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Abstract. Large hierarchically organized sets of ele-
ments (simulating asperities in a fault) are loaded to the
point of complete failure. The fracture thresholds of in-
dividual elements are stochastically distributed, and the
hierarchical structure for load-transfer is of the fractal-
tree type. During the breakdown process there occur
bursts (earthquakes) of several elements breaking simul-
taneously at a given load. Using Monte Carlo simula-
tions we compute the frequency of bursts versus their
size. This shows a gross power-law behaviour superim-
posed by a wavy pattern closely related to the coordina-
tion number of the fractal tree used for the load-transfer
structure.

1 Introduction

The statistical properties of the strength of materials
with stochastically distributed elements are important
in apphed sclence, A simple classical group of models in
this area falls within the fiber-bundle paradigm which
has been studied by many authors in both the static and
time-dependent versions (Coleman, 1957; Daniels, 1945;
Newman et al., 1994; Phoenix, 1978; Sornette, 1989,
etc). In the static version, one of the properties most
intensively studied is the strength of the set, i.e., the
average value of stress (or load) at which a system com-
posed of N elements fails. Another interesting property
is the size-frequency relation of the breaking bursts as
cone progressively increases the stress until complete fail-
ure. In this paper, the analysis of this second property
in relation to an important type of fiber-bundle model
will be our objective.

Fiber-bundle models can be classified according to the
way load supported by failed fibers is transferred to the
surviving ones. In the simplest case, the set obeys the
equal load-sharing (ELS) rule; i.e., the non-failed fibers
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share the total load equally, and all failed fibers carry
no load (Daniels, 1945). This idea can be generalized to
formulate local load-sharing {LLS) (Phoenix, 1978) and
hierarchical load-sharing (HLS) (Turcotte et al., 1985)
models.

In the static case, for the ELS model, Hemmer and
Hansen (1992) proved that the expected number D{n)
of bursts of size n (in which a number n of elements
break simultaneously) follows, for N — oc¢, a universal
power law

D{n) o« n~%/2, (1)

On the other hand, the universally observed Guten-
berg-Richter relation for regional seismicity (Gutenberg
and Richter, 1944)

with N being the cumulative number of earthquakes
with magnitude greater than M; and a and b constants
(8 < b < 1.1}, is of the Eq. 1 type power-law when
M; is expressed in terms of energy E (seismic moment):
logig £ = ¢+ dM; (c = 11, d = 1) (Kanamori and
Boschi, 1983). Thus, copious research has been done to
explore whether other versions of fiber-bundle models
also verify this type of power-law size-frequency distri-
bution, as the ELS model does. {It is interesting to note
that the ELS model was applied in seismology before
Eq. 1 was known: Jones and Molnar (1979), Kanamori
(1981), Lomnitz-Adler (1985)]. In particular, models
in which the load transfer is assumed to be local, with
and without stress dissipation, have been analysed and
approximate power-laws also emerge (Christensen and
Olami, 1992; Gémez et al., 1994; Zhang and Ding, 1994).
As is obvious, the ultimate goal of these efforts is to
gauge the real value of these fiber-bundle models to de-
scribe earthquake phenomenology.

An important type of fiber-bundle models originally
intended for seismological use is the hierarchical fractal-
tree type model. This was introduced by Turcotte and
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Fig. 1. Fractal tree with coordination number = = 2 and & = 4
levels.

collaborators with the aim of describing the stick-slip
behaviour of tectonic faults (Smalley et al., 1985; Tur-
catte et al., 1985). The asperities on a fault were treated
as individual elements {equivalent to fibers). Tn its sim-
plest version, if one element failed, the stress was trans-
ferred to the adjacent element on which an induced fail-
ure could occur; if two elements failed, the siress was
transferred to two adjacent elements, etc. For details see
Smalley et al. (1685). This type of organization can also
simulate a cable with a hierarchical distribution of com-
ponents. It is a rigorous result (Newman and Gabrielov,
1991} that in these hierarchical sets the strength op of
a system of N elements decays for large NV in the form

on o [1/loglog{N)]. (3)

As mentioned above, the purpose of this paper is
to find out the size-frequency distribution of bursts in
this type of hierarchically organized static model. As
a fractal-tree structure of transfer is not at all suited
for performing Monte Carlo simulations, the computa-
tional strategy is detailed in Section 2, together with
the emerging results. Finally, in Section 3, we state our
conclusions,

2 Computational Strategy and Results

The best way of visualizing the hierarchical load transfer
scheme is by means of a fractal tree of coordination z
and number ol levels k. Figure 1 depicts a particular
case with z = 2 and &£ = 4,

In the tree, all level-0 elements (filled circles in Fig. 1)
and all level>0 junctions are numbered level by level
from left to right. Level-0 elements are called asperi-
ties and level>0 elements are called local apezes. Local
apexes are the points from which the load distribution
operations are performed. A local apex iz singled out by
a pair of coordinates, the first referring to the level in
the hierarchy, and the second to the order of the apex in
each level; so, local apex (2,1} is the furthest left apex
on the ¢ = 2 level. As already stated, elements with a
zeto first coordinate stand for asperities.

In dealing with the elements (local apexes and asper-
itles) of a fractal tree and their relationships, several
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terms must be defined in advance: the parent of an I-
level element is this element in level {+1 directly joined
to it by a tree branch. The neighborhood of an element
is the set of z — 1 elements with a common parent. The
range of an element is the set of elements potentially
affected by a load transfer event from that element; in
particular, the z elements just below an element in its
range are its daughters, and the ' level-0 elements in its
range are its spanned asperitics. For a generic element
(I, m) in level {, the parent is element (!4 1, [m/z]), the
neighorhood, plus the element (I, m) iiself, is the set
{(3) 2§ = 2[m/2), 2Tm/2] — 1, 2[m/4] — (z - 1)},
and the range is the set {(I —¢,5) : 4= 1,2,...,(,j =
(mz)', (mz)' — 1,...,(mz)" — () — 1)}. In this last ex-
pression, the case i = 1 gives the daughters of element
({,m), and the case i = [ its spanned asperities. In these
expressions, [z] means the smallest integer greater than
or equal to z.

The tree is stored in the computer as a 2-dimensional
list of integers with & rows of lengths z*—% (i=10,1,..,
k). Level O contains z5(= N) asperities, level 1 z8~!
local apexes, and so on up to level I which contains just
one element, the global apex of the fractal tree. When
all the spanned asperities of local apex ({, m) have lailed
we say that the local apex is broken and the 2D list
stores a negative number in position (I, m); if at least
one of the spanned asperities of local apex (I, m) is intact
we say that the local apex is also intact and the 2D list
stores a positive integer in position (I,m). The total
amount of space needed to store the tree structure is
zF+1 — 1 integers plus 2V floating-point numbers in the
form of two N-vectors to store the asperity strengths
and loads.

The Monte Carlo simulation of the breaking process
can be conveniently summarized in the following steps:

1. Select z, k£, and the number of realizations to be
performed.

2. Select a probability distribution for the strength of
the asperities. We have used in all our simulations
a Weibull distribution

plojog) = 1 — el?/70) (4)

where oy is a reference load taken here as unity, and
p 1s the Weibull index or shape parameter.

3. Assign strengths stochastically to the N asperities
according to the selected probability distribution.

4. Raise global load until the breaking point of the as-
perity satisfying min(strength - load) > 0, bearing
in mind that already broken asperities have their
strengths reduced to zero.

5. Transfer loads consistent with the hierarchical struc-
ture until no more asperities break under the ap-
plied global load.
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6. Count the number of induced asperity failures in
the previous step: by definition this is the size of
the nth burst.

7. Repeat steps 4-6 until total failure of the tree.

8. Repeat steps 3-7 until the total number of realiza-
tions are done.

9. Compute statistics )(n) versus n.

The only non-trivial step in the above Monte Carlo
procedure is step 5, where the transfer of loads among
unbroken asperities consistent with the tree structure is
made. The main problem is one of book-keeping, and
can be reduced to two basic operations: (¢) locate the
local apex for load distribution in response to the failure
of an asperity; (i) determine from the local apex of load
distribution the set of asperities affected by the load
distribution event.

The first operation is carried out by an upward search
of the tree until the point (or points) of load redistri-
bution is (are) located. Asperity m (with co-ordinates
(0,m)) has a hierarchy of local apexes joining it to the
global apex; these local apexes have co-ordinates (7,
[m/z%]), {i = 1,...k). The upward search ends when at
least one of the neighbours of a local apex in the hier-
archy of asperity m stores a positive value; in this case,
the load transferted upwards is shared equally among
the intact neighbours, which become the points of load
re-distribution for the next basic operation.

During this second operation, the load o assigned to
a local apex (and ultimately derived from a previously
failed asperity) is re-distributed among the intact local
apexes in its range until level-0 is reached; on each level,
the load is shared equally among the intact neighbours.
If ¢ is the base load at the point of load distribution in
level {, the load on each intact local apex in level { — 1
1s o/z', where 2 is the number of intact daugthers; this
process of load re-distribution is iterated downwards to
level 0. There, each unbroken asperity receives a part
of the initial base load &, which is added to the load it
was already supporting; if the total new load is greater
than the strength of the asperity, the asperity fails and
1s temporarily stored in a list of failed asperities to be
processed; if, on the contrary, the asperity survives the
extra load, the only operation to be carried out is the
actualization of its load in the N-vector of loads.

The asperities in the temporary list are processed one
by one by the upward-downward load distribution rou-
tines; once an asperitly 1s processed it is dropped from
the hist. An avalanche of induced failures ends when no
more asperities are left in the list, and the number of
asperities processed gives directly the size of the burst.

The Monte Carlo algorithm has been tested with dif-
ferent random number generators (Press et al., 1086),
and the output checked against known results. Fig-
ure 2 shows one of these checks, where a comparison
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Fig. 2. Comparison of exact RG results (solid line) and Monte
Carlo data (circles) for the global strength of z = 2 fractal trees
with £ = 1, ..14 levels.

1s made between the Monte Carlo results (open circles)
and the exact renormalization-group results (Newman
and Gabrielov, 1991) (solid line) for the global strength
of a fractal tree with coordination z = 2. A Weibull
probability distribution with p = 2 is assumed for the
strength of the individual asperities. The Monte Carlo
data span the range N =4-16384 asperities, and in-
side this range the match with the exact RG results
is within statistical error (size of circles). Monte Carlo
data are averages of 105 to 10? realizations for small
and big trees, respectively. Because the fluctuations in
global strength between realizations decrease markedly
with system size, this results in a more-or-less constant
statistical error in the whole range.

The main interest in this paper is concentrated on the
size-frequency statistics of the partial bursts preceding
the total collapse of the tree. Apart from these partial
bursts, each Monte Carlo realization ends with a big
burst where all the remaining asperities break; so, there
is a gap in burst sizes between the partial bursts and the
final, big one. Partial bursts follow a gross power-law
behaviour and the results presented here concentrate on
the fine structure of this relation for partial bursts.

Figure 3 is a normalized size-frequency plot for the
bursts in z = 2 fractal trees with sizes N = 1024 (thick
lines) and N = 16384 (thin lines). Strengths for the
asperities are drawn from a Weibull distribution with
p = 4. Solid lines are for the differential frequency count
and dashed lines for the accumulated frequency count.
Superimposed onto the general power-law trend we can
see local maxima (differential curve) or local ramps (ac-
cumulated curve) periodic in the logarithm of the burst
size. Local maxima appear at burst sizes of 2, 4, 8, 186,
32, and 64 broken asperities, which seems to be related
to the basic coordination of the fractal tree.
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Fig. 3. Normalized frequency of bursts for fractal trees with
z =12, p =2, and k = 10 (thick lines) and k¥ = 14 (thin lines).
Solid lines represent the differential frequency count and dashed
lines the accumulated frequency count.

To confirm this last point, Fig. 4 plots the results for
N = 1024 (thick lines) and N = 16384 (thin lines) trees
with coordination z = 4. Again, superimposed onto the
gross power-law behaviour we observe log-periodic mod-
ulations with local maxima at burst sizes of 4, 16, and
64 broken asperities, which match the basic coordina-
tion 4", (n = 1,2,3) of the underlying tree structure.

3 Conclusions

As seen in Sect. 2, the size-frequency relation emerging
from breaking bursts produced in large hierarchically
organized sets of elements shows a gross power-law be-
haviour superimposed by a wavy pattern closely related
to the coordination number z used in the load-transfer
scheme. To asses the credibility of a model in seismol-
ogy, the first test to fulfill is the Gutenberg-Richter law,
Eq. 2; therefore, these wavy patterns constitute a serious
problem for this type of model.

When dealing with a fractal tree of very large z, the
breaking process would proceed through the failure of
large ELS sets and, accordingly, the final size-frequency
relation would in faci coincide with that of the ELS
medel, Eq. 1. [In our simulations, we have noticed
that for the same p value, the slope of the log-log size-

frequenty gross straight lines tends to increase as z grows.

Using the above mentioned qualitative argument, this
slope would increase up to the mean-field limit 5/2 of
the ELS case.] But for ordinary small = values the con-
spicuous appearance of the oscillations is unavoidable.
Remember that z = 4 was the value originally chosen to
describe the stick-slip process in faults (Smalley et al.,
1985).

It is important to recall that in this paper we have
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Fig. 4. Normalized frequency of bursts for fractal trees with
z=4, p=4,and k =5 (thick lines) and k = 7 (thin lines). Solid
and dotted lines as for Fig. 3.

used the static version of the model and hence, by def-
inition, we are unable to discuss the time sequence of
events leading to the total failure of the system. In this
respect, one should be aware that this model, in the
time-dependent version, has recently been studied by
Newman et al. (1995) with this purpose. Their spe-
cific aim was to find out if the chain of partial faii-
ure events preceding the total failure resemble a log-
periodic sequence. This was motivated by the amaz-
ing fit of this type obtained by Sornette and Sammis
(1995) to data of the cumulative Benioff strain released
In magnitude>5 earthquakes in the San Francisco Bay
area before the October 17, 1989 Loma Prieta earth-
quake. Sornette and Sammis (1995) and Saleur et al.
(1996) show that a power-law time-to-failure function
can be derived from renormalization-group ideas where
the main shock is viewed as a critical point. Further-
more, introducing first-order corrections to scaling, for
the case of a discrete scale invariant systern, the correc-
tions take the form of a periodic function of the loga-
rithm of the time to failure which modulates the zero-
order power-law. The analysis of Newman et al. (1995)
is an attempt to implement these ideas using a specific
well-defined model.

Another difference to bear in mind between our re-
sults and those of Newman et al. (1995) is that they
analyse the time sequence of events occurring when in-
dividual large trees break, i.e., there is no average; our
results, on the other hand, are obtained after an aver-
aging process of many individual realizations.
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