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Abstract. In this paper we study Lagrangian trans-
port in the near wake of the flow around an obsta-
cle, which we take to be a cylinder. In this case, for
the range of Reynolds numbers investigated, the flow is
two-dimensional and time periodic. We use ideas and
methods from transport theory in dynamical systems to
describe and quantify transport in the near wake. We
numerically solve the Navier-Stokes equations for the
velocity field and apply these methods to the result-
ing numerical representation of the velocity field. We
show that the method of lobe dynamics can be used in
conjunction with computational fluid dynamics meth-
ods to give very detailed and quantitative information
about Lagrangian transport. In particular, we show how
the stable and unstable manifolds of certain saddle-type
stagnation points on the cylinder, and one in the wake,
can be used to divide the flow into three distinct re-
gions, an upper wake, a lower wake, and a wake cavity.
The significance of the division using stable and unsta-
ble manifolds lies in the fact that these invariant man-
ifolds form a template on which the transport occurs.
Using this, we compute fluxes from the upper and lower
wakes into the wake cavity using the associated turn-
stile lobes. We also compute escape time distributions
as well as compare transport properties for two different
Revynolds numbers.

1 Introduction

There has been much work on applying dynamical sys-
tems techniques to the study of mixing and transport
issues in fluids over the past 10 years. Babiano et al.
(1994] and Aref and El Naschie [1994] provide recent re-
views. However, most of this work has been done in the
context of two-dimensional, time-periodic flows. There
is good reason for this. In this situation the equations for
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fluid particle paths take the form of Hamilton’s canoni-
cal equations with the streamfunction playing the role of
the Hamiltonian function. If the flow is-time-periodie,
then the study of fluid particle trajectories can be re-
duced to the study of an associated two-dimensional,
area-preserving Poincaré map. In this setting many
techniques of dynamical systems theory can be immedi-
ately applied. Moreover, they have immediate implica-
tions for fluid transport. issues. For example, KAM tori
are barriers to the transport of fluid and Smale horse-
shoes give rise to chaotic fluid particle paths and rapid
mixing. Essentially all of this work has been in the sit-
uation where one has an explicit analytical formula for
the velocity field. From the point of view of applications,
this is a severe limitation, and this is where computa-
tional fluid dynamics enters the picture.

Over the past 15 years computational fluid dynamics
has developed into a subject in its own right. Now we
have accurate algorithms for solving the Navier Stokes
equations in a variety of physically important settings.
However, many problems related to mixing and trans-
port begin once this step has been accomplished. That
is, first a solution to the Navier Stokes equations must
be obtained in order to study the transport and mix-
ing properties associated with that velocity field. In the
vast majority of situations arising in applications, this
solution can only be obtained numerically. Thus, we
only have a numerical representation of the vector field.
Nevertheless, most dynamical systems results are not
dependent on a specific analytical form of the dynam-
ical system under consideration. Rather, they require
that only certain geometrical features be present. For
example, the existence of stable and unstable manifolds
of some invariant set requires only the existence of a hy-
perbolic invariant set, the existence of Smale horseshoe
type chaos requires only the transverse intersection of
the stable and unstable manifolds of a hyperbolic pe-
riodic orbit, and the existence of KAM tori requires
only that the flow be a two-dimensional time-periodic
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perturbation of an integrable flow that has a region of
closed streamlines. If it is known that these structures
are present in the flow, then this information, along
with information on their geometrical arrangement in
the flow, can be used to gain a quantitative understand-
ing of transport. For example, if a flow with periodic
boundary conditions contains a KAM torus then recent
work of Mezi¢ and Wiggins [1994] shows that, neglecting
molecular diffusion, an initial distribution of tracer that
is both inside and outside the KAM torus will exhibit
asymptotic 2 dispersion. If the effects of molecular dif-
fusion are considered then work of Mezié¢ et al. [1996]
shows that in the high Peclet number limit the effective
diffusivity scales like the square of the Peclet number.
The existence of a Smale horseshoe implies the existence
of local exponential expansion of fluid line elements and
rapid stirring of fluid. The stable and unstable mani-
folds of hyperbolic periodic orbits may form a template
which governs large scale transport in a flow (Beigie et
al. [1994}). A common feature of each of these exam-
ples is that a “low dimensional” geometric feature of the
flow can be used to quantify a more global feature of the
transport.

Because of the current limitations in the applications
of these methods (i.e. the need for an analytical rep-
resentation of the velocity field) a useful area of re-
search is the development of dynamical systems tech-
niques for the analysis of numerical representations of
velocity fields. In this paper we consider transport in
the wake of the flow around bluff bodies. In particu-
lar, we have considered the flow around a cylinder. Our
work is a continuation of earlier work of Shariff et al.
(1991] who showed that dynamical systems theory could
be used to explain a variety of observations related to
the flow in the near wake of a cylinder due to Perry et
al. [1982].

There are several reasons that make this flow an ideal
starting point for the development of dynamical sys-
tems techniques for the analysis of Lagrangian transport
properties numerical representations of velocity fields.
One is that for Reynolds numbers smaller than about
190 the flow is experimentally well-established to be two-
dimensional. For Reynolds numbers larger than about
50 it is also time-periodic. Thus we are in a situa-
tion where the mathematical theory is well-developed,
but it’s implementation for numerical velocity fields is
not. Moreover, the numerical computation of the flow
around a cylinder for this range of Reynolds numbers
is standard. Thus we are also in a situation where we
can concentrate solely on the development of dynam-
ical systems techniques for analyzing numerical veloc-
ity fields without having to develop new dynamical sys-
tems theory or deal with computational issues arising
from the first step of solving the Navier-Stokes equa-
tions. In this paper we consider two Reynolds num-
bers: 100 and 190. Reynolds number 100 puts us in
the middle of the Reynolds number range where the
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flow is well-established to be two-dimensional and time-
periodic. Reynolds number 190 is very close to the criti-
cal number where a three-dimensional instability occurs.
For both Reynolds numbers there are five stagnation
points of interest in the flow: four on the cylinder and
one in the wake. We have shown that the stable and
unstable manifolds of these stagnation points (one di-
mensional curves) form a template which governs the
process of Lagrangian transport in, and near, the wake.
Most importantly, we have computed these manifolds
from the numerical solution of the Navier-Stokes equa-
tions for flow around the cylinder.

As mentioned earlier, our work is a continuation of the
work of Shariff et al. [1991]. Their paper laid the foun-
dation for the dynamical systems analysis for fluid trans-
port in the near wake of a cylinder in the time-periodic
regime. Through comparisons with experimental obser-
vations of Perry et al. [1982], they argued that dynami-
cal systems theory provided an excellent framework for
considering a variety of transport issues from the La-
grangian point of view. An important contribution was
an analytical argument for finding (non-hyperbolic !)
stagnation points on the cylinder having stable or un-
stable manifolds. They also gave a detailed discussion
of the numerical issues for locating such points, as well
as tracking particle trajectories generated by a numeri-
cally obtained velocity field. They locate the stagnation
points on the circular cylinder surface with unstable or
stable manifolds as well as locate a hyperbolic periodic
point in the wake and generate its unstable and stable
manifolds. From this information they determine the
manner in which the manifolds divide the flow into an
upper wake, lower wake, and a wake cavity. They also
constructed the turnstile lobes associated with transport
between the upper wake and the wake cavity and those
associated with transport between the lower wake and
wake cavity.

We carry on the analysis from this point using the
manifolds, and the numerical implementation of the tech-
nique of lobe dynamics. This allows us to go further and
show the following.

~ We have computed areas of the turnstile lobes as-
sociated with transport. The area of the respective
turnstile lobes gives us the flux between the upper
wake and the wake cavity and the flux between the
lower wake and wake cavity.

— We have shown that once particles leave the wake
cavity they cannot return to the wake cavity (up to
the limit of the time of computation).

— We have shown that the only way that particles
can move from the upper (resp. lower} wake into

'Following the terminology of dynamical systems theory, a
stagnation point is said to be hyperbolic if the matrix associated
with the linearization of the velocity feld about the stagnation
point has no eigenvalues on the imaginary axis.
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the lower (resp. upper) wake is by making an in-
termediate passage through the wake cavity.

— We have determined the percentage of particles en-
trained into the wake cavity from the upper wake
that escape from the wake cavity on successive shed-
ding cycles.

— We have shown that for Reynolds number 100 es-
sentially no “cross-wake” transport (i.e., transport
from the upper to lower wake, and vice-versa) oc-

curs while for Reynolds number 190 substantial cross-

wake transport occurs. This was also noted by
Shariff et al. [1991]. The reason for this is that
in the former case there is an “almost” heteroclinic
connection that acts as a barrier to transport.

— Wae have numerically implemented a topological ar-
gument that indicates that the wake cavity contains
a Smale horseshoe type invariant set that gives rise
to chaotic particle trajectories and associated expo-
nential expansion of fluid line elements.

Hence, dynamical systems techniques, and lobe dynam-
ies in particular, can be used in conjunction with tech-
niques in computational fluid dynamics to give very de-
tailed information about Lagrangian transport.

2 The Velocity Field

We obtain the velocity field u(z,y,t), v(z,y,t) for flow
past a circular cylinder from time-dependent simulations
of the incompressible Navier-Stokes equations on a two-
dimensional rectangular domain via a spectral element
method. For background on the method see Patera
[1984], Fischer {1989] and references therein. The actual
data for the velocity field used in this paper is generated
on a multiprocessor Silicon Graphics machine by an un-
structured spectral element program developed in Hen-
derson [1994] and Henderson and Karniadakis [1995].

Our computation is based on a circular cylinder with
diameter 1. At the left, upper and lower boundaries of
a rectangular computational domain, we use a uniform
flow boundary condition: u = 1, = 0. At the right
boundary, we use a standard outflow boundary condi-
tion for the velocity and pressure (p):

du/dr =0, 8v/dz =0,

At the surface of the cylinder we apply no-slip bound-
ary conditions. The simulations are run long enough to
obtain an asymptotic, time-periodic velocity field.

p=0.

2.1 Particle Paths

The fluid particle motions are governed by

T = u(z,y,t) (1)
y = v(z,y,t). (2)
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The velocity field uw{x,y,t),v{x,y,t) is interpolated by
bicubic splines and particle paths or trajectories are ob-
tained by solving (1)-(2). The velocity field obtained in
this way remains incompressible up to some computa-
tional precision. We discuss a test of this later after we
have introduced the idea of “turnstile lobes” and com-
puted their area.

The particle trajectories are solved using a fourth
order Runge-Kutta scheme, and these trajectories are
visualized by a graphical user interface developed by
Shariff and Pulliam. When the velocity field is periodic
in time, we can locate fixed points of the associated
Poincaré map (see the next section). By iterating line
or curve segments sufficiently close to the fixed points,
we can generate good approximations to the stable and
unstable manifolds emanating from such fixed points.
To plot the various manifolds we use the commercial
data processing tool TECPLOT.

2.2 The Poincaré Map

For time-periodic velocity fields a variety of standard
dynamical systems techniques and results make it ad-
vantageous to consider particle kinematics via the so
called Poincaré map, which we will denote by P. That
is, rather than plotting a particle trajectory as a con-
tinuous curve in space one plots its evolution at discrete
intervals of time, where the interval of time is equal to
the period of the velocity field. Thus, it is important
to keep in mind that for the Poincaré map particle tra-
jectories are manifested as sequences of discrete points
{called orbits), rather than continuous curves.

For Reynolds numbers 100 and 190 there are five saddle-
type fixed points associated with the cylinder that will
be of interest; four on the cylinder and one in the wake.
The points on the cylinder are characterized by zero
time-averaged tangential shear stress (Shariff et al. [1991])
and each has associated with it an invariant curve. In
Fig. 1 we illustrate these points along with a small piece
of the associated invariant curves.

Invariant means that trajectories with initial condi-
tions on the curve always remain on the curve. Conse-
quently these invariant curves provide barriers to Auid
transport in much the same way that streamlines do for
steady two-dimensional flows. In dynamical systems jar-
gon the invariant curves associated with the points at
the front and back of the cylinder are referred to as stable
maenifolds since trajectories on these curves approach the
saddle points asymptotically as time approaches +oc.
The invariant curves associated with each of the other
two points at the back of the cylinder are referred to
as unstable manifolds since trajectories on these curves
approach the saddle points asymptotically as time ap-
proaches —o0. The saddle point in the wake has bath
stable and unstable manifolds.

For unsteady flows the stable and unstable manifolds
of different saddle-type fixed points may not coincide (or
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Fig. 1. Re = 100 (top) and Re = 190 (bottom): The five saddle
peints and small pieces of their associated invariant curves,

“join up”) to make a separatrix of finite length, rather
they may intersect in a discrete number of points and
wind throughout the flow as illustrated in Fig. 2. (The
stable and unstable manifolds of the different saddle-
type fixed points actually have infinite length, but we
obviously can only show a finite portion of each in the
figure.) Next we consider transport in the near wake
and show how the geometric structure associated with
the stable and unstable manifolds of the different saddle-
type fixed points influence transport.

3 Transport in the Near Wake: Turnstiles and
Lobe Dynamics

3.1 The Steady Wake: No Transport

To motivate our study of transport in the near wake of
a circular cylinder, we first consider the case of a steady
wake. I'or Reynolds numbers Re approximately between
5 and 41, the flow past a circular cylinder is steady,
separated and with standing eddies (Van Dyke [1982)).
We sketch the streamline pattern below for Re = 40,
based on the numerical simulation of Dennis and Chang
[1970).

We note that there are five stagnation points. The
flow is divided by streamlines into an upper wake, a wake
cavity and a lower wake. The wake cavity is symmetric
with respect to a horizontal line through the center of
the cylinder and it is further divided into two identical
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Fig. 2. Re = 100 (top) and Re = 190 {bottom): “Tangling” of
the stable and unstable manifolds of the saddle-type fixed points
associated with the Poincaré map.

“cells”, i.e., an upper cavity and a lower cavity.

Since fluid particles move along streamlines in this
steady flow, it is clear that there is no fluid transport
between upper wake and wake cavity, or between lower
wake and wake cavity. There is also no cross wake trans-
port. However, for an unsteady wake, we will see that
the situation is very different.

3.2 'The Division of the Flow into Regions

For the Poincaré map, segments of finite length of the
stable and unstable manifolds of the saddle-type fixed
points can be used to form boundaries between regions
in the flow corresponding to qualitatively different par-
ticle trajectories. We illustrate this in Fig. 4 where the
segments of finite length begin at the saddle-type fixed
points denoted U and L and end at particular intersec-

Vie
Fig. 3. Re = 40: Sketch of the streamline pattern based on the
numerical simulation by Dennis and Chang [1970].
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tion points of the stable and unstable manifolds, which
we will refer to as the boundary intersection points (the
choice of which is arbitrary), labelled ¢; and g2 in the
figure. In the figure we continue drawing the manifolds
only slightly past the boundary intersection points so
that the boundaries we are considering are clearly illus-
trated.

R1

q4
P'1 (av) .

.
P(d,)

q2

Fig. 4. Re = 100 {top) and Re = 190 (bottom): Boundaries
made up of segments of stable and unstable manifolds between
different regions for the Poincaré map of the cylinder flow.

The curves depicted in Fig. 4 bound three regions:
the upper wake (R;), the lower wake (R3), and the wake
cavity (Rz). We remark that the wake cavity is generally
not symmetric with respect to a horizontal line through
the center of the cylinder, and this is quite different from
the wake cavity in the steady wake as shown in Fig. 3.
Understanding the reasons for this would require a study
of the spatial variation of the time dependence, which is
beyond the scope of this paper. However, the wake cav-
ity is symmetric with respect to a change in the Poincaré
section. This will be explained in next section. The sta-
ble and unstable manifolds of hyperbolic orbits play the
role of forming boundaries between qualitatively differ-
ent fluid particle trajectories. In this case, trajectories
that enter the wake cavity are distinct from trajectories
in the upper and lower wake in that the horizontal veloc-
ity component of trajectories in the wake cavity changes
sign. This is an unambiguous criterion for determining
which fluid particles are “trapped” behind the eylinder.
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3.3 Turnstiles and Flux

Now we can consider the question of fluid exchange be-
tween the different regions defined by our chosen bound-
aries that are shown in Fig. 4. The key point here
is that the stable and unstable manifolds forming the
boundaries of these regions quantitatively describe the
exchange, and it is this feature that we now describe.

First, we list two rules that points on the stable and
unstable manifolds of saddle-type fixed points must obey
under iteration by the Poincaré map. (By “iteration”
we mean repeated application of the Poincaré map to a
particle or, in other words, discrete time evolution of a
particle trajectory.)

1. A point that is on both the stable and unstable man-
ifolds must remain on both manifolds under all pos-
itive and negative iterations of the Poincaré map.

This is because these manifolds are invariant man-
ifolds.

2. Points on the stable or unstable manifolds of a fixed
point maintain their relative order (in the sense of
distance in arclength from the fixed point)} under
iteration by the Poincaré map. That is, if we con-
sider two distinct points on the stable or unsta-
ble manifold then one will be closer than the other
to the fixed point in the sense of arclength along
the stable or unstable manifold. If we then iterate
both points, the same point will always therafter
be closer to the fixed point. The reasons for this
are more technical and are related to uniqueness of
particle trajectories for a given initial condition.

With these two rules in mind let us return to Fig. 4 and
consider the preimages under the Poincaré map of the
boundary intersection points, i.e., the backwards time
evolution of these points for one period of the velocity
field. These points are labelled P~1(g;) and P~ (qg;) in
the figure. By rule 1 these points still lie on both the
stable and unstable manifolds, and since the manifolds
are smooth curves they must wind through each other
as shown in Fig. 5. Here we only describe the mech-
anism for transport between the upper wake and the
wake cavity (transport across the “upper boundary”).
The same argument applies to the boundary between
the lower wake and the wake cavity.

Hence, the segments of the stable and unstable man-
ifolds between a boundary intersection point and its
preimage form two lobes and these two lobes are said
to form a turnstile. The turnstiles are the mechanisms
governing transport between the different regions, as we
will now argue.

Now consider the image of the turnstile lobes under
the Poincaré map P (i.e., the evolution of these points
for one period of the flow). Using the two rules above,
as well as the fact that (for a continuous and continu-
ously invertible map) the boundary of a set. maps to the
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L2
Gy
P (c)
W
L2,1
L2
4
P-"(q)
w
L2, 1

Fig. 5. Re = 100 (top) and Re = 190 (bottom):

boundary of its image and the interior of a set maps to
the interior of its image, we see that the image of the
turnstile lobes appear as in Fig. 6. Thus, the respective
turnstile lobes have “switched sides” in relation to the
boundary, hence the term “turnstile” (note: the nota-
tion for the turnstile lobes should be clear; L; ; denotes
the turnstile lobe contained in R; that enters R; under
iteration by P). Now, using rule 2 above, it can be ar-
gued that the only points that cross the boundary in
one iteration of the Poincaré map are those in the turn-
stile lobes. Therefore the flur across the boundary in
one period is simply the area of the turnstile lobe. More
details of the theory can be found in Wiggins [1992).

In Fig. 7 we show the the turnstiles and their images
for the upper boundary, and in Fig. 8 we show the
turnstiles and their images for both the upper and lower
boundaries.

We have computed the areas of the wake cavity and
the turnstile lobes for Re = 100 and Re = 190, and
the values are given in Table 1, Table 2 and Table 3,
respectively.

Re | Cavity Area
100 | 1.14
190 | 0.86

Table 1 — Areas of the cavities for Re = 100 and
Re = 190. The diameter of the cylinder is 1.
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a1 ) P{Lz,1)

P(L2)

Fig. 6. Re = 100 (top) and Re = 190 (bottom):

Lobe | Area
Lia 0.17
Lo 0.17
Las 0.17
L3 2 0.17

Table 2 — Re = 100: Areas of the turnstile lobes. The
diameter of the cylinder is 1.

Lobe | Area
Lio 0.17
Lyy | 017
Las 0.17
Ly, 0.17

Table 3 — Re = 190: Areas of the turnstile lobes. The
diameter of the cylinder is 1.

The fact that the area of lobe L;; equals the area
of lobe L;; indicates that the velocity field obtained
through interpolation by bicubic splines preserves in-
compressibility, to the degree of precision to which the
turnstile lobes agree in area.
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Fig. 7. Re = 100 (top} and Re = 190 (bottom): The turnstiles
for the upper boundary. Hatched regions map to hatched regions.

3.4 Quantifying Transport in the Near Wake

Using lobe dynamics we can describe in detail a number
of features related to transport into and out of the wake
cavity, and transport cross the wake cavity.

3.41 Symmetry with Respect to the Choice of Poincaré

Section

We note that there is a symietry with respect to the

phase of the shedding cycle that is used in the choice of
the Poincaré section. The velocity field u(x, y,t), v{z, y, t)
is computed at 51 time units with equal time-step size,

i.e., we have 51 frames of values for u,v, during one

shedding cycle. The Poincaré sections can be taken at

any of these 51 frames. When it is taken at frame 1,

we say that the Poincaré section has base phase 1, ete.
+ There is a symmetry for the stable and unstable mani-

folds on Poincaré sections in the following sense. When

we change the base phases of the Poincaré sections, the

unstable manifold of the upper cylinder saddle point U,

WH(U), will become the flip (or mirror) image of the

unstable manifold of the lower cylinder saddle point L,

W*(L), at an earlier (or later} base phase. See Fig. 9

for the case Re = 100. We note that, W*(U) at base

phase 25 becomes (approximately) the mirror image of
W*H(L) at base phase 1,
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Fig. 8. Re = 100 (top} and Re = 190 (bottom): The turn-
stiles controlling exchange between the upper wake (R ), the wake
cavity {Rz), and the lower wake (R3). Hatched regions map to
hatched regions.

vl

ey

Fig. 9. Re = 100: The unstable manifolds of the upper and
lower cylinder saddle points U and L, at base phase 1 (top); The
unstable manifold of the upper cylinder saddle point I/, at base
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In the following we will fix the Poincaré section at
the base phase 1 and, consequently, we will only need
to study the transport across the upper boundary of the
wake cavity.

3.4.2 Cross Wake Transport

In this section, we consider transport across the wake.
We note first that

Particle trajectories can pass from the upper
wake to the lower wake {or vice versa) only
by making an intermediate passage through the
wake cavity.

This is seen as follows: outside the cylinder and wake
cavity the boundary between the upper and lower wake
is the stable manifold of the saddle point M at the front
of the cylinder and the unstable manifold of the saddle
point W in the wake; see Fig. 10. Since trajectories
cannot cross these invariant manifolds the only way a
trajectory can pass from the upper to the lower wake
(or vice versa) is by passing through the wake cavity.

It follows directly from our discussion of the turnstiles
as the mediators of transport into and out of the wake,
that the region

Pn(Ll,z) n L2,3 (3)

consists of particles that enter the wake cavity from the
upper wake, spend 7 shedding cycles in the wake cavity,
and exit the wake cavity into the lower wake on the n+1
shedding cycle. (one can obtain a similar expression for
transport between the lower wake and the upper wake
simply be switching the 1 with the 3 in this expression.)
However, we find that within the wake cavity there is
a barrier that strongly inhibits this “cross-wake” trans-
port (this was also noticed by Shariff et al. [1991]). In
Fig. 10 (top) for Re=100 the stable manifold of the
saddle point on the cylinder M appears to nearly co-
incide with one branch of the unstable manifold of the
saddle point in the wake W. Using solely numerical
methods we cannot be certain that these manifolds co-
incide (and thus split the wake cavity into two disjoint
regions) however we can verify that in this case (3) is
the empty set for n = 1,2,3. Nevertheless, even if they
do not coincide it is clear that transport across the wake
cavity is extremely slow, and we are able to make a qual-
itative comparison between the cases of Re = 100 and
Re =190,

For Re=190 the situation is very different. In this case
the same stable and unstable manifolds intersect and ex-
hibit large amplitude intersections as shown in the lower
figure in Fig. 10 (bottom). In this figure the stable man-
ifold of M is denoted by the dotted line and the unstable
manifold of W is denoted by the solid curve. The “large
amplitude” oscillations of these two manifolds are ap-
parent in comparison to the upper figure in Fig. 10.
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Fig. 10. Re = 100 {top) and Re = 190 {bottom): Crosswake
transport.

This leads to greatly enhanced cross-wake transport as
we can easily verify that (3) is nonempty for n = 1.
This implies that particles can pass from the upper to
the lower wake in one shedding cycle. This cannot hap-
pen for Re=100.

3.4.3 Residence Time and Escape Rates

We now consider the following problem:

If o particle enters the wake cavity from the
upper wake, how long will it remain inside, and
when it exits, does it enter the upper or lower
wake?

This question can also be answered in terms of the turn-
stile lobes. The only particles that enter the wake cav-
ity from the upper wake during each shedding cycle are
those in the lobe Li,. Once inside the wake cavity,
they can exit into the upper wake only through the lobe
Ls,1, and into the lower wake only through the lobe L, 3.
Thus

P (Ly3)N Ly, (4)

is the set of particles that enter the wake cavity from the
upper wake, spend n shedding cycles in the wake cavity,
and exit the wake cavity into the upper wake; recall Fig.
7. Similarly,

P (L1 2)N Ly, (5)
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is the set of particles that enter the wake cavity from the
upper wake, spend n shedding cycles in the wake cavity,
and exit the wake cavity into the lower wake. In Fig. 11
we show P" (L3 2} M Lyq for n = 1,2,3, for Re = 100.
For Re = 100, P™ (L12) N Lo 3 is empty for n = 1,2,3
and hence, particles that enter the wake cavity from the
upper wake can only exit the wake cavity through the
upper cavity boundary and enter the upper wake.

L .
N
// ~, \\\\ i Kf‘”“ "’,,,—"’_ -
/ N
/ \\ P(L,,)
\\ /
L 4
e
Ly, 57
///)’ T '\’\ ‘ R
Nl Wﬂ ﬁ/ e
{ \" \. -“""—/ 2
| | P (L1,2)
l.\.\ / /;
\\ /'
- . //

Fig. 11. Re = 100 — Images of the entrained lobe Ly 3.

For Re = 100, we have numerically computed the area
of P"(Ly1,2) N La,) divided by the area of the lobe L, 2,
n = 1,2,3,.--. This describes the percentage of parti-
cles entrained into the wake cavity from the upper wake
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that escape the cavity after 1, 2, and 3 shedding cycles,
respectively. We refer to these quantities as escape rates
of those particles entrained from the upper wake. See
Table 4. For Re = 190, since particles entrained from
the upper wake may exit into both the upper or lower
wake, i.e., the images of the entrained lobe L, may
intersect both lobes Ly ; and Ly 3, the escape rates are
given by the area of (P™(Ly z)N Ly 1 )U(P™{(L1 3)NLa3)
divided by the area of the lobe L; 2, n =1,2,3,..-. See
Table &.

Shedding Cycles | Escape Rate
cycle 1 2%

cycle 2 39%

cycle 3 30%

Table 4 — Re = 100: Percentage of particles entrained
from the upper wake that escape on subsequent
sheddding cycles.

Shedding Cycles {| Escape Rate
cycle 1 49%
cycle 2 41%

Table 5 — Re = 190: Percentage of particles entrained
from the upper wake that escape on subsequent
sheddding cycles.

The fact that our flow is an apen flow (and fluid par-
ticles continuously flow downstream) prevent us from
computing Ly N P*(Ly ;) for large n since the lobes
relatively quickly leave the computational domain. Nev-
ertheless, we readily see from these tables that most par-
ticles entrained into the wake cavity spend little time in
the cavity before escaping. From the above tables, we
see that the escape rates (hence the fate of trapped par-
ticles) are quite different for Re = 100 and Re = 190.

Now we consider the problem.

Can escaped particles re-enter the wake cavity?

The set
P (Ly )N Ly g, (6)

consists of particles that exit the wake cavity into the
upper wake, spend 7 shedding cycles in the upper wake,
and enter the wake cavity on the n + 1 shedding cycle;
see Fig. 7 and Fig. 12. Numerically we find that the
set (6) is empty for Re = 100 for n = 1,2, 3, and for
Re = 190 for n = 1,2. For larger n, we would need to
do computations on even larger domains. However, It
seems reasonable that this is true for all n. We argue
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in the following way. The lobes P™ (Lg,;) extend down-
stream (see Fig. 7 and Fig. 2) and this is also seen to
be true in experiments (e.g., Perry et al. [1982] and ref-
erences therein). Hence particles in the lobes P* (L, )
do not re-enter the cavity through the upper boundary.
On the other hand, the unstable manifold of the sad-
dle W also extends downstream (see Fig. 12) and the
lobes P™ (L3 ;) can not intersect the unstable manifold
of W, since unstable manifolds can not intersect un-
stable manifolds. This implies that the lobes P™ (L4 1)
can not cross the unstable manifold of W, and there-
fore they can not intersect the turnstile lobe Lz 5 that
entrains fluid into the wake cavity from the lower wake.
{see Fig. 8 and Fig. 2). and hence particles in the
lobes P™ (L) do not re-enter the cavity through the
lower boundary either. Therefore we conclude that par-
ticles or trajectories that exit the wake cavity can never
re-enter the wake cavity.

Fig. 12. Re = 100: Escaped particles never return. This fisure
shows the unstable manifold of U/, and both stable and unstable
manifolds of W,

4 Chaos and Stretching

In this section, we discuss the issue of chaotic particle
motions in the near wake. The usual way of showing the
existence of chaotic particle trajectories is to show that
the stable and unstable manifolds of some hyperbolic
periodic trajectory intersect transversely. Then, by the
Smale-Birkhoff homoclinic theorem, one has the exis-
tence of an invariant Cantor set of fluid particle trajec-
tories on which the dynamics is equivalent to a Bernoulli
shift. This approach cannot be used here since the sad-
dle points on the cylinder are not hyperbolic. Neverthe-
less, the techniques that are used to prove the Smale-
Birkhoff homoclinic theorem, namely the Conley-Moser
conditions (Wiggins [1990]) do not require hyperbolic-

Duan and Wiggins: Lagrangian transport in the wake of a flow

ity. The Conley-Moser conditions are a set of sufficient
conditions for a two-dimensional map to have chaotic
orbits. We will not provide a mathematically rigorous
proof of this here. Rather, we will show that one can
track regions of fluid particles that behave like a “Smale
horseshoe map”.

We pick a “rectangular” region R inside the wake
cavity, see Fig. 13, and follow its evolution under the
Poincaré map P.

/(/f J\\ bﬂ@fm \J
S / R/ .

Fig. 18. (Re = 100): A rectangular region R whose time evolu-
tion gives rise to a horseshoe map.

In Fig. 14 we draw (based on numerical simulations)
the topologically correct images of R under P, P(R) and
P?(R). Clearly we notice the strong folding, contraction

P(R)

P*(R)

Fig. 14. Chaotic particle motions{(Re = 100): A rectangular
region R and its images under two successive iterations of the
Poincaré map P

and expansion. More specifically, we can verify that P2
maps R to a subset in the near wake and, in particular,
P? maps two appropriately chosen vertical strips into
two horizontal strips (for definition of such strips, see
Wiggins [1990]), while strongly contracting in the verti-
cal direction and expanding in the horizontal direction.
By the Conley-Moser theorem, we can conclude that
the (composed) map P? is chaotic on an invariant set
A inside the region R, in particular, P? has chaotic tra-
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jectories inside A. Therefore, some fluid particles inside
the wake cavity wander around and visit large portion
of the cavity purely due to convection (without molecu-
lar diffusion). While in the upper wake and lower wake,
most particles (as long as they do not enter the wake
cavity via turnstile lobes) will have regular trajectories
pretty much like in the case of a steady wake.

The same analysis can be carried out for the lower part
of the wake.

5 Conclusions

In this paper, we have used transport theory from dy-
namical systems theory to study the transport in the
near wake of a cylinder in the two-dimensional time-
periodic regime. These techniques allow us to describe
transport at a very detailed level. Most importantly,
these methods can be used in conjunction with modern
computational fluid dynamics methods.

We remark that the techniques described in this paper
have recently been extended to two-dimensional velocity
fields having aperiodic time dependence (Malhotra and
Wiggins [1997]).

Appendix: Computation of Lobe Areas

In this appendix we make a few remarks concerning the
numerical computation of the lobe area, as well as the
accuracy of the computation.

We essentially use the trapezoidal rule to compute the
lobea areas. To compute the area of a lobe (or the wake
cavity), we begin by inscribing a polygon inside the lobe.
Practically this is done by choosing many points along
the lobe boundary, and connecting these points with line
segments to obtain the polygon. We then compute the
area of the polygon which gives us the approximate area
of the lobe. If we denote the points chosen in this way on
the boundary of the lobe by (zi,%), i = 1,2,...,k (the
vertices of the polygon}, then the area of the polygon is
(cf. Zwillinger (1996, p.270}):

§= % ((xry2 — Tayr) + . + (Tp—1y% — TpYk—1)
+Hzry1 - T1yk)),

and S is positive if the increasing indices correspond to
traversing the boundary of the lobe in a counterclock-
, Wise sense.

We need to take many points (vertices) to get a bet-
ter approximation of lobe area by polygon area. In the
actual computation, we use various polygons {with vari-
ous numbers of different vertices) to approximate a given
lobe until we get the same or almost the same area. This
method of computing lobe area is of couse not exact. If
we let

h= max \/(:cHl = i) + (yiv1 — 4i)?,
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then it can be shown (Press et al. [1992])that the error is
O(h) as h — 0. In particular, the method does converge
to the exact answer as h — 0.

In our situation we have another check of the accu-
racy of the lobe areas. By incompressibility, the lobes
L1,2, Lg,l, L2,3, L3,2 should all have same area.
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