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Abstract

We consider solitary waves propagating on the
interface between two fluids, each of constant density, for
the case when the upper fluid is bounded above by a rigid
horizontal plane, but the lower fluid has a variable depth. It
is well-known that in this situation, the solitary waves can
be described by a variable-coefficient Korteweg-de Vries
equation. Here we reconsider the derivation of this
equation and present a formulation which preserves the
Hamiltonian structure of the underlying system. The result
is a new variable-coefficient Korteweg-de Vries equation,
which conserves energy to a higher order than the more
conventional well-known equation. The new equation is
used to describe the transformation of an interfacial solitary
wave which propagates into a region of decreasing depth.

§1 Introduction

Internal solitary waves are now a well-documented
phencmenon, particularly in the coastal oceans or the lower
atmosphere (see, for instance, Apel. 1995 and Ostrovsky
and Stepanyants, 1989, or Christie, 1989, respectively).
For weakly nonlinear waves the Korteweg-de Vries (KdV)
equation, or a closely-related equation, is usually
considered to be an appropriate theoretical model (see, for
instance, the recent review by Grimshaw, 1996). For the
case when the background environment is variable, the
familiar KdV equation needs to be modified, and becomes
mmstead a variable-coefficient KdV equation of the form

c 7, A
A+~ 4+ 5 A4+ S =0, I.1
A Bt 5 g (1.1
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Here the coefficients ¢, 4 and A are all functions of the
time-like variable t, while 8 is a space-like variable in
the frame of reference moving with the wave (see (1.3)
below). The coefficient ¢ 1is the local linear long-wave
phase speed, while the nonlinear and dispersive
coefficients, A and u respectively, have self-evident
interpretations. The derivation of (1.1) in quite general
circumstances is described by Grimshaw {1981), and
summarized in Grimshaw (1997). A derivation for the
special case of interfacial waves with variable depth of the
lower fluid has been given by Pelinovsky and Shavratsky
{1976}, and Djordjevic and Redekopp (1978). We will also
derive (1.1) for this special case later in this paper, and in
the process will define the scalings used.

Recently, however, van Groesen and Pudjaprasetya
{1993) (see also Pudjaprasetya and van Groesen, 1995)
have pointed out, for the case of water waves, that the
underlying fluid system is Hamiltonian, with a conserved
Hamiltonian functional representing energy. They
exploited this to derive an alternative to the variable
variable-coefficient KdV equation (1.1), namely

é g | &H
Ap=-dle T4 28 1.2
4 Z{Cax+axc} 4 (1.22)
where A= r Jdx . (1.2b)
—on
and j:%A2+£2{—121-A2 + £ .43} (1.2¢)

The skew-symmetric operator in (1.2a) ensures that this
equation is Hamiltonian, and conserves the Hamiltonian
H, which is an asymptotic approximation to the energy of
the underlying system. The two alternative forms of
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variable-coefficient KdV equation are related under the
transformation

1 (T dr
r=£X, 0=— -T, (1.3)
&% ()
where £ is the governing small parameter _in the

derivation of either of these equations. Thus is a
measure both of the amplitude of the wave, and of the
linear dispersion. Under the change of variables (1.3), the
equation (1.2a) asymptotically transforms to (1.1), with an
error of 0(5'2). This issue is explored in some detail later
in this paper.

The purpose of this paper is to derive the Hamiltonian
form (1.2) of the variable-coefficient KdV equation for
interfacial waves, that is, waves on the interface between
two fluids, each of constant density, where the upper fluid
is bounded above by a rigid horizontal plane, and the lower
fluid has variable depth. We show that the outcome is
indeed an equation of the form (1.2), thus lending support
to the notion that equation (1.2) is a convenient
Hamiltonian version of (1.1) in more general situations.

In §2 we present a Hamiltonian formulation for interfacial
waves, and then in §3 introduce a long wave scaling to
reduce the full fluid system to a pair of equations of
Boussinesq type, which are also in Hamiltonian form.
Then in §4 we introduce the notion of uni-directional
waves in order to derive (1.2). In §5 we outline two
principal applications of (1.2), first to the transformation of
a solitary wave as the depth of the lower fluid varies, and
second to an estimation of the possibility that a second
solitary wave may be generated in this process. The paper
concludes with some discussion in §6.

§2. Hamiltonian formulation

We consider a two-layer fluid bounded above by a rigid
horizontal plane, = = h;, and below by a rigid but
horizontally-varying  boundary, :z=-h;(x). For
simplicity, we shall suppose that A5 = A, a5 x>+
respectively. The configuration and co-ordinate system are
shown in Figure 1. Each layer consists of incompressibie,
inviscid fluid of constant density py , for the upper, lower
tayers respectively. The free interface between the layers is
denoted by r = n{x, 1). Assuming irrotational flow in each
layer, the governing equations are

Vi =0, in —p<z<h, (2.1a)

V=0, in —h(x)<:z<n, (2.1b)

where @) 5 s the velocity potential in each layer so that
the fluid velocity is V¢ 5 in each layer. At the rigid

boundaries the normal compeonent of the velocity must
vanish so that

dz =0, at z=~rh, (2.2a)

$rr =~ Porhyy at z=—hy . (2.2b)

At the interface, the kinematic conditions that the interface
is a material surface for each fluid are,
M+ Pioxlix =@z & z=ni=L2. 2.3)

Finally the dynamic condition for continuity of pressure is,
on using the Bernoulli relation for each fluid,

o+ 3|V + gm = pa (o + 1[V0,F + gm,
at z=71. 2.4

Next we cast these equations into a Hamiltonian form.
Here the Hamiltonian is

Hg. m= [ K+ Vi 25)

where K is the kinetic energy density

7 A
K= J-.hz%pzw"z |2z + J;, 1o, 1Ve %, (26)

and V is the potential energy density

v=>1g(o - p)i . @.7)

Here we are anticipating that
variables, where

¢ and n are canonical

¢=p2¢2ﬁp]¢l’ at z=gpg, (2.8)
where it is understood that ¢, ; are determined by solving
the boundary value problems defined by (2.1), (2.2), (2.8)

and the further boundary condition,

Pz ~ Pixlix = b2z —Soxllx @ z=7. (2.9)

which is obtained from (2.3) on eliminating 77,. It can
then readily be verified that the remaining kinematic
condition (2.3), and the dynamic condition (2.4), may be
expressed as a Hamiltonian system,
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Fig. 1. The configuration and co-ordinate sysiem.

oH
¢ =— e
7
(2.10)
oH
'?r:“&;-

Here & denotes the variational derivative. The derivation
is analogous to that for water waves (Zakharov, 1968). In
the sequel it will be more convenient to introduce a new
variable u = ¢, so that (2.10) are replaced by,

ﬁ{é‘HJ
Uy = — === =—,
&x \ dn

_-ﬁ[ffq
= o\l

Next we note that the system (2.11) possesses the
conservation laws.

(2.11)

M= .ro ndx = constant , (2.12a)

C= F udx = 0, (2.12b)
and

E-= Jm (K + V)dx = constant . (2.12¢)

)

Here M and C are Casimirs of the Hamiltonian system
(2.11)}, and represent conservation of mass and circulation

respectively.
variables vanish as x . + «, 5o that the circulation C is

Note that we are assuming here that all

zero. E s the energy, and is conserved here since the
Hamiltonian H is explicitly independent of the time :.
Indeed, E is just the Hamiltonian itself. However, due to
the variable bottom profile, the Hamiltonian H does
depend explicitly on the horizontal variable x, and so the
horizontal momentum, P, is not conserved. Here P is
given by

P= fm{fthz%dz+.[::ipl¢udz}dx, (2.13a)

or P= r’ yudx - r pr#(z=—m)hydx . (2.13b)
Instead, we have the relation
dp =
== J._wpz(z——hz)hudx, (2.14a)
1 2
where p2=—m¢m—§p2’v¢o2‘ — gz, (2.14b)

Here p, isthe pressure in the lower layer.
§3. Derivation of Boussinesq equations

Since we wish to consider weakly nonlinear long waves,
we introduce a small parameter £ and the normalized
variables as follows,
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n=EAX,T), u=UX,T), (3.12)

where X=ex, T=g¢rt. (3.1b)

We shall also suppose that A = (X)), although later it
will be necessary to insist that A(X) vary even more
slowly. Using (3.1) we next solve (2.1) subject to the

boundary conditions (2.2) in the form of an asymptotic
series in powers of £°. Thus

b= eRX, T - S 2 Fydz—h))

+%g51«] ooz —h)t +., (3.2a)
b= e R(X, n——é ARG nY]

Ly {F +h } 3.2b
*5a X ax{z+h3) (3.2b)

Then with w = ¢, we readily find from (2.8) that

2

U=p Ry - pFy + € 292 g(hZF.:ZX)

+LphtR } + (3.3)
2T P e .

Next we use the kinematic condition (2.9) together with
(3.1) to show that

hi Ay + By =& {A(ﬁX"FzXH Ln? Ry

2

re g (h2 2X)} . (3.4)

Then, from the relations (3.3) and (3.4) we can iteratively
determine both F{ and F intermsof U and 4. We
find that

Ptk + ha)
(orhs + ;2 hy)

(p1h2+p2hl)F1X=—h2U+gz{— AU

_Uphihi+Lpyhing + Lprihd
(o172 + pyhy)

UXX} +...,{3.52)

Py + hp)

hy+ prb)Foy = h U+52{--———
“1ha e T (orhs + pahy)

. gﬁlhfhz +%p|h%hl +

1oy hi k3
222000 | L s
(o1hy + prhy)

Here, in the {..} terms we have omitted expressions
involving derivatives of %, as in the sequel we shall in
fact require that A,y is 0(¢%), that is, hy = ho(7)
where =X .

The final step in this section is the approximation of the
Hamiltonian (2.5) using the asymptotic expressions
described above. We find that, using (3.1) and (3.2),

H=5321=a3f Jdx, (3.62)

where J = %g(pz—pl)Az + %Plthng + %pzthzzx

£ &
+;p1h?ﬁix +?P2h%52m

&
+?(p2Fsz—-p1 F) A+..... (3.6b)

Next we use the relations (3.5) to rewrite % in terms of the
canonical variables U and 4. The result is

hiky 5
Leloy-p)a® +1—172
200|h2+92h1)
+ 57-{— BU% + vA Uz} + (3.72)
hERE (bt paiy)
where p=-1"2 5 (3.7b)
6 (ohy+pahy)
and 1——“—th phd) (3.7¢)
2 (prhy+ py by

With the rescaling of (3.1) and (3.6a), the Hamiltonian
system {2.11) becomes

(3.8)
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Then, on using the expressions (3.6) and (3.7a) for # we
obtain the Boussinesq equations,

Ur + {g(pz -pA+ sszz}X +..=0,

{ hyhy
dp b — 2
(prhat pa by

U+2£2vAU+2.‘:2ﬁUH} +.=0,
X
(3.9)

Note that putting o = 0 reduces the present theory to that
for water waves, and in this case it is readily verified that
the Hamiltonian (3.6} and the Boussinesq equations (3.9)
agree with those obtained by van Groesen and
Pudjaprasetya (1993).

This system possesses the conservation laws,

" = _E AdX (3.10a)
2= J: Udx =0, (3.10b)
and £-= ED Jdx (3.10¢)

where J is defined in {(3.7a). There are just rescaled
asymptotic versions of the conservation laws (2.12a),
{2.12b) and (2.12c) for mass, circulation and energy
respectively. The counterpart of the relation (2.13b) for
horizontal momentum is

P2l
z = J' P e S O C R 1)
(prha+prhy
Note that if / is a constant, then the second term in
{3.11} is zero by virtue of (3.10b). It can now be show that

5_‘5=-r0 [L} {_LU?-
aT —o \ gy ot oo by ¥ 2

(3.12)

Note that since hyy is 0(52) the right-hand side of (3.12)
is also O(sz) and we have omitted terms of 0(5 } here.
It can be verified that (3.12) is the counterpart of the
relation (2.14).

§4. Derivation of variable-coefficient Korteweg-de_Vries
equations ‘

The Boussinesq equations (3.9) describe waves which can
propagate both to the left and to the right. The next step is

+gPp-pP)p A}dX

to consider just the waves propagating to the right. The
procedure we follow is very similar to that described by
van Groesen and Pudjaprasetya (1993) for water waves (see
also Pudjaprasetya and van Groesen, 1995), and hence we
shall only give a brief outline here. In place of 4 and U we
introduce the new variables R and S as follows,

A=R-S
U= glor— ) (R+5) (4.1a)

C
where 2P phh; (4.1b)

(prhot prhy)

Here ¢ is the linear long wave phase speed for a flat
bottom, and R, S are the Riemann invariants for the
linearised Boussinesq equations in that case. Substituting
{4.1a) into the Hamiltonian (3.6) we find that

# = 2g(py — ;) # where

= fw Jax (4.22)
and .7=%(R2+Sz)+52&025~c—;—p'—)..
{—,B(RX + Syl +v(R+ 8P (R- S)} + (4.2b)

The counterpart of the Hamiltonian system (3.8) is now
obtained by substituting (4.1a) into (3.8) and it is readily

found that
[RT]_[—F,—%CX] {57‘«/&)
Sy} \Sex, -r J\sd#ses)
]":% _(9_+i i
5X FX

Note that the operator on the right-hand side of (4,3a) is
skew-symmetric, and so (4.3a) is skew-symmetric, and so
(4.3a) is a Hamiltonian system which conserves the
Hamiltonian 7.

{4.3a)

where {(4.3b)

Next we consider the equation for the left going wave S,
which to leading order is

ST CSX + CX(R+S) + 0(8 ) (4.4)

But now we recall that we are assuming that h5y is
0(52) and, to leading order, we can now effectlvely put
S§=0 in(4.3a) and in the Hamiltonian density J (4.2b).
Thus we can now replace (4.2b) with
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J=4iR + &gl - p)-BRy +VR), (4.5)
while the equation (4.3a) for R becomes

5%
Rr=—TI-"", 4.6
T SR (4.6)

This is the desired variable-coefficient KdV-equation.
Using the expressions (3.7b, ¢) for o and v respectively,

and (4.1b) for c2, the expression (4.5) for J can be
further simplified to
j:%R2+£2{—-§R/2\»+%RS}+..., (4.7a)
hh
where =12 (p!h1+p2h2), (4.7b)
6 (mhytpohy)
2 2
al'ld H 3 (p2h1+p| hz) (4.7(:)

C 2hy (prhy+paly)

Finally, we note that, as shown by van Groessen and
Pudjaprasetya (1993) we can replace R with A4 in (4.6)
and (4.7¢) with an error which is 0(c*). Henceforth we
shall use (4.6) and {4.7¢) with the variable 4, as n= £ 4
1s the interface displacement. The result is the variable-
coefficient KdV equation (1.2). Note that putting g =0
reduces the present results to that for water waves obtained
by van Groesen and Pudjaprasetya (1993) and
Pudjaprasetya and van Groesen (1995).

The wvariable coefficient KdV-type equation (1.2)
conserves the Hamiltonian 7, that is the energy

é- fw Jdx (4.8)

which is the counterpart of the conservation law (3.10c) for
the Boussinesq system (3.9), It also conserves the mass-
like expression

S m o0 A
H = j_w okl 4.9)

which is a Casimir for the Hamiltonian system (1.2). But
note that 7  differs from the exact expression for the
mass 2 (3.i0a) by 0(52) terms, which arise from the
generation of 0(52) left-going waves, as described above.
Further, it can be shown that the conservation law (4.9) is a
consequence of the exact conservation laws (3.10a, b),
after again accounting for the 0(52) left-going waves (cf.
Miles, 1979, and Akylas and Prasad, 1997). The

counterpart of the expression 2 (3.11) for the horizontal
momentum is

a A2 c
= LI o .S dx .
p [_; { o 228 )(A+S)} (4.10)

Note that it is necessary here to include the term §
representing the left-going waves. Then it can be shown
that

B 2
P _ J’“’ Xl Lp, 204 4 lav, @i
r 4= ¢ glo2—m)
which is just the counterpart of (3.12). In defining (4.10)
and deriving {(4.11) we are conmsistently ignoring 0(54)
terms, but retaining all 0(.5'2) terms.

Finally, in this section, we consider the transformation of
the variable-coefficient KdV-equation (1.2) into the
conventional form (1.1). To do this, we recall that
By=M(r) where 7=gX, and then define a new
variable & by (1.3). Then (1.2) transforms to (1.1), with
an error term of 0(.92). Thus (1.1) and (1.2) are only
asymptotically equivalent. Equation (1.1) is also
Hamiltonian in the sense that

Ap+FA=e—— 2L 412
Tt o c 5054 .122)
where g = 1de, (4.12b)
and I=-2 a3 BB (4.12¢)
2c? 6

However, because [ depends explicitly on 7, the
Hamiltonian # is not conserved here. Instead, equation
(1.1) has the two invariants,

n = '[:JE Ad6, (4.13)

and g

[ 4 ca’an. (4.13b)

Note that here 7% s the counterpart of the conserved
expression (4.9) for equation (4.2), while £ in (4.13b) is
the leading order term in the energy (4.8), since from (1.3)
we have that dX = cdf to leading order. It is interesting
to observe that the Hamiltonian density / in (4.12b) is just
the higher-order part of the Hamiltonian density J for
equation £1.2a). Of course, the full expression for the
energy & should remain a conserved quantity under the



Grimshaw and Pudjaprasetya: Hamiltonian formulation of solitary waves 9

transformation (1.3), but in order to achieve this it is
necessary to include higher-order terms of 0(6'2) both in
equation {1.1), and in the transformation of the expression
(4.8) for £ . Finally we note that the momentum density
# transforms to

P* = Iw {%Az +
-

Like P this is not a conserved quantity, and we find that

£ %4

L=~ Ld0. (4.14)
2g(ﬂz—pl)}

2
* c 2 3onc
B LA g2 e

which is just the counterpart of (4.11).
§5. Applications

In this section we discuss two applications of the variable-
coefficient KdV-equation (1.2a) which exploit the
Hamiltonian form, and in particular, the conservation of the
Hamiltonian #%. First, we consider the slowly-varying
solitary wave, and then the generation of a second solitary
wave due to the variable depth. In both parts we will
assume that the depth A = hy(s) where

§s=aX 3.1
and o << . Recall that the derivation of (4.8) already
requires Ay to be 0(52) , so that now we are requiring
that the variation is slower still. We adopt the point-of-
view, that even though & is a small parameter, we shall
regard (1.2) as a given "exact" equation. Strictly speaking,
it should also be assumed that & >> &* , So that the terms
of 0(cg)} due to the variable depth are larger than the
0(34) error terms in {1.2).

(i) Slowly-varying solitary wave

The asymptotic procedure employed here is standard as
far as the more conventional equation (4.14) is concerned
(see, for instance, Grimshaw ‘and Mitsudera, 1993), so here
we give only a brief outline. We seek an asymptotic
solution of (1.2) whose leading term is a solitary wave of
variable amplitude a(s) and variable speed ¥(s). Thus we
put

1 ¢S a5
¢_§0Ws')_r (5.2)

and seek a solution of (1.2) in the form,

A= Aylg, s)+ od (g s} + ... (5.3a)

V=V+ol+... (5.3b)
It is readily found that A4, satisfies the equation
(*o-9) 2 43
072 g = 2955 Apgg+ =2}, 5.4
- 0 vz Ao A= (5.4)

This has the well-known KdV-solitary wave as a solution,

Ag=a sech? ¥, (5.5a)

where

- K- pa Al
:527”2’1[7/;] . (5.5b)

c

At the next order we obtain the following equation for
45,

C 5 Vo—C A.
B A+ & | S Ay, + g A F=0
7 (%{ P [Voz ogs + HAg x]}+ 1

(5.6a)

where A = (Vp Ag)s - ;C—S(VOAO)

g |24 A
g2 n, [_J y
VOaV/ Vo Ods VOS O¢

c 3cd ci
+Vi ——EAOW+62[———A ——AoAJ.
{ ” vE oo~z oo
(5.6b)

Here we have used (5.4) to simplify the expression for F .
The compatibility condition for (5.6a) is

fmﬁAodg#:O. (5.7)

It can now be shown that this yields the equation

8 VE AR A
|“° 1% 70 Od_52|“°_2 =
s { —o0 2 c ¢ —at VO 4 0¢d¢} 0’ (583)

and so

2 42
20 Vi A 1
1070 44 2 |°° 2 -
,L,D 1T - V0A0¢ d¢ = constant .

(5.8b)
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Fig. 2. Plotof a, determined from (5.14). (a) Trajectors of the o, /a_ planeas hy decreases.
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o.o0001
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Fig. 2. (b) Plos of &, asfunctionsof A, .
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This last expression thus determines the variation of the
amplitude a(s). Before substituting (5.5) into (5.8b) to
achieve this, we note that on using (5.4), (5.8b) can also be
written as

[ 3%04gae
= (4
n L,o [_? Afy + _Ag] ¥ydp = constant  (5.9)
0

Noting that dX = Vd¢ for a fixed value of 7 (see (5.2)),
we see that the left-hand side of (5.9) (or (5.8b)) is just the
energy £ (4.8) evaluated for the leading order term Ay
(see (1.2c)). Thus as expected, the variation of the solitary
wave amplitude is determined by the conservation of
energy.

The analogous theory for the conventional KdV-equation
(1.1) leads to the same expression (5.9) but with the
omission of the 0(&' )} term on the lefi-hand side of (5.9),
the replacement of 1y with ¢, and d¢ with d&@, again
with errors of 0(52) Thus for both equations the variation
of the solitary wave amplitude is determined by
conservation of energy, but for the conventional equation
(1.1), the energy is given by just the leading order term g
(4.13b).

Next we comment on the well-known fact that although
the slowly-varying solitary wave conserves energy, it
cannot by itself, conserve the mass % . Instead, this is
conserved by the creation of a trailing shelf of amplitude of
0(o), but whose length is O(cr_]). At the rear of the
solitary wave, the amplitude of the trailing shelf is A, ,
where 4, >0 as ¢ — —o. We readily find from (5.6)
that

[VOV c]Al L {J“” Yodo 4 }:o_ (5.10)

0

Also we note that the first-order speed correction term V|
s not determined at this order, and it is necessary to
proceed to second order to find it (Grimshaw and
Mitsudera, 1993).

Finally, we substitute the explicit expressions (5.5) for
Ay and J, into (5.8b) to obtain, afler consistently
omitting 0(¢") terms,

4 { 282 }
1+ — pay = constant .
i 5

(5.11)

The explicit expressions for A and u (4.7b, ¢) can now
be substituted into (5.11) to yield the variation of the
amplitude a as a function of the depth A . First, however,

we consider the special case when p; = 0 in which case
the result (5.11) reduces to that for water waves obtained by
Pudjaprasetya and van Groesen (1995). In this special case,
in replacing A with A, the total depth of water, for
convenience, we see that A=#H /6 and p= Hh
that (5.11) becomes

(5.12)

(ah)3 {1 + & 2‘—;’} = constant

to leading order in &°, this gives the well-known result
that a ok !. Here we see that the 0(52) term will
slightly diminish this result. For interfacial waves, on using
the Boussinesq approximation, we get

232, Bk

Shind
1h21 = constant.,  (5.13)
5 hihy

(hy-hy)

This expression yields the well-known result that o — 0
as  hy— hy, (e.g. Pelinovsky and Shavratsky, 1976 or
DjordJeVIC and Redekopp, 1978), and we see that the
0(.9 ) term in (5.13) does not effect this in any significant
way. Of course as a— 0 the present asymptotic theory
fails, and the fate of the solitary wave as h,— b is
unclear. We see from (4.7a) that g changes sign at
h| = hy and so solitary waves of depression which exist
for hy > h; cannot exist for ks, < k. A detailed study
of this situation has recently been reported by Grimshaw et.
al (1997).

(ii) Generation of a second solitary wave

Let us continue to consider the problem of an interfacial

solitary wave, initially in a region where h, > 4| and
propagating towards the point where h, =h;. In the
previous subsection we showed that as  h, — hy, the

solitary wave amplitude tends to zero (see (5.13)). Here we
use the technique described by Pudjaprasetya et al. (1997)
for water waves to determine the amplitude of a second
solitary wave possibly generated in this process. In essence
the technique is to assume that there are two slowly-varying
solitary waves, of amplitudes @, say where a_ =0 at
hy = hag, and then to use the two conservation laws (4.8)
and (4.9) for energy and mass respectively to determine
how the amplitudes depend on /4, . Note that, in effect, the
trailing shelf of the slowly-varying solitary wave is here
replaced by the second solitary wave.

Invoking conservation of energy and mass,

Ly

(L, + L)=020 (5.142)
C
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% A
(8 + %)= [—C—) [3”3‘—0 . (5.1ap)
4] A Hp
Here the subscript "0" denotes conditions at Ay = Ay,

and for each wave, L is the momentum-like integral (see

4.11)),

2 Vi
= f;-zLAO Lap, (5.152)

2 3 )T 4
or L=z[ﬁ) (L] l=%[ﬂ] o™ 515
3\ n o/ ¢ ) e

Here, we are ignoring the 0(s?) term in the energy since
the analysis of the previous subsection shows that this term
is not significant in the present application. Equations
(5.14) are readily solved for L, and then (5.15b)
determines a,. Finally using the expressions (4.7b, c) for
A and g weobtain a; asfunctions of A». The results
are shown in Figure 2, where (a) plots the trajectory in the
a,/a_ plane and (b) plots a, and a_ as functions of
h, up to the point where hy = iy, We see that as /)
decreases a, increases until approximately Ay =3h/2
and then a. decreases, while a_ at first increases and then
decreases. These results are for the Boussinesq
approximation for which

.&,zhlhz/é, jl’r'-"3(hl—h2)/2hlh2
and 2 icd = hy(hy+ hy) hoyg(h+ hag).

We can conclude that a small amplitude second solitary
wave is generated, but it vanishes againas hy — A .

§6.  Conclusion

The main purpose of this paper was to demonstrate that the
Hamiltonian variable-coefficient KdV equation (1.2),
previously derived for water waves by van Groesen and
Pudjaprasetya (1993), can also be derived in a similar way
for interfacial waves. This lends support to the notion that
equation (1.2) is a convenient Hamiltonian reformulation of
the more conventional variable-coefficient KdV equation
(1.1), which is known to be valid for many physical
systems.  Further, we demonstrate that through the
transformation (1.3), the two equations (1.1} and (1.2) are
asymptotically equivalent (with an error of 0(52) in
(1.1)). The principal difference is that the Hamiltonian
form (1.2) conserves the energy A (1.2b), whereas (1.1)
only conserves the leading term in A . Thus we conjecture
that in situations where consetving the energy to a higher
order is important, then equation (1.2) should be preferred.
We have illustrated this issue by considering the

transformation of an interfacial solitary wave propagating
in a region where the lower fluid has variable depth.

Acknowledgements: This research was supported by ARC grant
A89531328, and initiated during a visit by SRP to Monash University in
February 1997.

References

T.R. Akylas and D. Prasad, 1997: "On the generation of shelves by long
nonlinear waves in stratified shear flows," J. Fluid Mech., 345-362.

JR. Apel, 1995: “Linear and nonlinear internal waves in coastal and
marginal seas,” in "Oceanographic Applications of Remote Sensing”,
eds. M. Ikeda and F. Dobson, CRC Press, Boca Raton, Florida, 512pp.

D.R. Christie, 1989: "Long nonlinear waves in the lower atmosphere,” /.
Atmos. Sci., 46, 1462-1491.

V. Djordjevic and L. Redekopp, 1978: "The fission and disintegration of
internal solitary waves moving over two-dimensional topography,” J
Phys. Ocean., 8, 1016-1024,

R. Grimshaw and H. Mitsudera, 1993. "Slowly-varying solitary wave
solutions of the perturbed Korteweg-de Vries equation revisited,” Saud.
Appl. Math., 90, 75-86.

Grimshaw, 1997 "Internal solitary waves," in "Advances in Coastal and
Ocean Engineering,” ed. P.L. -F. Liu, World Scientific Pubiishing
Company, Singapore, 3, 1-30.

R. Grimshaw, 198]: "Evolution equations for long nonlinear internal
waves in stratified fluids," Stud. Appl. Math., 65, 159-188.

R. Grimshaw, E. Pelinovsky and T. Talipova, 1997: "Solitary wave
transformation due to a change in polarity," Stud. Appi. Math, (to
appear).

I.W. Miles, 1979: "On the Korteweg-de Vries equation for a gradually
varying channel," J Fluid Mech., 91, 181-190.

L.A. Ostrovsky and Yu. A. Stepanyants, 198%. "Do internal solitons exist
in the ocean?" Rev. Geophys., 27, 293-310.

E. Pelinovsky and 8. Shavratsky, 1976: “Propagation of nonlinear
internal waves on the inhomogeneous ocean,” fzv. 4. and Oceanic
Phys., 12, 41-44.

E. van Groesen and S.R. Pudjaprasetya, 1993: "Uni-directional waves
over slowly varying bottom. Part I: Derivation of a KdV-type of
equation,” Wave Motion, 18, 345-370.

S.R. Pudjaprasetya and E. van Groeser, 1995. "Uni-directional waves
over slowly-varying bottom. Pant II: Quasi-homogeneous
approximation of distorting waves," Wave Motion, 23, 23-38.

S.R. Pudjaprasetya and E. van Groesen and E. Soewono, 1997: "The
splitting of solitary waves running over a shallower water,” Wave
Motion, (10 appear).

V.E. Zakharov, 1968: "Stability of periodic waves of finite amplitude on
the surface of a deep fluid," J Appl Mech. Tech. Phys., 2, 190-194.



