
Solutions, lacking £-dependence, of the form
a(r} = R(r)e™(™) (B.2)

with r and ¢ real functions of 7, are sought. Substitution into
(B.1) and separating the real and imaginary parts yields

% = (1 — ah(Bot))R - R? (B.3a)
%"f_ = R (B.3b)

The frequency ¢ and the amplitude R are decoupled, result-
ing in an evolution equation for the amplitude, the frequency
is slaved to R. Concentrating on the amplitude, we multiply
(B.3a) with 2 and rescale time to obtain

d:" 1 a5
e = (1 — - - B4
= (1~ aoh(5 08 — 7 (B.4)
with s = 27 and r = R*.
Solutions to (B.4) are written as
d _flls)
r(s) = JSlog(f(s) = T (B.50)

where f’(s) is the derivative of f(s) with respect to s. Sub-
stitution into (B.4) leads to the solution for f(s).

&
ﬂ$:0ﬂffum““W§+@),
0

H(éﬁos)zj; anh(%ﬁgz)dz (B.5b)

If the initial condition r(7 = 0) = ry is prescribed. the con-
stant  must satisfy Ca = rpexp{H{0)) ( C) drops out of
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the expression for r(s)). The periodic nature of the phase
¢ can be demonstrated by expressing f’(s) in terms of a
Fourier series, i.e.

f(s) = estH (L hos’) _ e®(ko + Z kncos(%ﬁons +6.)
n=1

(B.6a)
where k,, and 8, are the appropriate Fourier coefficients of
exp(H{3/5s)). Integration of (B.6a) yields

f(s) = eS(ko + ﬂgl Qn(COS(%,@QTLS + Bn)

+%ﬁoﬂ3in(%ﬁans + 050} + Cae™ %), (B.6b)

where g, = Tm’z‘mg . For large s the solution for the

amplitude r has the following form

r(s) = (ho+ 3 kncos{%ﬁgns 162 %

n=1

(ko+n§l qn(cos(%ﬁons+9ﬁ)+%ﬁonsin(%ﬁgns+9n)))“]

Again, this expression, being a periodic function, is expressed
as a Fourier series, yielding
' Bo
r(s) =rg + Pl(?s) (B.7h)
Pj contains the periodic terms in the series expansion of r(s).
The frequency ¢ is found to be

1 1 1
P(s) = —§a2ros - §ang(§ﬁos}

where P, is the integral of P, also periodic and demonstrates
the periodic component of the phase ¢. Returning to the orig-
inal variables, starting with the expansion (8), the solution
e®!1E for large €2t now reads

(B.7b)

®(z,y,t) = Vi = 1o g R(e*)e7e0) $(y)

where the amplitude R(e?t) and phase 8(t) are defined as

R(t) = /1o + P1(ve?t)

(B.8a)

(B.8b)

and

B(t) = [we + (1t — pe) Wy — Aproaz)]t — €26(ci + erroaa)t

+%H(V€2t) + %ang(uezt) (B.3c)
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