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Abstract, Pioneering work by Lorenz (1965, 1968, 1969)
developed a nomber of methods for exploring the limits of
predictability of the atmosphere. One method uses an inte-
gration of a realistic numerical model as a surrogate for the
atmosphere. The evolution of small perturbations to the inte-
gration are used to estimate how quickly errors resulting
from a given observational error distribution would grow in
this perfect model context.

In reality, an additional constraint must be applied to this
predictability problem. In the real atmosphere, only states
that belong to the atmosphere’s climate occur and one is
only interested in how such realizable states diverge in time.
Similarly, in a perfect model study, only states on the
model’s attractor occur. However, a prescribed observational
error distribution may project on states that are off the
attractor, resulting in unrepresentative error growth. The
‘correct’ error growth problem examines growth for the pro-
jection of the observational error distribution onto the
model’s aftractor.

Simple dynamical systems are used to demonstrate that
this additional constraint is vital in order to correctly assess
the rate of error growth. A naive approach in which this
information about the model’s ‘climate’ is not used can lead
to significant errors. Depending on the dynamical system,
error doubling times may be either underestimated or over-
estimated although the latter seems more likely for more
realistic models. While the magnitude of these errors is not
large in the simple dynamical systems examined, the impact
could be much larger in more realistic forecast models.

1 Introduction

Queries about how far in advance the atmosphere could be
successfully predicted are a natural outgrowth of the devel-
opments in numerical weather prediction that have occurred
during recent decades. Some studies have attempted to reach
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conclusions about fundamental physical limitations which
prevent the atmosphere from ever being forecast beyond a
certain time into the future (Lorenz, 1968). This study is
concerned with a more mundane but perhaps more practical
definition of predictability: given some distribution of obser-
vational error, how far into the future can this distribution be
integrated before it is indistinguishable from a climatologi-
cal distribution? This definition can be applied to either a
numerical model or to the real atmosphere if cne thinks of
the atmosphere as simply a large, extremely complicated
model. With this definition the predictability is a function of
the initial observational distribution which is the only source
of error. The predictability may also vary depending upon
the initial state around which the observational error is
placed. One can define the predictability of a mode} as the
average predictability over all possible model states. Since it
is a difficult task to determine when the integrated observa-
tional distribution and a climatological distribution become
indistinguishable, a rough measure of the predictability that
is used in the following is the time taken for the mean error
of an initial observational distribution to double.

This paper presents a study of the predictability of several
simple low order dynamical systems which are used to gain
insight into the behavior of more realistic models and, per-
haps, the atmosphere. A hypothetical probability distribu-
tion is taken to represent the observational error. The
observational distribution for a particular point on the attrac-
tor, referred to as the control point, is represented by placing
the observational error distribution around the control point.
Because there are no simple efficient methods for integrat-
ing probability distributions in the dynamical systems stud-
ied here (Epstein, 1969), the observational distribution at
later times is approximated using Monte Carlo techniques.
The predictability in this perfect model context can be stud-
ied by examining the change in time of the mean distance
between the integration of the control point and the inte-
grated observational distribution. In an ergodic system like
the ones studied here, the mean error eventually asymptotes
to the expected value of the ‘error’ between two randomly
selected points on the model’s attractor.

In the scenario just described, the distribution of the
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observational error alone is used to generate the observa-
tional distribution. However, there are additional constraints
placed on the error growth because only points on the
model’s attractor can ever occur (Anderson, 1996). The
actual question of interest for predictability is the evolution
in time of the mean error between the control point and a
projection of the observational distribution onto the model’s
attractor. In other words, how fast do model states that can
actually occur separate from one another as they are inte-
grated in time.

This paper examines the impacts of using this additional
information about the model’s attractor (climate) on the
computed predictability. Failure to project observational
error distributions onto the attractor is related to behavior
observed in much more realistic atmospheric prediction
models. While the differences in computed predictability
found in the simple models studied here are relatively small,
it is possible that the impacts could be considerably larger
for models with higher dimensional phase spaces.

It is convenient to examine an additional question in the
study of predictability which can be addressed with similar
numerical techniques. There have been attempts (Lorenz,
1969) to determine the predictability of the atmosphere by
examining the growth in error between observations subse-
quent to a pair of observed atmospheric states that are rela-
tively similar by some measure; such states being referred to
as ‘analogs’. Because the atmosphere exists in a huge phase
space, and because the observational record is quite short,

even the best analogs found tend to be separated by some

significant fraction of the average distance between ran-
domly chosen observed states (Van den Dool, 1994). One
can mimic this situation in simple models by examining the
error growth between a control point and a set of other
points on the attractor selected so that the initial error is rel-
atively large compared to the distance between randomly
selected points on the attractor. The error growth and pre-
dictability inferred from the evolution of the mean error
between these ‘poor analog points’ and the control point can
be compared to the error growth found using ‘good analog
points’.

Section 2 describes the design of the experiments used to
address the first question above. This method is applied to
the three variable model of Lorenz (1963} in Sect. 3 and the
results are interpreted in the light of information about the
model’s attractor. The method is applied to several addi-
tional low order chaotic models in Sect. 4. Section 5 exam-
ines the impact of using poor analogs in computing
predictability in the same three dynamical systems and con-
clusions are presented in Sect. 6.

2 Experimental design

The method used to study error growth is described in terms
of a generic dynamical system with an m-dimensional phase

space. An initial control point, A? = A(t=0), on the model
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attractor is generated by integrating from arbitrary initial
conditions for a very long time. The initial control point is

then integrated to produce a time series of control points A"
where the superscript represents the number of timesteps

that A” has been advanced in the model.
A set of points that randomly sample (Epstein, 1969) the

model attractor within a radius r of A” in phase space is
selected by integrating the model for a very long time and

conditionally selecting 1000 points close to A in phase
space using the algorithm described in appendix 1. In the
results shown here, r is 0.05 times the average distance
between randomly selected states on the attractor (a value
selected to be roughly consistent with the ratio between
observational error and climatological variance in the
present day atmospheric observing system). This set of 1000

points, CiO (1= 1,.., 1000, is referred to as the ‘correct’ ini-
tial condition distribution since it contains only points that

actually occur in the model’s climate and samples them in a
fashion consistent with their climatological frequency of

occurrence. The 1000 points, Cio, are integrated to produce

1000 point samples, C;", of the ‘correct’ distribution after n
timesteps in the model.

A second set of 1000 points, Uio (i=1,.., 1000), called
the ‘unconstrained’ initial condition distribution, is gener-
ated from the correct initial condition distribution. For each
point Cio the corresponding point UiO is the same distance
from the initial control point A? ( |C;0 - AY = U - Al

where the vertical bars represent a Euclidean distance in
phase space). However, the direction between the uncon-

strained initial point and A” is randomly selected from a
uniform distribution spanning the m-dimensional phase
space of the dynamical system. This direction can be com-
puted easily using the algorithm outlined in Knuth (1981) in
which m independent standard normally distributed random
numbers are used to define the m coordinates of the random
vector. Each member of the unconstrained initial condition
distribution is integrated in the model to produce a sample
of the unconstrained distribution after n timesteps, U;". Fig-
ure 1 is an idealized depiction of the process of selecting the
correct and unconstrained initial condition distributions for
a model with an two-dimensional attractor embedded in a 3-
dimensional phase space.

The mean error between the correct distribution and the
control point as a function of timestep s

1000

n n
EC" = 2 L(C; —A") where L represents a norm
i=1
measuring the error; a similar expression defines the error of
the unconstrained distribution, EU". The mean square error
in phase space is selected as the norm in order to be compat-
ible with classical works on error growth (Lorenz, 1965) and
because of the ease of deriving analytical results such as the
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Attractor
Plane

Fig. 1. Ideatized depiction of the correct and unconstrained initial condition

distributions for an initial control point A? on an approximately two-dimen-
sional attractor embedded in a three-dimensional phase space. The correct
distribution is represented by the circle of radius r on the attractor while the
unconstrained distribution is represented by the sphere. The sample uncon-

strained point UiD is the same distance, d, from Alasis Cio but the direction

between U;” and A% is randomly selected.

one in Appendix 2 using this norm. The use of other norms
could have significant quantitative, and possibly qualitative,
impacts on the results. All experiments described here were
repeated with the root mean square error with no qualitative
impact on the results. Results are plotted as the ratio of the
mean square error to the mean square error from the initial

condition distribution (EC™ / EC? and EU"/ EU%) in order to
examine error growth.

Although the error growth tor a single control point is of
interest, it may be more revealing to examine the average
error growth for a large number of independent control
points in order to make statements about the predictability
of the dynamical system as a whole. For the results dis-
cussed below, the error growth experiments described above
were repeated for 500 independent initial control points ran-
domly selected on the model attractor by changing the

length of the long integration used to find A? in each case.
The results displayed here are the 500 case average of the
error growth, Considerable variability in the error growth
rates was found for the individual control points, however,
the vast majority of the points had behavior qualitatively
similar to that found in the mean.

For each dynamical system considered, the entire experi-
ment was repeated for a number of different randomly
selected initial points to start the long integration used to
define the model attractor. In all cases, the selection of the
initial point had no qualitative impact on the results. This
increases confidence that the results presented are represen-
tative of the behavior of the model attractors.
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3 Lorenz-63 Model

The first dynamical system examined with the methods
described in Sect. 2 is the 3 variable convective model of
Lorenz (1963), referred to here as the Lorenz-63 model,
which has become one of the mainstays for the study of cha-
otic systems (Palmer, 1993; Pasmanter, 1995). The model’s
3 equations are:

X = —Cx+0y (1)
y=-—-XxZ+rx-y 2)
2= xy-bz 3)

where the dot represents a derivative with respect to time.
The model is integrated using the standard values of 10, 28

and 8/3 for the parameters G, b and r respectively and the
time step described in the original Lorenz paper resulting in
a system with chaotic dynamics.

Figure 2 shows the mean error growth for the correct and
unconstrained distributions for the Lorenz-63 model. During
the early stages of the integrations (Fig. 2a) the correct dis-
tribution shows an approximately exponential error growth
with instantaneous growth very nearly O at the initial time
{Thompson, 1984). The error doubles after about 0.13 time
units for the correct distribution. The unconstrained distribu-
tion shows an initial decrease in error to about 0.8 times the
initial error at time 0.04, followed by an approximately
exponential growth in error at later times. The unconstrained
error doubles after about 0.165 time units, about 25 percent
later than for the correct case. For longer integrations times
(Fig. 2b), both correct and unconstrained distributions show
continued error growth at an approximately exponential rate
for times out to about 2 units. This exponential growth is
modulated by a number of local ‘ripples” which are related
to times at which portions of the distributions get ‘bifur-
cated’ (in the 500 case mean) by being stretched onto differ-
ent parts of the two lobed Lorenz-63 attractor (Anderson,
1996). These ripples are a fundamental part of the behavior
and would not be smoothed out by increasing the sample
size. Eventually, the error growth for both distributions
asymptotes to the ‘climatological’ value for this model.

If one atternpts to place a value on the predictability of the
Lorenz-63 system by examining the error doubling time,
significant differences are found between the results for the
unconstrained and correct distributions. The unconstrained
distribution appears to be predictable for a longer time, pri-
marily because of the initial error decrease before the initia-
tion of exponential growth. The existence of a mean
decrease in error would be inconsistent with the fact that the
Lorenz-63 model is in a chaotic regime for the parameter
range chosen if all the perturbed points were themselves on
the attractor.

The difference between the unconstrained and correct dis-
tribution error growth at early integration times demon-
strates that failing to utilize constraints from the dynamical
system can lead to fundamentally erroneous conclusions
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Fig. 2. Mean square error growth in Lorenz-63 model for correct distribution (solid) and unconstrained distribution (dashed). Fig. 2a is an increased resolution

view of the carly times of Fig. 2b,

about the predictability. In the case of the Lorenz-63 model,
the attractor is simple enough that one can offer a qualitative
cxplanation of the differences in error growth. As noted in
Anderson (1996) and a host of other publications in many
fields, the attractor of the Lorenz-63 model for the standard
parameters is locally a nearly 2-dimensional flat structure
embedded in the 3-dimensional model phase space. For the
initial condition distribution radius used here, the correct
initial condition distribution is approximately a circle, or a
pair of nearly parallel circles with the initial control point
approximately at the center of the single circle in the former
case and at the center of the larger of the two circles in the
latter case (slightly more complicated loci can occur near
the edge of one of the attractor lobes or near areas where the
two lobes bifurcate, but this has no impact on the qualitative
mechanism being described). As the correct distribution is
integrated, the circles are initially stretched along the attrac-
tor becoming ellipses, and eventually become long distorted
filaments that are found on both of the nearly flat lobes of
the attractor.

The unconstrained initial distribution is spherical in this
3-dimensional phase space (see Fig. | for an idealized
depiction of the correct and unconstrained distributions). As
the unconstrained distribution is integrated in time, points
that are not on the attractor are rapidly pulled onto one of the
foliation of sheets in the closest lobe of the attractor. In gen-
eral, the evolution of the unconstrained distribution in direc-
tions parallel to the nearby attractor lobe is quite similar to
the evolution of the correct distribution. However, as the 3-
dimensicnal unconstrained distribution is compressed to 2-
dimensions during the early stages of the integration, the
mean square error is reduced compared to the value for the
correct case. If the growth of the mean square error for the

correct case (growth parallel to the attractor) is relatively
slow compared to the rate at which points off the attractor
are pulled to the attractor, the initial evolution of the uncon-
strained distribution will result in a reduction of the mean
square error. This happens for most individual control points
in the Lorenz-63 model, and dominates the behavior in the
mean seen in Fig. 2a.

An analytic result derived in Appendix B quantifies the
maximum decrease in the mean square error that could be
expected from the mechanism described above. If the
unconstrained distribution is in an n-dimensional phase
space, and the model attractor has a structure that is locally
approximately m-dimensional, then the mean square error
can be reduced by a factor m/n by the collapse of the uncon-
strained distribution to the attractor. For the Lorenz-63
model this limiting error reduction would lead to a mean
square error of 2/3 times the initial mean square error.
Reductions of nearly this magnitude are seen for a number
of individual control points.

Behavicr similar to that seen for the unconstrained distri-
bution has been seen in more realistic numerical models
{Vukicevic and Errico, 1990; Vannitsem and Nicolis, 1994).
A naive interpretation might lead to conclusions that pre-
dictability is actually increasing with lead time in such a
system. However, for the Lorenz-63 system shown here, the
correct distribution always shows error growth in the mean
[although Smith{1995) has established that for infinitesimal
perturbations there are regions of the Lorenz-63 attractor for
which all perturbations decrease with time]. The fact that
the unconstrained distributions contain many points that
cannot oceur in the ‘climate’ of the model leads to an appar-
ent increased predictability in time; in fact, this is just a loss
of uncertainty that has been inappropriately included in the
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initial condition distributions. The initial reduction of mean
error for unconstrained distributions could become more
significant for more realistic models if the ratio of the phase
space dimension to the approximate dimension of the attrac-
tor were to increase. However, more complicated attractors
which do not display integral dimension locally might lead
to different behavior.

4 Other dynamical systems

It is not clear how the results for the Lorenz-63 model will
generalize to models with more complicated attractors or
higher dimensional phase spaces. These questions are inves-
tigated here, first by studying another 3-dimensional model
with a more complicated attractor, then by studying a nine
variable model with an attractor similar to that of the
Lorenz-63 model.

4.1 Lorenz-84 model

The Lorenz-84 model (Lorenz, 1984) can be regarded as a
highly truncated representation of the large scale atmo-
spheric circulation. Althcugh this model has not received as
much attention as the Lorenz-63 model, its more compli-
cated attractor structure has led to a recent surge of interest
{Lorenz, 1990; Leonardo, 1995). The model can be repre-
sented by the equations:

xz—yz—zz—ax+aF (4)
y=xy-bxz—-y+G (5)
2 =bxy+xz-2 (6)

Values for the parameters a, b, F, and G are 0.25, 4.0, 8.0
and 1.25 respectively as in Lorenz’s original description.
Figure 3 shows the initial evolution of the mean square
error in the Lorenz-84 model for the comect and uncon-
strained distributions. Both distributions demonstrate simi-
lar exponential growth starting at the initial time. The
unconstrained distribution shows slightly greater error
growth with a mean error doubling at time 0.31 compared to
0.33 for the correct distribution. In this case, one might
slightly underestimate the predictability of the dynamical
system by naively examining the unconstrained distribution
evolution.
The lack of initial error decay in the Lorenz-84 model is
consistent with the attractor of this model which has a local
" dimension that is considerably greater than 2, for instance,
the Kaplan-Yorke dimension is approximately 2.41
{Leonardo, 1995). The attractor is not of significantly lower
dimension than the entire phase space, so there is no oppor-
tunity for reduction of error through the mechanism
described for the Lorenz-63 model. The slightly enhanced
error growth for the unconstrained distribution is somewhat
more difficult to explain. Apparently, points on the fully 3-
dimensional unconstrained distribution are somewhat more

161

hd
tn

[

ha
&

L]

-
o

Mean Square Error / Initial Mean Square Errar

—

" 1 I 1 L I 1
015 02 026 03 035 04 045 05
Integration Time

L

] 005 0.1

0.5

Fig. 3. Mean square error growth in Lorenz-84 model for correct distribu-
tion (solid) and unconstrained distribution {dashed}).

likely to end up being initially attracted to portions of the
attractor that rapidly diverge from the control point than are
the equitably sampled points in the correct distribution.

It is not clear how the Lorenz-84 results might scale to
dynamical systems with more degrees of freedom because
its attractor is nearly the same dimension as the embedding
phase space. The occurrence of initial error reduction in
realistic models (Sect. 3) hints that the Lorenz-63 case may
be more relevant than the Lorenz-94 case, although great
care must be taken in extending any of the results here to
more realistic systems. Whatever the case, caution must be
exercised when attempting to bound model predictability
without using information about the model’s attractor.

4.2 9-variable model

A simple dynamical system with a slightly higher dimen-
sional phase space is the 9-variable model of Lorenz (1980).
This model is a truncated version of the primitive equations
which has been used to study the behavior of gravity waves
(Lorenz and Krishnamurthy, 1987). The 9-variable model is
represented by the equations:

X; = UUp+ ViV —vea X+ Y+ az, )
Y= UYp + YV - X;—voaY, ®)
z'!. = Uj(zk—hk)+(Zj"hj)vk_g0Xi_K0aizi
VF, ®
U, = —bjxt-+cyi (10)
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Vi=-bx;—cy; (11)
X; = —a;x; (12)
Y; = -ay, (13)

where each equation is defined for cyclic permutations of
the indices (i, j, k) over the values (1, 2, 3). The X, Y and z
variables can be thought of as representing divergence, vor-
ticity and height respectively while the subscripts can be
viewed as representing a zonal mean plus two wave compo-
nents for each of the three fields. All the parameters in Egs.
(7} through (13) are selected as in Lorenz {1980) in order to
produce a chaotic system.

The mean square error evolution for the correct and
unconstrained distributions in the 9-variable model are dis-
played in Fig. 4. The total mean square error and the mean
square error of only the 3 height variables (referred to as the
height error) are plotted as separate curves for each of the
distributions. For the correct distribution, the difference
between the total and height error curves is barely distin-
guishable at the plotting resolution. This is because the cor-
rect distribution consists of states on the model’s attractor
which are a subset of the model’s ‘slow manifold’ (Vautard
and Legras, 1986); the height and vorticity fields are nearly
in balance (Warn and Menard, 1986) with only a very small
divergence (by the classical definition, this is not a slow
manifold since there is not an exact balance).

For the unconstrained distribution, the height error evolu-
tton is quite different from that of the total error. Because
they are not confined to the attractor, most of the states in
the unconstrained distribution are not nearly in balance. The
result is that large gravity waves are generated during the
early phases of the integration; these waves have significant
projections on the height variables but huge projections on
the divergence variables.

For the mean height error, these gravity waves appear as
vacillations with period of about 2 time units in Fig. 4. For
the total mean square error, there are much larger amplitude
vacillations leading to a very large short term error growth
that masks any other effects. It is quite apparent that these
short term gravity waves result from an imbalance and are
not part of the model’s climate (attractor). It is also obvious
that the error doubling time of about .1 time units is not
representative of the true predictability of the system. This
paper argues that more subtle balances are also part of the
climate and can lead to similar errors in evaluating the error
doubling time and predictability.

The height mean square error curve for the unconstrained
distribution shows an initial decay in the mean square error
with lowest mean values of about 0.7 at 1 time unit. This is a
reflection of the same collapse to the attractor as was seen in
the Lorenz-63 model. The attractor of the 9-variable model
is quite similar to that for the Lorenz-63 model (Moritz and
Sutera, 1981). It is nearly flat locally and globally consists
of a pair of nearly flat lobes that intersect at one edge. In this
case, however, the attractor is embedded in a 9-dimensional
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phase space. The result of appendix B gives a lower bound
of 2/9 for the mean square error ratio in this case, but this
bound is not approached closely for any individual control
point. The very rapid error growth associated with the
appearance of gravity waves masks the collapse of the 9-
dimensional distribution to the 2 dimensional attractor so
that this limit is not approached as closely as in the Lorenz-
63 case. The gravity wave growth dominates relatively
quickly even in the height only error so that the uncon-
strained mean error doubles after approximately 10 time
units, 2 units before the correct distribution. In this case, one
would underestimate the predictability of the system by
using the naive unconstrained distribution.

One could ask if a simple ‘initialization’ procedure,
designed to remove gravity waves from the states in the
unconstrained distribution, would remove the differences
between the error growth in the unconstrained and correct
distributions. Examination of the local Lyapunov vector
structure of the 9-variable model reveals that the attractor is
an approximately 2-dimensional sub-manifold of a 3-dimen-
sional slow manifold on which gravity wave amplitude is
small. If an initialization is performed on the unconstrained
distribution, the resulting ‘initialized’ distribution is an
approximately 3-dimensional structure in the 9-dimensional
phase space while the attractor is nearly 2-dimensional;
other types of ‘balance’ that are not associated with gravity
waves are enforced on the attractor. When an initialization is
done, the error growth for the initialized distribution is qual-
itatively indistinguishable from the growth of the uncon-
strained distribution for the Lorenz-63 model.
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5 Predictability from poor analogs

Another method for evaluating the predictability of the
atmosphere {Lorenz, 1969} makes use of pairs of similar
observed states referred to as analogs. The growth of error
between the observations that followed the analog pair is
used to evaluate predictability. Since both of the analog
observed states are in the atmosphere’s climate (attractor),
this method is analogous to the correct distribution method
for evaluating model predictability outlined in previous sec-
tions. The fact that the observations are contaminated by
observational error does not have the same relevance as it
did in the discussion of previous sections since the state
being ‘integrated” by the atmosphere does not contain any
error. Unfortunately, only very poor analogs exist in the
available observational record (Lorenz, 1969; van den Dool,
1994) with the best analog pairs being separated by dis-
tances that are a significant fraction of the climatological
variance.

The method for selecting the correct initial condition dis-
tribution outlined in Sect. 2 can be readily adapted to exam-
ine the impact of using poor analogs to evaluate
predictability. The difference is that for this *poor analeg’
case, only points with distances from the control point
bounded below by 0.62 and above by 0.95 times the average
separation between two randomly selected points on the
model attractor are chosen. These bounds are somewhat
arbitrarily selected in an attempt to mimic the distribution of
analog distances found by Lorenz (1969).

The error evolution of the poor analog case can then be

compared to that for the correct distribution, also referred to
as the ‘good analog’ distribution. Figure 5 shows the evolu-
tion of the mean square error for the Lorenz-63 model. At
very early stages of the integration, the error growth curves
for the poor and good analog cases are nearly indistinguish-
able; this corresponds to the linear growth regime mentioned
by Lorenz(1969) and many subsequent studies, After time
0.1, the poor analog distribution shows slower error growth;
by time 0.2, the concavity of the poor analog error growth
curve has changed as the effects of the limits on growth
imposed by the climatological variance of the attractor begin
to take effect. These results suggest that in the Lorenz-63
model, using poor analogs to investigate the effects of error
growth may produce nearly correct results for very short
integration periods. If longer periods are examined, for
instance the time to error doubling, the poor analog case
tends to overestimate the predictability considerably.
. Results for the poor analog cases in the Lorenz-84 and 9-
variable model (not shown) are qualitatively indistinguish-
able from those for the Lorenz-63. The poor and good ana-
log distributions have similar error growth at the earliest
phases of the integration, but the error doubling time is
somewhat shorter in the poor analog cases. It is not immedi-
ately clear how these results would scale to much larger
dynamical systems; until that problem can be investigated
caution must be exercised in interpreting predictability
results derived from the evolution of atmospheric analogs.

Mean Square Ermor / Inisal Mean Square error

i 1 1
0 ¢.05 0.1 0.15 02 025
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Fig. 5. Mean square error growth in Lorenz-63 model for good analog (cor-
rect) distribution (solid) and poor analog distribution {dashed).

6 Summary and Conclusions

Three simple low-order dynamical systems have been used
to examine methods for computing the predictability of
forecast models. In this perfect model study, the only source
of error in a model integration has been assumed to come
from observational errors in the integration’s initial condi-
tion. The predictability is measured by the length of time
required for the average error of an observational error dis-
tribution to double when integrated in the model. ‘

This method as generally applied fails to take into
account that not all points in the phase space of the model
can actually occur once the impact of arbitrary initial condi-
tions has become negligible; only points on the model’s
attractor are possible, However, the observational error dis-
tribution may project on states that are not on the attractor,
resulting in unrepresentative error growth results. The ‘cor-
rect’ error growth problem examines the error growth for the
projection of the observational error distribution onto the
model’s attractor.

The ‘correct’ error growth has been compared to the
unconstrained error growth that results from ignoring the
existence of the model attractor for a trio of simple dynami-
cal systems. In the 3-variable Lorenz-63 model, the uncon-
strained problem was found to give error doubling times that
are longer than those for the correct problem. This behavior
was explained in terms of the collapse of the initially 3-
dimensional unconstrained error distribution onto the nearly
2-dimensional attractor of the model. This type of behavior
could be considerably more significant in models with
higher dimensional phase space.

Results for a 9-variable primitive equation model were
more complicated but revealed the same type of behavior as
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for the Lorenz-63 model. Unconstrained initial states off the
attractor led to extremely rapid growth of gravity waves
which result in very short error doubling times. Even if ini-
tialization is performed to remove the gravity waves, more
subtle balances are still not enforced in the unconstrained
distribution and the results look very much like those for
Lorenz-63,

A third model, the Lorenz-84 three variable model, does
not allow the collapse of the unconstrained distribution to
the attractor because the attractor does not have a signifi-
cantly smaller dimension than the whole phase space. In this
case the results were quite different with the unconstrained
distributions showing faster error growth. It seems likely
that the attractors of large forecast models are much smaller
than the embedding phase space (Selten, 1993), so this
result may not have as much relevance for larger models.
However, it points to the difficulties involved in knowing the
exact impacts on predictability of using information about
the model states that can actually occur.

The errors that arise from failing to use information about
the model’s attractor in the simple systems examined here
suggest that the results from the many unconstrained distri-
bution studies [for instance Farrell (1990} and Houtekamer
(1991) which do not directly consider model attractor struc-
ture] in higher order models must be regarded as somewhat
tentative. In general, it seems likely that the type of errors
encountered in large models are more likely to be consistent
with those found for the Lorenz-63 type model. Failing to
use information about the atiractor would lead to an overes-
timate of the predictability in such systems. It is important
to note that in almost all such studies, it would be prohibi-
tively expensive to attempt to determine much information
about the moedel] attractor.

Some previous studies with realistic models have
attempted to avoid unbalanced perturbed initial conditions
by using information from the model’s long term climate in
the selection of the perturbations (Schubert and Suarez,
1989), In the Lorenz-63 model, such an approach would be
more similar to the correct distribution than to the uncon-
strained distribution because the attractor is globally rela-
tively flat. However, this method would have little impact in
the Lorenz-84 or 9-variable models where the attractors
curve throughout the phase space. Again, it is not immedi-
ately clear if this type of approach gives a reasonable esti-
mate of the predictability in realistic models or not. Even if
the attractors of large models are of relatively low dimen-
sion compared to the model phase space, these attractors are
unlikely, to be ‘flat’ globally.

The great expense of finding reasonable analogs in higher
order models precludes the type of comprehensive study that
was performed here. However, even a small sampie of mod-
erately good analogs might be sufficient to see if states on
the attractor separate less rapidly than states selected ran-
domly from the entire phase space. The results of Sect. 5,
that suggest that relatively low quality analogs may still give
reasonable information about error doubling times, lend
some support to the notion that relatively poor (and there-
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fore more easily computed) analogs could be used success-
fully in such a study.

As pointed out in Anderson (1996), the predictability
results here may also have relevance to the ensemble fore-
casting problem (Houtekamer and Derome, 1995). If the
error growth for points off the attractor are truly unrepresen-
tative then an ensemble forecast that samples an observa-
tional error distribution without taking into account the
constraints from the model attractor may produce incorrect
results. Unfortunately, addressing this problem would
require the existence of relatively inexpensive algorithms for
finding the local structure of the model’s attractor. Research
on establishing whether such algorithms are possible would
be a useful contribution to the development of operational
ensemble forecasts. Results for ensemble forecasting experi-
ments are also complicated by non-equilibriom dynamics
since the observed point around which the observational
error distribution is ‘centered’ is unlikely to be on the
model’s attractor.

Appendix A Generating analog distributions

The ‘correct’ distributions used to evaluate predictability are
hypothetical representations of observational error. The cor-
rect distributions are chosen to be a random sample
(Epstein, 1969) of th. attractor structure within a radius, r,

of a control point, AL To generate this equitable sample, the
maodel is first integrated for a long time starting from the
control point. The integration is continued and a record is
kept of each temporally contiguous sequence of points that

passes through the hypersphere of radius r surrounding AY,
such a sequence is referred to as an analog segment. Only
one point on a given analog segment can be chosen as a
member of the final correct distribution because points on
the sarne segment are not independent and will not undergo
any exponential separation when integrated. However, if one
randomly selects a single point from each analog segment,
points on short segments are more likely to be selected than
those on long segments resulting in an inequitable sample.
To avoid this, an analog segment of length n is only sampled
with probability n/m, where m is the number of points on
the analog segment with the most points.

Appendix B Error ratio for compressed hyperspheres

The question of interest is the ratio of mean square error
between an error distribution that is directionally uniformly
distributed around a control point in an n-dimensional phase
space and the mean square error when that distribution is
compressed onto an m-dimensional subspace that also con-
tains the control point. One can compute this ratio by look-
ing at the expected value of the ratio for a single point in the
error distribution.

Let S = {xy, X3,..., X} be a vector randomly selected from
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a distribution that is directionally uniformly distributed on
an n-dimensional sphere where each of the x; is the projec-
tion of § onto one of a set of orthogonal vectors that span the
n-dimensional phase space. S can be generated by indepen-
dently sampling each of the x; from a standard normal distri-
bution (Knuth, 1981), Without loss of generality, let the first
m basis vectors lie in the m-dimensional subspace and let
the remaining n-m basis vectors be perpendicular to this
subspace. The expected value of the ratio of mean square
error in the m-dimensional subspace to the mean square
error in the full n-dimensional space is:

[(xf+x§+...+xr2n)i| _ mE[x?] om

2 2 2 z "
(x[+x3+...x,) nE[x]

This result is independent of the magnitude of § so the ratio
applies to arbitrary distributions of error radius in the n-
dimensional space.

Similar results can be derived for other measures of error
growth, For instance, a much more involved derivation
reveals that the ratio of expected values for the root mean
square error is:

)
50

where ['is the gamma function. This result is related to

techniques used to derive confidence bounds for the tradi-
tional chi-square test (Knuth, 1981); the ratio can also be
expressed in terms of a ratio of beta functions.
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