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Abstract. Ocean surface, grazing-angle radar backscat-
ter data from two separate experiments, one of which
provided coincident time series of measured surface winds,
were found to exhibit signatures of deterministic chaos.
Evidence is presenied that the lowest dimensional un-
derlying dynamical system responsible {or the radar back-
scatter chaos is that which governs the surface wind
turbulence. Block-averaging time was found to be an
important parameter for determining the degree of de-
terminism in the data as measured by the correlation di-
mension, and by the performance of an artificial neural
network in retrieving wind and stress from the radar re-
turns, and in radar detection of an ocean internal wave.
The correlation dimensions are lowered and the perfor-
mance of the deterministic retrieval and detection algo-
rithms are improved by averaging out the higher dimen-
stonal surface wave variability in the radar returns.

1 Introduction

Signatures of deterministic chaos in grazing angle radar
backscatter from the ocean surface have been reported
for several independent experiments (Haykin, and Li,
1995; Leung and Lo, 1993; and, Palmer, et.al., 1995).
This process is far from sumple, involving shadowing,
diffraction, specular refiection, and other processes not
operating al the smaller incidence angles. While there
has been recent progress in understanding and modeling
grazing angle radar backscatter from the ocean surlace
(Wetzel, 1990), this effort continues to characterize the
dynamics of the process statistically rather than deter-
ministically. A dynamical model relating these processes
to surface winds and stress is not known. However, the
reports of deterministic chaos occurring simultaneously
in surface winds and ocean surface radar backscatter
{Palmer, et.al, 1995) indicates that such a dynamical
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model exists, and may be reducible Lo as few as six non-
linearly coupled first-order differential equations for the
time scales of those studies. From such a model, re-
sponse functions and transfer function could, in princi-
ple, be derived for radar detection and retrieval appli-
cations. In lieu of knowing such a model, in this work
we use a trained artificial neural network to simulate
these functions, We apply the neural net only in the
temporal domain to search- for dynamical patlerns in
data obtained at a fixed location. This distinguishes
our work from previous works which have applied neu-
ral nets to the retrieval problem in other domains, e.g.
(Thiria, et al, 1993). Performance measures of the nen-
ral net algorithms and estimates of the dynamical at-
tractor dimension for the data lead us to the hypothesis
that the surface wind dynamical system is responsible
for the low dimensional signatures in the grazing angle
radar backscatter time series.

The first observation of deterministic chacs in sea-
surface, grazing-angle radar backscatter was reported
in Leung and Haykin, 1890. These authors followed
up their findings with an important practical applica-
tion: the development of a deterministic algorithm for
radar detection of small ice burgs within a background of
radar sea clutter {Haykin, and Li, 1995; Leung and Lo,
1993). Their detection algorithm was based on a nonlin-
ear response function for the sea clutter generated by a
trained artificial neural network. Below we demonstrate
an identical procedure for radar detection of ocean in-
ternal waves within a sea-clutter background which was
found to be chaotic, paying particular attention to the
effect of time-averaging of the data as a probe of the low
dimensional determinism present in the sea-clutter.

In the other important observation of deterministic
chaos in sea-surface grazing-angle radar backscatter
(Palmer, et.al, 1995}, coincident time series measure-
ments of the ocean surface winds were found to ex-
hibit the same signature of deterministic chaos (correla-
tion dimension) as the radar backscatter. This finding
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suggested the obvicus interprelation that the low di-
mensional dynamical system responsible for the radar
backscatter determinism is the marine boundary laycr
turbulent winds that induce the surface structure that
produces the radar backscatter. Support for this hy-
pothesis was found in the observation that the wverti-
cally polarized (VV) radar backscatier showed signa-
tures of deterministic chaos while the horizontally po-
larized (HII) backscatter did not (Palmer, et.al., 1995).
VV-polarized radar images of sea surface, although not
at grazing incidence, are known to more faithfully re-
veal boundary layer wind structures while HH- polarized
unages are more revealing of the ocean surface long-
wave structures (Smirnov and Zavorotny, 1995). (As
mentioned below, this polarization dependence i1s not
always present, evidently depending on sea-state.) In
Sect. 3, we conduct further investigations of this hy-
pothesis, again using time averaging ol the data as a
probe of the low dimensional determinisin present in the
data.

The reason that time averaging is a uscful filter for
these 1nvestigations is that the measurements do not
probe an isolated, low-dimensional dynamical system.
If they did, time averaging of the data, being a linear
transformation of the embedding coordinates cannot al-
ter the dynamical attractor dimension (Abarbanel, et.
al, 1993). Random system noise such as the radar re-
ceiver noise does not appear to be an important noise
source for these studies (signal-to-noise ratios are at
least 20dB for the time series data utilized). However,
the long surface-wave variability mentioned above 1s ev-
idently a source of dynamical noise with higher dimen-
sion than the surface winds (Elgar and Mayer-Kress,
1989; and Frison and Abarbanel, 1997). We will show
some evidence that time averaging of the radar signal
can reduce the intrusion of this high- dimensional vari-
ability in the data. On the other hand, there is also
evidence that shorter sampling times are necessary to
reduce the indicated dynamical attractor dimension for
the vertical wind time series, and we will offer a possible
explanation for this.

We stress that the neural network retrieval and de-
tection algorithms are employed here as a probe of the
determinism present in the data, and are not yet pro-
posed as an established method for practical detection
and retrieval applications. However, the performance
results for the neural network algorithms, particularly
their dependence on averaging time for the data, should
serve as a guide to future development of robnst deter-
ministic retrieval and detection algorithuns for grazing
angle radar backscatter over the ocean.

2 Internal Wave Detection

Radar detection of features on or near the sea surface 1s
hampered by sea clutter, which is the temporal variabil-
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ity imposed on the backscatter by motions of the surface
scattering elements. [f the variability of the sea-clutter
background is low dimensional, then il may be better
isolated from the desired signal by processing its tempo-
ral variability with a deterministic algorithin rather than
with statistical moments. This has been demonstrated
for radar detection of sea ice within a background of sea
clutter (Haykin and Li, 1995; and Leung and Lo, 1993).
Here, we produce a similar demonstration for determin-
istic radar detection of ocean internal waves (IWs). As
in that work, our study is a comparative evaluation of
the performance of a deterministic vs. statistical algo-
rithm for treating the background, and we demonstrate
that a deterministic detection algorithm, using predic-
tion error for the radar return as the estimator, cutper-
forms a statistical regression algorithm using this same
estimator. We conduct our evaluation as a function of
block-averaging time for the time series of radar returns.
We show that the improvement over stalistical process-
ing occurs for all of the averaging times examined (0.2
- 20 s). We also show thal the performance of the de-
terministic detection algorithm is associated with lower
cstimates of the dynamical atliractor dimension for the
background, and this suggests that the improved detec-
tion is due, in part, to the low dimensional nature of the
sea clutter dynamics.

2.1 CORE Ocean Seusing Experiment

The x-band radar backscatier data utilized for this por-
tion of the analysis was obtained during a comprehen-
sive mulli-sensor experiment on air-sea interactions held
off the coast of northern Oregon during September and
October of 1995 (Kropfli and Clifford, 1996). The ex-
periment, called the Coastal Ocean Probing Experiment
(COPE) utilized the NOAA Environmental Technology
Laboratory’s two shore-based microwave radars (one at
x-band and the other at ka-band) and a full complement
of in situ and cther remote sensors, many of which were
mounted on the Scripps Institute Floating Instrument
Plaiform (em FLIP). The nortliern coast of Oregon was
selected for its wide variety of atmospheric and oceanic
conditions and particularly for the frequency and inten-
sity of tidally forced internal waves (IWs) in that area.
The IW packets in the experimental area are forced by
tidal flow over a well-defined shelf break about 70 kin
offshore in highly stratified water produced from the
nearby Columbia River outflow.

The radars were mounted on a site 744 m in elevation
within 4 km of the shoreline, For this study, the x-band
radar was operated in a staring mode, illuminating a
sector of the ocean surface in which FL1P was moored,
about 30 ki offshore. A single range gate with a range
extent of 150 m and an azimuthal extent of 500 m was
selected. A five-hour time series of both vertically po-
larized (VV) and horizontally polarized (HH), normal-
ized radar cross section {NRCS) for this range gate were
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Fig. 1. Time series of 2-s averaged, fixed-beam radar backscatter
samples for a single range gate on the ocean surface for VV and
HH polarizations, showing the arrival of the IW packet near the
6000 sample point.

recorded at a 4-Hz sampling rate. The 2-s averaged,
NRCS fixed-beam time series are presented in Fig. 1
showing the arrival of the IW packet near sample num-
ber 6000. Radar images of an IW packet that preceded
the fixed-beam data are shown in Fig. 2. As has been
previously observed at lower incidence angles (Mityag-
ina, et.al., 1991), the HH-polarized time series and HH-
polarized radar image exhibit the greater contrast for
the IW packet. The winds during the (ixed-beam data
averaged § m/s from the north, which was parallel to
the IW wavefronts. The leading edge of the [W packet,
as viewed with the radar, propagated at about 0.9 m/s
and had a cresi-to-crest distance near the leading cdge
of about 800 m.
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2.2 Correlation Dimension

Deterministic detection algorithms are expected to ex-
hibit  Lthe greatest improvement over statistical
algorithms when the dimension of the dynamical at-
tractor governing the background is small, i.e., when
there are few significant degrees of freedom participating
in the dynamics governing the background variability,
Therefore, following Haykin and Li, 1995, and Heung
and Lo, 1993, we parallel our tests of deterministic de-
tection of IWs with an estimate of the dynamical attrac-
tor dimension for the background portion of the time
series. For this purpose, we compute the correlation
dimension for the background by applying the Grass-
burger Procaccia algorithin (Grassburger and Procaccia,
1983) to the portion of the radar backscatter time series
before the arrival of the internal wave packet. In order
for the corrclation dimension to be a valid estimate of
the global dynamical attractor dimension, a number of
usually unattainable criteria must be met in sampling
the time series. For practical purposes however, there is
usually a trade- off in the choice of minimum time lag
used in the sampling for a fixed record length. Shorter
time lags provide a greater numbet of points with which
to sample the attractor, but they do so at the expense
of sampling only a local volume of the attractor respon-
sible for all of the motions. Our detection algorithms
are based on the local properties of the dynamical at-
tractor and we make no claims as to the invariance of
the deterministic algorithm across the longer time scale
trends exhibited by the data. We utilize the same num-
ber of samples (1000) in all of the correlation dimension
computations, recalling that the principal effect of in-
creasing the number of samples is a smaller embedding
dimension for the onset of saturation (Ding, et.al, 1993).

A plot of the correlation dimension vs. the embedding
dimension for the portion of the HH-polarized, radar
backscatter time series before the arrival of the IW packet
is shown in Fig. 3 for three different block-averaging
times for the data with time delays equal Lo the block-
averaging time. As seen, when the correlation dimen-
sion did show a saturation, its value was less than six.
Thus, we chose to fix the order of our detection algo-
rithms (number of input sequential values of the time
series used to predict a future value) at six (Elsner and
Tsonis, 1992). For the 0.2-s averaging time, the corre-
lation dimension failed to exhibit a saturation, and this
result will be used below to help in the interpretation of
the detection results.

Unlike an ea rlier nonlinear dynamics study of sea sur-
face radar backscatter (Palmer, et.al, 1995) where the
HH signal was found to have a higher correlation di-
mension than the VV signal, the HII and VV signals
in Lhis data set were found Lo have essentially the same
correlation dimensions and detection performance char-
acteristics. Thus, here and in what follows, we present
results only for the HII data.
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Fig. 2. Radar images of an IW packet preceding the packet in the fixed-beam observations shown in Fig. 1. HH and VV images are in
the right and left frames, respectively.
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Fig. 3. Correlation dimension vs. embedding dimension for a
1,000 sample portion of the background radar backscatter time
series (before the arrival of the 1W) for three different sample-
averaging times.

2.3 Detection Results

Following Haykin and Li, 1995, and Leung and Lo, 1993,
we utilize prediction error for the radar return as our
basic estimator for the detection algorithms. We train
the algorithms on the portion of the radar backscatter
time series before the arrival of the IW packet. This
is the portion of the time series for which the correla-
tion dimensions plotted in Fig. 3 were computed. As
per the discussion above, inputs to the prediction al-
gorithm are chosen lo be six sequeniial time-averaged
radar backscatter values. The algorithin is trained to
predict the seventh value. Once trained, the algoritlun
was then applied Lo six sequential values of similarly
averaged radar backscatter samples within the portion
of time sertes containing the IW packet passage. A his-
togram 1s then formed of the algorithm prediction ervors
in both portions of the time series. Since the algorithm
was trained on the portion of the time series before the
arrival of the IW, the prediction errors resulting from
applying the algorithm to the IW portion will generally
be larger. A threshold prediction error can then be se-
lected for declaring detection of the IW {more generally,
for detecting a disturbance that is not sea clutter). The
optimal thresheld is usually chosen near the prediction
error where the two histograms intersect.

Again following Haykin and Li, 1995, and Leung and
Lo, 1993, the two algorithms chosen to perform the pre-
diction were statistical-autoregression and an artificial
neural network. The six autoregressive coeflicients were
determined by the Yule-Walker algorithm using the For-
tran codes found in Maple, 1987. The neural network al-
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Fig. 4. Prediction error histogram for the background and IW
portion of the radar backscatter time series block-averaged at 2 s.
The vertical hatching represents the probability of detection while
the horizontal hatching represents the probabitity of false alarm.

gorithm chosen was a back- propagation known as Nets
(BafHles, et.al., 1991}, configured as a three layer per-
ceptron. The single hidden layer of ten neurons was
selected in accordance with guidelines found in the lit-
crature, (Johnson and Picton, 1996). In comparing the
performance of these two algorithms, the regression co-
efficients and neural network weights were computed us-
ing the same background samples from the time series,
and the same sets of input-output samples in the back-
ground and [W portions were used for prediction.

We conducted our detection comparisons as a function
of sawple averaging time for the radar backscatter time
scries. In order to test the detecltion algorithms under
conditions of weak IW signatures in the time series, and
in order to have available a large number of samples in
the five-hour time series, we limited the averaging times
to intervals much less than the IW oscillation periods
of near 10 min The number of independent examples
used to train the algorithms and form the prediction er-
ror histograms ranged from 4250 for the 0.2-s averaged
samples to 45 for the 20-s samples. An example of the
prediction error histograms for the neural network pre-
diction using 2-s averaged samples is shown in Fig. 4.
The histogram ordinate is normalized so that the to-
tal number of prediction errors is unity. Thus, once a
prediction error threshold is specified, the probability of
detection and probability of false alarm can be repre-
sented by the sums under the respective areas indicated
in Fig. 4. Finally, the receiver operating curve {ROC)
for probability of detection vs. probability of false alarm
is plotted by atliowing the prediction error threshold to
range over all of the prediction error values. The ROCs
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Fig. 5. Receiver operating characteristics for the neural netwark
and statistical regression detection algorithms for the 2-s sample
averaging time.

for TW detection by the regression and neural network
are presented in Fig. 5 for the 2-s averaged data. The
neural network is seen to outperform regression.

Rather than plot separate ROCs for each sample av-
eraging time used, we plot the difference in rms predic-
tion error for the background and IW portions of the
time series as a function of averaging time. It is clear
from the above discussion that detection performance,
as measured by the ROCs, will be greater as this dif-
ference increases. The normalized rms prediction error
difference (normalized by the rms prediction error for
the background) is plotted in Fig. 6 for both the neural
network and regression predictions.

2.4 Discussion of Detection Results

It is generally expected that detection of weak signals
within a background process that exhibits signatures
of low-dimensional chaos will benefit from processing
the background as a deterministic rather than a ran-
dom process. -‘This expectation was confirmed for radar
detection of sea ice within a sea clutter background
(Haykin and Lo, 1995, and Leung and Li, 1993), and
was confirmed here for radar detection of internal waves
within a sea-clutter background. In both cases, the or-
der of the detection algorithms was chosen to be near
the correlation dimension found for the background. We
stress that here and in Haykin and Lo, 1995, and Leung
and Li, 1993, the evaluations compare a statistical and
deterministic method for processing the background sea
clutter in the detection of a disturbance which is not
sea clutter. Clearly, in order to distinguish one type of
disturbance from ancther, say sea ice from an internal
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Fig. 6. Normalized rms prediction error difference between the
IW and background portion of the radar backscatter time series
vs. sample averaging time.

wave, one needs to combine the optimal deterministic
processing of the background with additional process-
ing such as spectral filtering which can isolate signatures
specific to the disturbance of interest.

The detection performance of both the ncural network
and regression algorithms is seen in Fig. 8 to decrease
at the longer averaging times. This is probably the re-
sult of the smaller number of training samples for the
algorithms. The reduced prediction errors for both the
neural net and regression algorithms at the shorter av-
eraging time is due to the smaller dynamical signature
of the 10-min period IWs 1n this regime.

Of primary interest is the degradation of performarce
of the deterministic algorithm relative to the statistical
processing at shorter averaging times. We hypothesize
that this is caused by the introduction of short time
scale variability into the background that is generated
by higher dimensional dynamics on the surface. This
interpretation is supported by the correlation dimension
results in Fig. 3 which show a lack of saturation for
the 0.2-s averaging-time curve. The time scale of this
postulated high dimensional variability is thus between
0.2 - 2.0 s. This is a much shorter time scale than the
high dimensional surface variability found for the studies
reported below, and unlike that case, the variability is
not revealed in either the time series Fourier transform
or in range-time radar images of the surface.

3 Wind and Stress Retrieval

The possibility of developing deterministic algorithms
for retrieving wind and stress over the oceans from sea-
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surface, grazing-angle radar backscatter first became ap-
parent to us after analyzing a six-hour-long time series of
measured horizontal ocean surface winds and a concur-
rently measured time series of grazing angle, vertically
polarized radar backscatter returns from an arca of sea
surface near the site where the winds were measured,
(Palmer et al., 1995). Our analysis strongly suggested
that the variability of both time series on time scales
of order 13 s was governed by the same dynamical sys-
tem, and that the number of coupled degrees of freedom
present in the dynamical system governing this variabil-
ity was as small as six. Here, we report new results and
interpretations for this same data set relevant to de-
veloping deterministic algorithms for retrieving surface
wind and stress from grazing angle radar backscatter.

As before, our approach is directed towards exploiting
dynamical signatures in the data, i.e. developing an al-
gorithm based deterministic temporal patterns, rather
than statistical moments. This type of algorithm dif-
fers fundamentally from the algorithm most commonly
used to retrieve wind and stress from ocean surface radar
backscatter algorithm. This latter algorithmis a two pa-
rameter empirical formula relating time-averaged wind
or wind-stress to the time- averaged radar backscat-
ter cross-section (Schroeder, et al, 1982; Geernaert and
Keller, 1992, Besides being designed for temporal aver-
ages this algorithm is also fit to radar backscatter data
at much smaller incidence angles than the grazing angle
data used here, so we do not make performance com-
parisons with it here.

3.1 SCOPE QOcean Sensing Experiment

The radar-backscatter and surface-wind data used for
this study were obtained as part of an experiment sim-
ilar to the COPE experiment used for the IW detec-
tion studies above. The experiment, termed The San
Clemente Ocean Probe Experiment (SCOPE), was per-
formed in September 1993 by the NOAA Environmental
Technology Laboratory {ETL) near San Clemente Is-
land, 100 km from San Diego. The radar measurements
were obtained with an X-band coherent radar located
573 m above the sea surface on San Clemente Island.
The surface winds were obtained from an atmospheric
surface- layer sensing package developed at NOAA/ETL
(Fairall, et al, 1996) and placed aboard the Scripps Insti-
tute Floating Instrument Platform (R.V.FLIP), which
was located 31 km upwind from the radar. Additional
details on the experiment can be found in Palmer, et al
1995, and Kropfli and Clifford, 1994.

The three measured time series used for this analysis
are shown in Fig. 7. They are the VV polarized radar
backscatter, the scalar horizontal wind-speed, U, and
the scalar wind stress, < Uw > where w is the verti-
cal wind, and <> indicates a coherent average. As in
the IW detection study, two nonlinear dynamics tools
are used to analyze the data: the correlation dimension,
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and an artificial neural-network, with the network us-
ing six input neurons to accept six sequential samples
of radar backscatter values to correspond with a six-
degree-of-freedom dynamical system suggested by the
correlation-dimension analysis (Palmer, et.al, 1995; El-
sner and Tsonis, 1989). A single output neuron was
chosen to correspond to a single retrieved value of wind
or stress. Again, a single hidden layer of ten neurons
was selected in accordance with guidelines found in the
literature. (Johnson and Picton, 1996).

3.2 Correlation Dimension

In Palmer, et.al, 1995, we presented the correlation di-
mension for five measured time series, each block-
averaged into 13 s samples. The time series were mea-
sured concurrently in SCOPE during a six-hour period
in which the radar was pointing toward FLIP. The fact
that a saturation in the correlation dimension was seen
at nearly the same value for both the vertically po-
larized radar backscatter time series and the horizon-
tal surface wind-speed time series, and was not seen
for the other time series suggested that there is a sin-
gle dynamical system governing these two observables
with an attractor dimension near six. Our interpreta-
tion of why the same low correlation dimension was not
found for the horizontally polarized reflectivity and the
Doppler signal was that these observables are probing
the higher dimensional dynamical system governing the
longer ocean-surface waves. On the other hand, it was
puzzling that the vertical winds did not exhibit the same
correlation dimension as the horizontal winds. They are
clearly part of the same boundary layer dynamical sys-
tem that governs the horizontal winds.

One possible explanation for higher vertical wind cor-
relation dimension lies in the fact that the turbulence 1s
not locally isotropic. Evidence for this can be found in
the average velocity spectra shown in Fig. 8. In the ver-
tical axis we show the average of 45 50-min realizations
of the three velocity components (stream-wise, cross-
stream and vertical) using the Kaimal et al.,1972 nor-
malization, which causes the data to collapse to a uni-
versal form in the inertial-sub-range of locally isotropic
turbulence (see Panofsky and Dutton, 1984 for more de-
tailed discussion). In the inertial sub-range the variance
spectra exhibit the classic -5/3 frequency power depen-
dence (in this graph f*S obeys a -2/3 power law) and
the tatio of the transverse to stream-wise spectra is ex-
pected to be 4/3. We can see that this ratio is obeyed for
fz/u > 5. Note that for frequencies below the isotropic
range, the variance contained in the horizontal compo-
nents continues to increase (almost following the -2/3
slope) while the vertical component levels oflf and even
begins to decrease with decreasing frequency. This is
because the larger eddies responsible for this variabil-
ity cannot have significant vertical amplitude near the
surface. In this lower frequency range, the horizontal ve-



20

1.00E-4 —

8.0DE-5 —

5.00E-5 —

NRCS

2.00E-5

0.00E+0 i T T 1

0.00 400009 8000.00 12000.00
Time {x2sec)

Windspeed (mm/s}
1

4000.00 il \ ‘

2000.00 i I T T 1
0.00 4000.00 8000.00 12000.00

Time (x 2sec)

6.00 —

4,00 —

Stress (m**2/s)

0.00

-4.00

Il
[
0.00 4000.00 8000.00
Time (x 2sec)

12000.00

Fig. 7. Time series data used for the analysis. a: VV polarized,
normalized radar cross section per unit area (NRCS). b: Horizon-
tal wind speed. c: Wind stress.
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anemometer.

locily components tend to continue to exhibit " inertial”
behavior (i.e., a cascade of large scales to smaller) but
the vertical component does not. The wind measure-
ments used 1n this study were obtained on FLIP at a
height of 10 m above the surface, and were taken during
a period when the wind speed averaged about 5 m/s.
Thus, the block-averaging interval of 13 s used in the
earlier analysis corresponds to sampling the data in the
inertial sub-range for the horizontal winds, but outside
the inertial sub-range for the vertical winds. The impact
of this for our dynamical study is nol so much the at-
tenuation of the vertical winds in this regime as it is the
introduction of another dynamical system contributing
to the measured vertical wind variability, namely, that
of the long ocean waves.

Below, we present resulis for the computed correlation
dimension for the three time series for block averaging
times of the data equal to 2 s and 20 s. The correlation
dimension is computed for a 1000-point time series in all
cases, This means that differenl regions of the time se-
rics arc sampled for the two correlation-dimension corn-
putations. While the raw time series shown in Fig. T are
clearly non-stationary, the computed correlation dimen-
sions appear to be reasonably invariant to ihe region
of the time series from which points are sclected for a
fixed block averaging time. An example of this invari-
ance is shown in Fig. 9 for the horizontal wind corre-
lation dimension computed at the 2 s averaging time,
Thus, we feel confident that the differences in correla-
tion dimensions found below are not dominated by the
non-stationarity of the data.
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3.2.1 Stress Correlation Dimntension

Since the stress 1s a product of vertical wind and hori-
zontal wind, we expect that it will fail to cxhibit a sat-
urated correlation dimension at the 20-s averaging in-
terval for the reasons cited above for the vertical wind.
However, according to the above argument, we would
also expect the stress time series to begin to exhibit a
correlation dimension comparable to that of the horizon-
tal winds when sampled in the ineriial sub-range. This
was lndeed found Lo be the case as demounstrated in Fig.
10a, which shows the stress correlation dimension as a
function of the embedding dimension {or two different
block-averaging times for the data. The wset show the
stress spectrurmn.

3.2.2 Horizoutal Wind Correlation Dimension

Fig. 8 shows that unlike the vertical wind, the hori-
zontal wind will remain measured in the inertial sub-
range for both a 2-5 and 20-s block-averaging interval.
Fig. 10b shows the horizontal wind correlation dimen-
sion computed for these two averaging times, and the
wind spectrum in the inset. As expected, the computed
correlation dimmension does not depend sensitively on the
averaging interval in this case.

3.2.3 Radar Backscatter Correlation Dimension

Fig. 10c shows a significant difference in the computed
cotrelation dimension for the radar backscatter time se-
ries for the two averaging times, but in an opposite sense
from that of the wind stress. This is Lthe same behavior
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that was found for the [W detection radar data (Scct.
2.4), and our interpretation is the same: It is a result of
sampling a higher dimensional dynamical systemn asso-
clated with the long waves. The longer 20-s averaging
time filters out most of the long wave variability, but
leaves the variability associated with the lower dimen-
sion dynamical system governing the wind driven radar
backscatter. In this case, additional support for this in-
terpretation can be found in the radar backscatter spec-
trum shown in Fig. 10c and the range- time image of
radar data shown in Fig. 11. The spectrum and partic-
ularly the image clearly shows the presence of the long
surface wave variability in the radar backscatter.

3.3 Retrieval Results

Fig. 12 shows the rms error for retrieving the measured
horizontal wind and stress from the radar backscatter
time series using the above-described neural network
with six sequential, block-averaged samples of the radar
backscatter as input. The retrieval error is plotted as
a function of block-averaging time for the data. The
wind or stress value that the neural net was trained to
retrieve (the neural-net output) was the block-average
wind or stress value occurring immediately following
the six input block-averaged radar backscatter samples.
The number of input-ouput training examples was kept
constant at 83 for all of the averaging times used. The
number of training cycles used was limited to 10,000.
Finally, the rms errors presented are for scaled values
of the measured and neural net output wind and stress
values and thus have relative significance only.

Qur final result is a computation of normalized rms
errors for retrieving wind and wind-stress with the neu-
ral net as a function of average wind speed. The net was
trained on the last half of the three measured time se-
ries, and its retrieval performance was computed on the
first half. This allowed the results to be presented as
a function of average wind-speed since the wind-speed
increased throughout the first half. The retrieval per-
formance is again characterized with the rms prediction
error, but in this case the errors presented are unscaled
values normalized by the measured value. The block
averaging time used was 20 s, and the number of neu-
ral net training cycles used was again limited to 10,000.
These results are shown in Fig. 13. There is a sugges-
tion of increasing retrieval error in the lower windspeed
regime, as occurs also for the statistical retrieval algo-
rithm (Geernaert and Keller, 1992).

3.4 Discussion of Retrieval Results

As measured by the rms error, the performance of the
neural net in retrieving the wind values is secn to gen-
erally improve as the block-averaging time is increased.
This is consistent with the correlation dimension result
found for the radar and for the horizontal wind, which

Palmer, et al.: Deterministic chaos at the ocean surface

indicated a lowering ol the radar time-series correlation
dimension in going to the longer block- averaging time,
and a relative insensitivity of the wind correlation di-
mension to averaging time. The longer the averaging
times, the less variability is present due to the long
waves, and the better the neural net is at functioning
as a nonlinear transfer function for the low-dimensional
dynamical system governing the wind-driven radar re-
flectivity. On the other hand, the stress retrieval ex-
hibits an optimal averaging time where a minimum rms
crror 1s achieved. The interpretation for this behavior
is based on the above observation that the correlation
dimension computed for the wind stress time series var-
ied in an opposite sense to that for the radar reflectivity
time series. The optimal neural net performance flor re-
trieving the measured wind stress evidently occurs at
an averaging time that minimizes the intrusion of the
long surface wave variability in tlhe combined radar and
wind-stress time series as utilized by the neural net.

4 Conclusions

We have examined radar backscatter data from one ocean
sensing experiment and coincidently measured radar back-
scatter and surface wind data from another ocean sens-
ing experiment with two nonlinear dynamic analysis
tools, the correlation dimension and an artificial neu-
ral network. The correlation dimension was used to es-
timate the minimum number of significant dynamical
degrees of freedom responsible for the temporal vari-
ability of the data obtained at a fixed location on the
sea surface. The neural network was used to generate
a nonlinear response function that was applied to radar
detection ocean internal waves, and to generate a nonlin-
ear transfer function applied to radar retrieval of surface
winds and stress. In both of these applications, the per-
formance of the neural network algorithms with a fixed
number of input and hidden neurons (6 and 10 respec-
tively) was found to improve when the data was block
averaged to produce a minimum value for the correlation
dimension at a fixed embedding dimension. We hypoth-
esize that this behavior is caused by the presence of two
weakly coupled dynamical systems. The lower dimen-
sional system governs the surface winds that drives the
surface structurc respounsible for the radar backscatter
(principally centimeter-scale Bragg-structure) on time
scales within the wind turbulence inertial sub-range, and
exhibits correlation dimensions of 4-6. The other, higher
dimensional dynamical system is assumed to govern the
longer surface waves which modulate the radar backscat-
ter. Nonlinear dynamic analysis of pressure sensor mea-
surements of ocean surface waves indicate a dynamical
attractor dimension of 6 or greater (Frison and Abar-
banel, 1997; Elgar and Mayer-Kress, 1989). In the case
of the wind and stress retrieval application, additional
support for the hypothesis comes from the observation
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of long wave variability in range-time images and tem-
poral Fourier transforms of the radar backscalter daia.

The above analysis was conducted at time scales rang-
ing from 0.2 - 20 s. Previous observations of determinis-
tic chaos in radar backscatter from the sea-surface were
obtained at time scales of a few milliseconds (Haykin
and Li, 1995, and Leung and Lo, 1995), where indi-
cated correlation dimensions ranged {rom 6.5 - 9. The
dynamical system responsible for this very short time
scale variability is unknown, and is probably strongly
decoupled from the wind and surface wave dynamical
systerns probed in this work.

In summary, we have found further evidence that the
10 s scale temporal variability of grazing angle radar
backscatter from a fixed location on the ocean surface is
caused by a low dimensional dynamical system that gov-
erns the surface-wind turbulence. We have also found
evidence that this low dimensional backscatter signal
can be ”contaminated” by a higher dimensional system
governing the surface wave dynamics, and that the con-
tamination can be removed by block averaging of the
data. This averaging procedure improved the perfor-
mance of neural network algorithms with 6 input neu-
rons trained for grazing angle radar detection and re-
trieval applications. Much work remains in order to
fully understand and define these two nonlinear dynam-
ical systems, but our results shed some light on the time
scales where coupling between the two systems occurs
and the implications that this coupling has to the devel-
opment of deterministic algorithms for radar detection
and retrieval applications.
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