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Abstract. A particle-in-cell ansatz for solving the Eu-
ler equations in a rotating frame is described. The ap-
proach is ideally suited for “layered” models of flows
with sharp density and velocity fronts. The material and
Coriolis accelerations in the Euler equations are solved
at each particle while the gradient accelerations are eval-
uated on a grid and interpolated at each time step to
the particles. The height of each particle is fixed and,
depending on the application may be constant for all
particles or may vary from particle to particle. The ap-
proach is used here to predict the evolution of a lens
in a layered model with lower layer outcropping. The
integral invariant of volume is conserved exactly and to-
tal energy and total angular momentum are conserved
to within 3% throughout a 30 day simulation. Excep-
tional resolution of the density and velocity fronts is
maintained during the simulation without imposing any
numerical viscosity. The model also reproduces essen-
tial characteristics of analytic solutions to a parabolic
shaped lens. This algorithm is well suited to parallel im-
plementation; all of the calculations reported here were
done on an IBM SP2. Performance speedup and execu-
tion time as a function of the number of processors is
given.

1 Introduction

Most simulations of classical fields (electricity and mag-
netism, elasticity, fluid dynamics) use Eulerian or fixed
grid/element methods. But as noted by Olim (1994),
time steps utilized by these schemes may be restricted
by stability or damping so as to be considerably smaller
than the time interval appropriate for the system evolu-
tionary time scale. Since stability usually is not a criti-
cal issue with Lagrangian or particle methods, they have
become fashionable for problems with large velocities.
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Particle methods encompass a variety of approaches
including particle-in-cell (PIC) methods, point vortex
methods and semi-Lagrangian methods. For a brief dis-
cussion of the differences between some of these tech-
niques, see Pavia and Cushman-Roisin (1988). Here
we are only concerned with PIC schemes, first intro-
duced by Harlow (see Harlow (1964) and earlier refer-
ences therein). With the PIC approach all gradient-
type terms in the conservation of mass and momentum
equations are computed at fixed grid points while the
material derivatives are computed at particles. These
particles generally retain their identity throughout the
calculation although the particle distribution could be
reinitialized at any stage of the calculation if, for exam-
ple, the particle density were to become low in some re-
gion. Much of the calculation with the PIC approach is
devoted to interpolating particle properties to the fixed
grid, calculating gradients, and then interpolating gra-
dient values from the grid back to the particles. As with
vortex methods there is a trade-off between resolution
and number of particles. Since the computational load
for large particle numbers increases only linearly with
the number of particles for PIC methods these can be
more efficient than purely Lagrangian methods. An ex-
cellent general review of PIC methods is given by Hock-
ney and Eastwood (1992).

Our interest is the application of PIC methods to
oceanographic flows. The purpose of the PIC method
described here is not to replace the standard general cir-
culation models but to calculate the evolution of fronts
and submesoscale phenomena such as eddies, squirts and
mushrooms which cannot be resolved by such models.
The formation and evolution of many types of atmo-
spheric or oceanographic fronts have no analog in fluid
mechanics other than multi-fluid systems. As Brack-
bill and Ruppel (1986) noted PIC methods, which al-
low for conservation of a material property at particles,
can be very effective for tracking material interfaces and
modeling highly distorted flows. We believe that a PIC
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method, embedded in a general circulation model, may
be an effective method for modeling submesoscale phe-
nomena. Despite these potential advantages, the only
applications of PIC methods to oceanographic problems
we are aware of is that of Pavia and Cushman-Roisin
(1988, 1990), Pavia (1989) and Mathias (1992) who used
PIC methods to study ocean fronts and merging of ocean
eddies.

These latter PIC applications have been used in con-
junction with layered models. The model equations re-
sult from a vertical integration of the Euler equations
aleng with an appeal to quasi-hydrostatic equilibrium.
If the height of individual particles is specified either
@ priori or by some pseudo-equation of state then there
is no need to calculate the horizontal divergence of the
velocity field and solve the conservation of mass equa-
tion at each particle. This is considerably simpler than
the standard Eulerian approach of solving a Poisson
problem for the pressure at each time step. However,
there is still the issue of interpolating particle heights
to the grid and the gradients back to the particles in a
self-consistent manner. A second issue is the number of
particles to use. To date, this has been empirically set as
an ad hoc balance between accuracy and computational
feasibility.

Like the previous applications the approach used here
employs a layered model and specifies the height of each
particle. There are, however, several significant differ-
ences in our approach. First, we use an interpolation
routine that exactly cancels particle self-motion caused
by fictitious pressure gradients associated with the dis-
tribution of the particle heights on the grid. Moreover,
our approach does not require smoothing or damping
other than that resulting from the interpolation rou-
tines. Finally, there is a natural way to “parallelize” the
computation and all of our computations (apart from a
few benchmark runs) are carried out using a parallel
form of the algorithm.

Although PIC methods are used regularly in a number
of disciplines, there is some skepticism about their utility
in fluid problems. One of the chief concerns is “multi-
streaming”; ¢.e., adjacent particles having greatly differ-
ent velocities. The fear is that strong shear may excite
artificial instabilities. A second concern is the fidelity
of the evolution of fronts and smoothing out of frontal
features by interpolation. To demonstrate that these
concerns are baseless, at least for our approach, we first
apply the PIC method to a reduced gravity lens on an
f-plane. Although conceptually simple, this is a difficult
computational problem for oceanographers using con-
ventional methods since the velocity field and gradient
of the height field are discontinuous at the lens bound-
ary. We then apply the method to a two-layer problem
with prescribed fiow in the lower layer.

This paper is organized as follows: Section 2 contains
the dynamical equations for the model; Section 3 is a
description of the PIC paradigm for this layer flow; the
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applications, exact solutions and the invariants of these
flows are described in Section 4; the initialization of the
height and velocity fields is given in Section 5; Section 6
contains the results of calculations for the reduced grav-
ity case while Section 7 discusses a case in which flow in
the lower layer is prescribed. Section 8 contains timing
and speedup results for the parallel implementation of
this PIC scheme and, finally, conclusions are presented
in Section 9.

2 Dynamical equations for the two-layer model

A particularly difficult situation to model by conven-
tional gridded methods is when there are density fronts
with transverse scales less then the grid spacing. Thus,
this situation seems particularly appropriate for PIC
methods. The simplest physical setting is a two-layer
fluid in a steadily rotating coordinate system.

The hydrodynamic equations for this setting are well
known to be

% +k x fvi = —gV{hi + ha), (14)

%’* +kx fva=—gV(h +ho) + . Vhy, (1B)
‘%Mlv-vl =0, (24)

% + hyV vy =0, (2B)

% = gz +v-V, (3)

In these equations, v; is the horizontal velocity vector in
the i*" layer; k is the unit vertical vector; f is the Corio-
lis parameter; h; are the instantaneous layer thicknesses;
and g, = g(p2 — p1)/pz is “reduced” gravity.

QOur approach is best explained by first considering
the “reduced gravity” case, which results from requiring
that the lower layer be at rest, i.e., vo = 0. Since the
lower layer is at rest in this case the Vhy dependence
can be eliminated between (1A} and (1B) to express the
pressure gradient acceleration in the former in terms of
hy. Also, the scheme used by Cushman-Roisin et al.
(1985) to nondimensionalize (1) and (2) is appropriate.
This scales h by H (representative layer thickness), V
by f/vg.H, time by f~!, and v by /g, H. This scaling
removes all explicit parameter dependence. The result-
ing equations are

Z—:+kXV+Vh:O, (4)

dh
E-i—hV-v-O. (5)
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Since the upper layer is the only active layer subscripts
are suppressed. These equations must be augmented by
two path equations for the particles:

dx

3 PIC Paradigm

The basis of PIC methods is to solve the d/dt terms of
{4)—(6) and compute body accelerations, such as Corio-
lis, at the particles while calculating field accelerations,
such as pressure gradients, on a discrete grid. Interpo-
lation between the particles and the grid occurs at each
time step. The central assumption of the PIC method
is that the heights and volumes of individual particles
are invariant with position and time. Thus there is no
need to solve (5); the height and hence the volume is
conserved exactly. As suggested in Brackbill and Rup-
pel (1986), keeping each particle height fixed provides
a means for accurate tracking of the interface between
the active and inert layers.

The height gradient appearing in (4} is found by com-
puting (interpolating) the “h” field to the grid using the
positions and heights of the particles, computing Vh on
the grid, and finally computing (interpolating) Vh back
to each particle. In order to clarify these ideas we out-
line the algorithm. Assume that the position, velocity
and height of each particle is known at time ¢. The steps
in the algorithm to advance these data to time ¢4 82 are:

1. interpolate the heights of the particles to the grid,

2. calculate the finite difference approximation to Vh
on the grid,

3. interpolate Vh from the grid to the particles,

4. using an appropriate time integrator, simultane-
ously integrate (4) and (6) from ¢ to ¢ 4+ §¢. This
yields the position and velocity of each particle at
the new time.

For oceanographic applications the critical issue is
the calculation of the height or pressure gradients. In
the standard approach used in Pavia (1989), Pavia and
Cushman-Roisin (1988, 1990) and Mathias (1992), the
height field is specified as the interpolated sum of heights
over all particles within a grid cell. Individual particle
heights are usually fixed and their base areas are no
larger than a computation cell.

As in prior approaches, each particle is assigned a fi-
nite volume where the total volume of the particles is
the same as the initial volume of the active layer and the
height field on the grid is the sum of the interpolated
particle heights. At this point we differ from many other
investigators. First, we require the base of each parti-
cle to be a square with sides of length 2A, where A is
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Fig. 1. Perspective picture of the shape of a particle.

the fixed distance between cell centers. Thus, a typical
particle base has the area of four cells and generally will
overlap into nine cells. Its location is specified by the
coordinates of its center of mass or apex. In contrast to
others using PIC methods for oceanographic flows, the
interpolation weights are explicitly given as the fraction
of the particle overlapping each cell.

Second, the particle shape used here is different from
that of the finite volume particles used by many others.
The height equation for a particle is

Zp = hp(1 — izl /A)(1 — |y /D), (7)

where (pg, py) are the component distances from the
apex. Note that |pz|, |#y| £ A. The apex height of a
particle is by, which may vary from particle to particle.
As can be seen from (7), the height decays to zero at the
particle boundaries. This shape was utilized by Hock-
ney and Eastwood (1992) who termed it a “triangular-
shaped cloud.” Figure 1 is a three-dimensional perspec-
tive of this shape. Within any one grid cell there will be
considerable overlap of particle bases.

The particles are not to be thought of as solid particles
that cannot be interpenetrated but as ethereal clouds
used for a computational representation of fluid parti-
cles. If several particles were to be located at exactly
the same (z, y) location, we interpret this as meaning
that the height, h, at that location is the sum of the
height of the individual particles. These particles do
not lose their identity as they interpenetrate and pass
through each other, so the number of particles is in-
variant. This approach was first suggested by Hock-
ney (1966) and used successfully by Birdsall and Fuss
{1969} in plasma simulations. Unlike the plasma appli-
cations there are no particle-particle interactions other
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than what arise through the gradient of the height field.

Other differences in our approach from previous stud-
ies are the interpolation routine used to move the gra-
dients back to the particles and the absence of explicit
smoothing. Our experience has been that the differenti-
ation and interpolation operations are not independent
but must be done in an internally consistent fashion.
The principle used here is to require that gradients in-
terpolated to a particular particle be independent of the
height of that particle. This insures no self-generated
motion.

Figure 2 illustrates a typical cross-section of a parti-
cle along the x axis. From (7), the normalized cross-
sectional areas of the particle in each of the enveloped
cells along this axis are

wi—1 = (1/2 - &/A)*/2,
w; = {1-(1/2)[1/2+ 2(&/ )%},
wie1 = (1/2+ &/8)%/2, (8)

where the normalization factor is the cross-sectional area
of the particle and (;,£,) are the component distances
from the apex of a particular particle. The interpola-
tion of the height of this particle to the overlapped cell
centers is then given by hpw;_1, hpw;, hpw;41 for the
J—1, 4, and j +1 cells, respectively. The hatched, open,
and cross-hatched areas in figure 2 show how the height
is partitioned at the three grid points.

The above results apply to a typical cross-section for
a single particle. The two-dimensional case for a generic
particle p is achieved by prescribing the weights as

wp(€2, €)= wi(£2)w; (€7)- (9)
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To summarize, the height at the ith, jth cell center is
the weighted average of all particles enveloping the cell.
This is given by

N.“..
hi; = Z wphy, (10)
p=1

where p is the particle number in the cell and N ; is the
number of particles that overlap into the cell 1,j. After
the heights are accumulated at all grid points, second
order accurate gradients are calculated and then inter-
polated back to the particles using the same weighta.
From (10), the values of the gradients at the nine rele-
vant cell centers are readily expressed as

Diva,j+8 = [Pivat1, j4+8 — hiva-1,;+0]/24, (114)
for the x component of the gradient and
= [hi+a,j+ﬁ+1 - hi+a,j+§—l]/2As o, ﬂ = _1) 0) 13
(11B)

for the ¥ component.

Interpolation of these gradients back to a particular
particle P in cell 4, j is independent of hp. To see this,
focus on the © component, (11A). The interpolation of
this component back to P is

1
P __ .
Gij= Z WP(i+a, j+1) Dita, j+1+

a=-—1
1 1
Z Wp(ita,) Dite, 1 + Z WpP(ita, j-1)Dita, j—1-

a=-—1 a=-1
(12)
Using (10) and (11A) the first sum in (12) is

1
24 Z Wy(ita, j+1)Di+a,j+1 =

o=-wl
Ni j41 Ni—2 j+1
wP(i—l,j+l)[ Z 'LUphp - Z wphp]
p=1 p=1
Nip1, 541 Nici 41
+wp, j+1)( Z wyhy — Z wphy]
p=1 p=1
Nita, i+1 Ni i1
twpgrs, g+l Y. wphp — D wphy).
r=1 p=1

Now, hp does not appear in the V;_s ;11 and Niia j41
sums since particle P is not in either cell. It appears
once in each of the other four sums; however, the terms
exactly cancel. It is readily seen that this is true for each
of the other sums in {12) as well as the y component of
the gradient.

The canceliation of particle height in the interpolated
gradient to a particle is analogous to the condition that



Kirwan et al.: Particle-in-cell simulations

the second order accurate centered finite difference ap-
proximation to the gradient operator at grid points does
not depend on the value of the function at those grid
points. The importance of this to the present applica-
tion is that there is no self-induced motion of a parti-
cle. This result arises for two reasons. First, the same
weights are used for the interpolation from particles to
the grid and then back to the particles and not because
of a specific form such as (8). Second, the order of accu-
racy of the derivative {second order in our case) is not
higher than that of the interpolation routine. Fourth or-
der accurate derivatives used in conjunction with a lower
order interpolation scheme may produce self-generated
motion and thus would not be as internally consistent
as the second order schemes.

This method has several other attributes. First, the
weights are computationally efficient since they are not
difficult to calculate and are used both for interpolation
from particles to grid points and back to the particles.
Second, as mentioned above, (5) is automatically satis-
fied since the heights and volumes of the particles are
assigned initially and are fixed. Moreover, it is not nec-
essary to interpolate particle velocities as long as there
is no viscosity in the problem. Finally, any stable time
integrator can be used to advance the position of each
particle,

The major tradeoff in choosing the time integrator
is that between accuracy and computational work. For
example, a two step integrator, such as a second order
Runge-Kutta scheme, has an accuracy of O{(d¢)?) but
requires two evaluations of Vh at each particle. Thus
this integrator requires two interpolations of the particle
heights to the grid, two applications of the finite differ-
ence form of V to h on the grid and two interpolations of
Vk to the particles for each position advancement. On
the other hand a first order accurate integrator could
provide the same degree of accuracy with less compu-
tation per time step but at the cost of a much smaller
time step. In all of our computations we used a second
order accurate Runge-Kutta method because the com-
putational work per unit time is substantially less than
for a first order method. Any other second order time
stepping scheme could have been used.

4 Applications

The problems studied here consist of an isolated fluid
lens of density p; atop a fluid layer of density p» with
finite thickness and of infinite horizontal extent. Figure
3 is a cartoon of the geometry.

Lens models have been the subject of considerahble
study since the pioneering work of Cushman-Roisin et
al. (1985); see also Brickman and Ruddick (1990}, Rud-
dick (1987), Cushman-Roeisin (1987), Kirwan and Lip-
phardt {1993), Kirwan et al. {1992, 1994), Kirwan and
Liu (1991), Ripa (1987}, Rogers (1989), Young (1986)

5

Fig. 3. Schematic of the two layer model.

and Holdzkom et al. (1995). In these studies the lens
velocity and thickness were specified as

h = hy(t) + By (t)zyz;, for R >0
where B;; = Bj;
vy = Gy(t)r;, for A2 0
v; = 0, elsewhere (13)

Here the summation convention is used for repeated in-
dices and the spatial coordinate z; is measured from the
center of mass of the lens. Note that the velocity field
is discontinuous at A = 0 as is Vh. Moreover, the dis-
continuous frontal boundary, & = 0 must be calculated
as part of the solution. Conventional gridded methods
are not well suited for problems of this sort.

Substitution of (13) into (4) and (5) yields 8 cou-
pled nonlinear ordinary differential equations for Gy;(t),
ho(t) and Bj;(t). As shown in Young (1986), the re-
sulting solutions can be represented as a nonlinear su-
perposition of rotational, deformational and horizontal
divergence modes. The lens frontal boundary generally
may oscillate between a circle and an ellipse which tends
to rotate anticyclonically.

4.1 Circular lens
For the lens model Ball (1965) obtained an analytic solu-

tion for h,, Bi; and G;, which is called here the pulson
solution. The initial velocity field is given by

n(0) = (G/2)z1 — (GRr)z2,
v2(0) = (Gr)x1 + (G/2)x2, (14)
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where G = G11(0) + Ga2{0) is the initial horizontal di-
vergence and Gg = [G21(0) — G12(0)]/2 is the initial
spin.

The nondiagonal components of B;; and the symmet-
ric component of (;; are zero for all time while the re-
maining components as well as h, oscillate at the Cori-
olis frequency f. Unlike most nonlinear problems the
oscillation frequency of the pulson is independent of the
initial conditions.

Of particular interest here are the analytic expres-
sions for the centerline height, h,, and R(t), the lens
boundary. These are found to be

ho(t) = HL(t),
R(t) = =h,()[B11(t) + Ba2(t)] 1, (15)

where H is the layer thickness scale at ¢t = 0, and

I(t) =[A+vysinfi]™, A> |y
Also, A and « are given by initial conditions of Gy;.

4.2 Elliptical Lens

The pulson flow field has vorticity and horizontal di-
vergence but no deformation. To test the efficacy of the
PIC model in the presence of a time dependent deforma-
tion component of the velocity fleld, the initial velocity
(14) was replaced by

v {0) = (G/2+ Gn)r + (Gs — Gr)xs,

v(0) = (Gs + Gp)z1 + (G/2 — Gn)zz.  (16)

Here Gy = [G11(0) — G22(0)]/2 is the initial normal
deformation and G'g = [G12(0) + G21(0)]/2 is the initial
shear deformation.

The solution for the elliptical lens case, here called
the deformation solution, was obtained by numerically
integrating the eight equations for k,, B;; and G.;. See
Kirwan and Liu (1991) and Kirwan et al. (1992) for
details regarding the solution procedure. This solution
shows that the lens boundary starts as a circle, quickly
deforms into an ellipse which rotates anticyclonically for
a brief period then abruptly deforms back to a circle.
This cyele is repeated; however, each new repetition of
the circular or elliptical phase may not have the same
geometric characteristics as the previous phase.

4.3 Integral invariants of the lens solutions

By integration over the lens, Ball {1963, 1965) showed
that there are five global invariants for this motion which
do not depend on specific solution forms. Four of these
have succinct physical interpretation: volume, total an-
gular momentum, total energy, and potential vorticity.
The respective non-dimensional versions are:

Kirwan et al.: Particle-in-cell simulations

Vp = ] hdA (17)
L= [[mv —yu+ (22 +y?)/2)hdA (18)

E= f (h/2)[u? + o + hldA (19)

Q= f hF(q)dA, q=(1+8v/dz — Bu/By)/h (20)

In (20) F is an arbitrary function of the potential vor-
ticity g. The fifth invariant is a nonlinear function of the
moment of inertia of the upper layer which also involves
L and E; however it is not used in this study.

With our PIC paradigm, the number and heights of
the particles are constant, so Vr is conserved exactly.
Furthermore, potential vorticity could be assigned to
each particle. As long as the number of particles remains
invariant, (20) is also conserved exactly.

5 Initialization for the PIC solution

A general scheme for initializing the height and veloc-
ity fields is described below. Consider the upper layer;
it is first divided into regions bounded by isothickness
contours. The area and volume of those regions is then
calculated. Dividing this volume by the volume of a par-
ticle gives the number of particles for the region. Finally,
the particles are equally spaced within each region. In
order to keep the number of particles per cell constant
between regions of different layer thickness, the height
(and thus volume) of the particles may be varied from
region to region. Once the initial positions of the parti-
cles are determined, each particle is assigned an initial
velocity.

For the experiments discussed below, the initialization
is a crucial part of the calculation in that it determines
which solution of the dynamical equations will occur,
Furthermore, if the initial height and velocity fields are
not self-consistent, then the lens sclution can not be
accurately reproduced. In order to show how the general
scheme outlined above is applied to the lens problem,
the initialization procedure for the height and velocity
fields for the two problems are given in detail.

For both problems described above the initial shape
of the lens is a circular plan form with a parabolic height
distribution. However, the initial velocity distribution is
different for each of these problems.

The nondimensional equation for the initial lens thick-
ness for both problems is

b= holl - (r/RY?], (21)

where h, is the centerline thickness, r is the radial co-
ordinate from the lens center and R is now the initial
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radius of the lens. For both problems the volume occu-
pied by the lens is

R
Vp =2r / rhdr = (z/2)h,R2. (22)
o}

Integration of (7) shows the volume of a particular par-
ticle to be V,, = A?h, so the total volume occupied by
the particles is

N
VT - A2 Z hp, (23)

p=1

where NV is the total number of particles. Clearly, V¢ =
V1, must be required.

Consider first the case where h, is the same for all
particles. Then, the number of particles is

N =Vr/Vy = (n/2)(ho/hp)(R/ B)*. (24)

To estimate &, divide the lens into concentric circular
annuli surrounding an axial cylinder centered at the lens
center. The radial width of an annulus is 2A/d with the
parameter d > 2, and the height of the lens along the
axis of an annulus is given by (21). In the limiting case,
d = 2, the annulus width is the same as the computa-
tional cell discussed in the previous section. Since the
annuli are used for the initial distribution of particles
in the lens it is appropriate to have the annuli spacing
finer than that of the computational cells.

The central radius of the outermost annulus is at ra-
dius v = R — A/d. Then the height at this radius is

hr = ho(A/Rd)(2 — A/Rd). (25)

Obviously, hy < hz with the equality holding when re-
quiring only one particle in each cell on the lens bound-
ary. Using this limiting case for hy in (24) gives

N = (x/2)(R/A)3d/(2 — A/Rd). (26)

All having the same height, these particles must be
distributed nonuniformly in the lens. We shall use R =
1071, A = 4 x 1072 and d = 16 so (26) suggests N ~
0(2.5 x 10°) for h, ~ hz. However, requiring ten par-
ticles in each cell in the outer boundary increases N by
an order of magnitude.

The number of particles can be reduced by decreasing
the horizontal spatial resolution; i.e., increasing A/R.
From (26) it is seen that changes in resolution can cause
dramatic changes in the particle count. An order of
magnitude change in resolution produces three orders
of magnitude change in the number of particles.

One concern with a constant h, is the number of par-
ticles in each cell will vary with radius resulting in fewer
particles in the outermost cells. This would imply some
loss of accuracy in these cells. To overcome this A, is
allowed to vary with radius so that the number of parti-
cles is approximately the same in each cell. To achieve
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an equal number of particles in each cell first note that
the volume of an annulus centered at r is

r+Afd
V= 271'/ rhdr
r—A/d

= 4rhor(A/d)[1 - (r/R)? - (A/Rd)?].  (27)

The number of particles required to fill this volume is

Na=Va/Vp
= dn[ho/hp(r)](r/Ad)[L — (r/R)* — (A/Rd)*]. (28)

The number of cells in this annulus is the ratio of the
annulus area to cell area. A simple calculation gives this
number as N, = drr/Ad. If the number of particles in
each cell, Ny = Na/N,, is to be constant the particles
heights must be distributed as

hy(r) = (ho/Ng)[2 = (r/R)* — (A/Rd)"].  (29)

Adjusting the height of the particles to keep the num-
ber of particles in a cell constant also changes the re-
quirements on the total number of particles. The cross-
sectional area of the lens annulus is #[R? — (A/d)?].
Thus, the number of cells needed to cover the lens an-
nulus is

Neat = 1[R? — (A/d)*]/A?, (30)

and the total number of particles in the lens annulus is

Nra = Ny - Nean. (31)

To complete this analysis it is necessary to fill the inner
cylindrical core. Its volume is

/
Vi =27 /0 : drhdr = mho(A/d)*[1 — (1/2)(A/Rd)?].

(32)
The number of particles required to fill this void is

N = lho/hoyd®]f1 - (1/2)(A/Rd)%).  (33)

This is determined by an arbitrary choice of hy(s). Here
we use Ny ~ 102

A critical issue with this approach is an appropri-
ate number of particles for each cell Ng. Using dif-
ferent particle geometry than we do, other investigators
(Pavia, 1989, Pavia and Cushman-Roisin, 1988, 1990
and Mathias, 1992) used about 15 particles per cell. It
should be noted that these investigators used smoothing
at every time step. With our geometry and elimination
of smoothing we use Ng ~ 5 x 102, The total number
of particles with this value of Ny is

Ny =Npa+ Nf~ 108, (34)
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Once the initial position of each particle is assigned we
use the lens model equations to compute the initial ve-
locity appropriate to each particle, which depends only
on the initial particle position.

It should be noted that we use a polar coordinate sys-
tem here only to initialize the distribution of particles.
The calculations presented in the next section are done
with a rectangular grid even for those problems which
exhibit radial symmetry.

In experiments not reported here we have initially
randomized particle positions and found that the so-
lution evolves to different states depending on the ran-
domization. The reason is that this randomization intro-
duces small perturbations in the height field which im-
pacts the evolution of particle trajectories. This finding
differs from Mathias (1992). However, in his calculation
explicit smoothing was applied at every time step. In
effect, this dissipated the perturbations. In our calcula-
tions we do not use explicit smoothing. One important
consequence of this is that we are able to preserve the
integral invariants to a high degree.

The description above has focused on the initializa-
tion of a confined, circularly shaped upper layer. Ex-
tensions to other geometries and to the lower layer are
done in an analogous way.

6 Results of the reduced gravity calculations

In both cases, pulson and deformation, the computa-
tional domain was —1/2 < z € 1/2 and —1/2 < y <
1/2, the grid was 256 x 256 and the initial radius of the
lens was 0.1. This means that the lens initially occupied
only 3% of the computational domain. At the edges of
the computational domain periodic boundary conditions
were applied. However, for results reported here these
conditions were never invoked since no particle ever ap-
proached the edge of the computational domain. In fact,
most of the 256 x 256 cells are empty during these sim-
ulation. In other cases we examined, to be reported
separately, appropriate boundary conditions are impor-
tant.

The timestep for all simulations reported here was
0.01 inertial day.

6.1 Circular Lens

The first simulation discussed here was designed to test
the ability of the PIC ansatz to reproduce a single fre-
quency in a nonlinear flow and to provide high resolution
of the associated oscillating [ront. Here and in the next
problem we shall use the variable height formulation de-
scribed in the previous section. It is stressed that there
is no explicit smoothing of the results presented below.

As a first test of the PIC simulation, comparisons are
made with the solutions of the circular lens (pulson)
model. In this model the height field is parabolic and
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Table 1. Initial conditions

Pulson Case Deformation Case
ho 4.875 x 10~ 4,875 x 10—¢
(Bi1 + Bo2)/2  —9.75 % 10~2 —9.75 x 102
Bz, Ba 0.0 0.0
Gg —0.25 —0.25
Gy 0.0 0.10
Gg 0.0 0.05
[&] 0.60 0.60

the velocity field linear with respect to the distance from
the lens center, out to the edge of the lens where h = 0,
for all time. The radius of the lens is time-varying. Note
that the velocity field is discontinuous at the edge of the
lens. These constraints are imposed only initially on the
PIC model but are explicit in the lens model. Initial
conditions for this experiment are given in table 1.

The first issue to be considered is multi-streaming.
Figure 4 shows the velocity vectors for a representative
cell at day 10 of the calculation. The velocity vectors
are well aligned everywhere in the cell. Similar results
have been obtained for other regions in this simulation
as well as for other simulations. There is no indication
that multi-streaming is a problem.

This figure also shows the particle spacing in the cell
that develops after 10 days. (Remember, however, that
each particle’s base is two grid cells in length and width,
and its position is represented here only by its center).
In the initial field the particle spacing was uniform. We
have not determined why this somewhat non-uniform
spacing develops. As discussed below it has negligible
effect on the calculation for as long as 30 days.

Figure 5 compares the PIC sclution for the center-
line height A, (solid curves) with the analytic solution
(dashed curve) given by (15}. This figure shows that the
PIC solution accurately reproduces both the amplitude
and phase of the analytic solution. The nonlinear na-
ture of the motion is clearly shown by the differences
between the narrow crests and broad troughs. Note
that beginning about day 2 small deviations between
the computed and analytic solution can be seen in this
figure. Although they persist for the rest of the record
they do not grow. Instead, they are actually decreasing
by the end of the computation.

Figure 6 compares the PIC height field at 10 days
(solid curve) with the initial height field (dashed). Again,
the comparison is excellent although there is some indi-
cation that near the lens center the PIC simulation is
slightly thinner than the exact solution. This is also re-
flected in the slight increase in the simulation thickness
at mid-radii. It is noted that the PIC solution retains a
circular shape throughout the simulation. This indicates
that the velocity field does not develop any significant
deformation during the calculation.

The edge of the lens with discontinuities in the veloc-
ity and height gradient fields is the most difficult region
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to simulate with conventional models. It is appropri-
ate then to examine the performance of the PIC model
in this region. Figure 7 compares the height field from
the model with the analytic solution after 10 days. At
the edges the numerical solution shows a slight “blur”.
This is the result of the “footprint” of the particle which
extends over two cells. The lens center shows a slightly
larger error; however, the maximum percent error is only
4%.

Because of a discontinuity at the edge of the lens, the
velocity profile is the most stringent test of the model.
Figure 8 compares the analytic velocity solution after
10 days with the numerical solution. The model ve-
locity tracks the analytic solution extremely well in the
lens interior. The model results also show a sharp dis-
continuity at the edge of the lens; however, it has been
only slightly displaced outwards by the particle foot-
print. This is in contrast to the usually poor perfor-
mance of conventional gridded models at discontinuous
boundaries.

6.2 Elliptic Lens

The results given in the previous section were for the
case of a circular lens with no deformation in the veloc-
ity field. Here we present results of simulations when
deformation has been introduced into the flow. In the
analytic case, this causes an initially circular lens to de-
form into an ellipse and then to oscillate between these
two shapes. The choice of the amount of deformation is
arbitrary but important in the evolution of the lens since
it is widely believed that deformation can produce an in-
stability that may cause the lens to break up. We have
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Fig. 8. Comparison of the PIC centerline height with the numer-
ical solution to the lens model for the deformation case over 10
inertial days. The PIC solution is the solid curve while the lens
solution is the dashed curve.

selected a level of deformation that seems to be con-
sistent with observations of long lived ocean vortices.
Holdzkom et al. (1995) analyzed remote sensing and
hydrographic data from an anticyclonic vortex in the
North Atlantic and showed that it underwent significant
oscillations in eccentricity yet remained a viable vortex
for about 6 months, after which it was re-absorbed by
the Gulf Stream. The parameters for this simulation
(see table 1) were chosen so as to approximate the struc-
ture of that eddy.

Figure 9 compares the PIC centerline height (solid
curve) with the numerical solution to the deformation
model (dashed curve). As seen in this figure, the solu-
tions agree quite well through day 2. After this time the
solutions agree well in phase but the amplitude of the
peaks of the PIC solution tends to be slightly smaller
than the lens solution. Note that, again, deviations be-
tween the PIC calculation and the analytic solution be-
gin about day 2.

Figures 10 and 11 compare the evolution of the lens
boundary determined by the PIC simulation with the
lens solution. The detailed evolution for the first day as
plots of the boundary curve at an interval of 0.2 days
is shown in figure 10. The initially circular boundary
quickly evolves to an elongated ellipse which pulsates
and rotates anticyclonically. The cross-sectional area of
the ellipse at day 0.2 is larger than the original circular
area, and, as can be seen in figure 9, the corresponding
height at the center is lower. At day 0.8 the lens has a
cireular shape once again with a smaller cross-sectional
area and greater central height than at day 0.0. At day
1.0 the lens has once more taken an elliptical shape. This
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Fig. 10. Comparison of the houndary of the lens for the deformation case, as determined from the PIC solution and the deformation
model over 1 inertial day. The PIC solution is the solid curve while the deformation solution is the dashed curve. The axes labels are
the grid points in each direction.
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cycle continues at the inertial frequency throughout the
simulation. It is seen in figure 10 that for the first day
the PIC and lens solutions are in close agreement in both
amplitude and phase.

Figure 11 shows snapshots of the boundary over a 10
day period. It is clear from these results that there is
good agreement between the PIC and lens solutions up
to day 2.5. Beginning at day 4.0 a phase difference be-
tween the two solutions becomes apparent. A difference
in cross-sectional area is also seen by day 6.5. By day
10.0 the phase difference is substantial but the differ-
ence in cross-sectional area is about the same as at day
6.5. It is important to remember that there there is a
strong inertial signal in the solution. For example, be-
tween days 5.0 and 6.5 the lens does not merely rotate
and deform a modest amount, but instead repeats the
cycle shown in figure 10 approximately one and a half
times.

The discrepancies between the PIC simulation and
and lens solutions begin around day 2. There is no
indication of numerical instability in either case and
no indication of a hydrodynamic instability in the PIC
simulations. The analytic lens model solution cannot
exhibit instabilities since the height and velocity pro-
files are required for all time to be parabolic and lin-
ear respectively. The exact solutions are much more
restricted than the PIC solution which is essentially a
primitive equation solution. Although either solution
could be representative of real oceanic lenses, we ques-
tion whether the behavior of exact solutions which re-
guire linear velocity and quadratic height fields at all
times is indicative of real fluid lens behavior. The exact
solutions, however, are useful as benchmarks for quali-
tative aspects of the PIC simulation.

160
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The PIC calculations described above used approxi-
mately 10° particles. In order to illustrate the deterio-
ration in the solution when less particles are used, the
deformation case was repeated with only about 10° par-
tictes. Figure 12 shows the evolution of the centerline
height for the two cases. Note that for plotting purposes
the 108 particle case is shown as the dotted curve while
the 10% particle case is shown as the solid curve. Tt is
seen that the peaks and troughs become ragged for the
calculation with a reduced number of particles although
the amplitude and phase are still resolved quite well.
The maximum percent error of the height field is now
9%.

6.3 Integral Invariants

Comparison of the PIC solutions with the lens model
is quite encouraging but inconclusive as to other appli-
cations of the method. A better test of the efficacy of
the approach is to determine how well the PIC values
conserve the integral invariants (17)—(20), as the latter
are independent of specific solution forms. As discussed
above the method is volume and potential vorticity pre-
serving. However, the remaining invariants are not iden-
tically conserved so they can provide independent in-
sight into the overall performance of the PIC model. In
order emphasize their fundamental importance, the time
series of the invariants is shown for thirty days.

First consider the total angular momentum, L, (18).
This is composed of the sum of the local angular mo-
mentum of the individual particles and that induced by
the rotating frame on the lens. Both terms are read-
ily computed at the particles and then summed over all
particles. Total energy, E, (19) is composed of Kinetic
energy which is readily evaluated at the particles and
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Fig. 11. Comparison of the boundary of the lens for the deformation case, as determined from the PIC solution and the deformation
model over 10 inertial days. The PIC solution is the solid curve while the deformation solution is the dashed curve. The axes labels are
the grid points in each direction.
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Fig. 12. Comparison, for the deformation case, of the evolution
of the centerline height for PIC simulations with approximately
10° particles (dotted curve) and 10° particles (solid curve). Time
is in inertial days.

potential energy which is evaluated on the grid. This is
consistent with the PIC algorithm wherein the velocity
is only computed at the particles and the height field is
only computed on the grid.

Figure 13 shows the time series of L and E for the
pulson case, as a percentage of the values at ¢t = 0, for
a simulation period of 30 inertial days. The angular
momentum shows a jump of a little less than 0.2% at
about day 2. The jump at day 2 coincides with the
offset seen in figures 5 and 9 and a “randomization”
of the particle positions. Overall the value of angular
momentum after 30 days is within about 0.3% of the
initial values. The time series of the energy shows a
jump of slightly more than 1% around day 2 and then
increases very slowly with increasing time. The total
energy has increased by only a maximum of 3.0% after
30 days.

Figure 14 depicts the time series for the scaled kinetic,
potential and total energy for the pulson case, plotted
every fifth time step. For plotting purposes the energy
was scaled in order to give values between zero and one.
As expected the kinetic and potential energies oscillate
in time but are 90 degrees out of phase and mirror re-
flections of each other. The amplitude of the potential
energy oscillation (solid curve) is very nearly constant.
A very small increase in the amplitude of the kinetic en-
ergy oscillation (dashed curve) over the 30 days can be
seen. This is the major contributor to the small overall
increase in total energy.

Figure 15 shows the time series of L and E for the
deformation case, again as a percentage of the values
at £ = 0, for a simulation period of 30 inertial days.
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Fig. 15. Time series of total angular momentum (L) and total
energy (E) as a percentage of the initial value for the deformation
case. Note that only the values at every fifth time step are plotted
in this figure. Time is in inertial days.

The behavior of L and E for this case is quite similar
to that of the pulson case. The angular momentum
shows a jump of about 0.2% at day 2. After 30 days the
angular momentum is, as in the previous case, within
about 0.3% of the initial values. The energy shows a
somewhat larger jump around day 2 than in the pulson
case. For this case the jump is nearly 1.5%. As in the
other case, there is a slow increase in F thercafter. After
30 days the total energy has increased by slightly more
than 3.0% in total.

Figure 16 shows the time series for the scaled kinetic,
potential and total energy for the deformation case, plot-
ted every fifth time step. Again, scaling was done in
order to give values between zero and one for plotting.
As for the pulson, the kinetic and potential energies os-
cillate in time and are almost exactly out of phase. The
amplitude of both the potential energy (solid curve) and
the kinetic energy (dashed curve) are more variable in
this case than in the pulson case. However, the time
variation of the total energy in this case is quite similar
to that of the pulson.

7 Results with prescribed flow in the lower layer

In this section we discuss one simulation where the lens
layer is accelerated by prescribed flow in the lower layer
which is very deep relative to the iens thickness. In this
case vz = (Sy,Sx) where S is the shear deformation
rate. From (1B) it is readily shown that,
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Fig. 16. Time series of kinetic (dashed), potential (solid) and
total energy (dash-dot) for the deformation case. Note that only
the values at every fifth time step are plotted in this figure. The
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O(hi +hs) Ol
T 5y %%y + Sy(S + f). (35)

Scaling the shear S by f gives the same nondimensional
equations as (4) except for the environmental forcing.
Note in this case only total volume and potential vor-
ticity should be conserved. Initialization of the upper
layer is done as described previously. With prescribed
flow in the lower layer, no initialization is necessary in
that layer.

Since the first study by Ruddick (1987) there have
been a number of applications of this analytic model.
See for example Brickman and Ruddick (1990), Kir-
wan and Lipphardt (1993), Kirwan et al. (1992, 1994),
and Holdzkom et al. (1995). The simulation reported
here started with an initially circular lens in an analytic
steady state. The nondimensional value of § was 0.01
which is characteristic of mid-ocean values.

Figure 17 shows the time series for h, for both the
PIC model and the analytic lens model started under
the same conditions. The agreement is quite good in
both phase and in the low frequency modulation of the
amplitude.

Figure 18 shows the evolution of the PIC lens bound-
ary over a 25 day period. It is seen that the lens quickly
deforms to an ellipsoid and rotates at about 7° per day.
This is quite close to observations of a Gulf Stream ring
reported by Holdzkom et al. {1995).
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Fig. 18. Evolution of the boundary of the PIC solution over 25 inertial days for the case with prescribed shear in the lower layer. The
axes labels are the grid points in each direction.
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8 Parallel implementation
A significant computational advantage of this method
is that it is easily and efficiently parallelized. The PIC
solution algorithm can be broken down in the following
manner. Each processor is made responsible for only a
subset of the particles while retaining a copy of the entire
3 ' ' 4 ] grid. Each processor interpolates the heights of its par-
[ . ’; ticles to its copy of the grid. When all processors have
_af ' ! Py i ] finished this, a gather—-add-scatter command is issued
7.0%107 " RN i 3 8
1 ﬂ ] so that each processor’s grid contains the sum of heights
= % from all processors and thus the sum of the interpolated
o i heights from all particles. After computing gradients
i B.ox107 4 on the grid, each processor interpolates those gradients
z back to its subset of particles and updates their position
& and velocity. When using a few processors, the number
E s ox10-4 u \, of particles (& 10%) is generally much greater than the
@ r H 1 number of gridpoints (256 x 256), thus there is little ad-
] vantage to parallelizing the grid operations, as we have
N: confirmed with experiments.
40310 g The above scheme has been implemented using the
- N S S . Message Passing Interface (MPI) on the IBM SP2 lo-
0 5 10 15 20 25 cated at the Maui High Performance Computing Center.
TIME (DAYS)

MPI s straightforward to implement and is portable and
efficient. Timing results are shown in table 2 and in fig-

Fig. 17. Comparison of the PIC centerline height with the nu-
merical solution to the lens model for the prescribed lower layer
shear case over 25 inertial days. The PIC solution is the solid
curve while the lens solution is the dashed curve.

ure 19, These timings are for problems which do not in-
clude input/output. We have timed runs which include
I/O and found that in most cases I/Q adds very little
to the run time. However, in a few cases the presence
of many other users, all doing I/0, caused a noticeable
increase in run time.

We define speedup as the ratio of the runtime with
one processor to the runtime with n processors. The
results of table 2 and figure 19 show a nearly linear
speedup with the number of processors for up to four
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Table 2. Timings of PIC model on mutliple nodes of an IBM
SP2 for 108 particles

Number Length of Time of Run  Speedup
of Nodes Simulation (Days) hhimm:ss
1 10.0 2:50:00 = 1.00
2 10.0 1:27:30 1.94
4 10.0 0:50:10 3.38
8 10.0 0:31:53 5.33
16 10.0 0:23:45 7.16
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Fig. 19. Speedup of the algorithrm as a function of the number
of processors.
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processors. With more processors, the rate of speedup
decreases because of increased communication between
nodes. Nevertheless, when using up to sixteen proces-
sors, the speedup still increases and there is a reduction
in the total execution time. It should be noted that
the speedup as we have defined it is not scaled speedup
wherein the problem size is increased as the number of
processors is increased. Rather, the problem size is the
same in all cases. For this reason, larger problems (e.g.
multiple layers and/or features) will likely utilize more
nodes quite efficiently.

9 Conclusions

The results presented in section 6 showed that the PIC
method used here was able to reproduce both the am-
plitude and phase of the analytic pulson solution with
negligible distortion. The case of the deforming lens
provided a good test of the method for handling typi-
cal evolutions of fronts in which time dependent local
horizontal divergence, vorticity and deformation are all
important. The time and space scales of the front os-
cillations would be computationally costly to treat by
conventional gridded primitive equation models. More-
over, the PIC method also conserves angular momentum
and energy.

The results presented in section 7 demonstrate the
robustness of the PIC approach in the presence of envi-
ronmental shear. The circular lens evolved to an ellipse
and rotated anticyclonically at a rate characteristic of
observations of oceanic rings. There were ultra low fre-
quency oscillations in the hydrodynamic fields but no
evidence of instability.

The overall good agreement between the PIC simula-
tion and the lens model was surprising. To our knowl-
edge there has been no prior comparison of the lens
model with a primitive equations models and so there
has been some concern about its robustness and appli-
cability to ocean eddies. For the scenarios studied here
these concerns are unjustified.

The PIC method is ideally suited for parallel archi-
tectures. In fact all of the simulations reported here
were done on the IBM SP2 at the Maui High Perfor-
mance Computing Center. The results for speedup and
execution time as a function of number of processors in-
dicate that increasing the number of particles, as will
be required for an active two layer model, will utilize
parallelism even more efficiently.

The formulation used here assigns to the particles a
zone of influence, so that any given Eulerian point is in-
fluenced by many particles. Thus, with this formulation
it is not appropriate to consider material properties as
characteristic of a single particle occupying a particular
position at a particular time. Rather, material proper-
ties should be viewed as a suitable weighted average of
all the particles influencing that position at that partic-
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ular time.

It is noteworthy that the results achieved here did not
require any explicit smoothing. Of course, the interpo-
lation operation performs an implicit smoothing.

The “event” occurring about day two in both sim-
ulations is worthy of some discussion. Up to day two
the solutions are very close to those calculated for the
analytic lens model, and the particles remain on the an-
nulus on which they were initially distributed. Around
day two the particles undergo a rapid “randomization”
of their positions. The effect of this is seen in figure 4
as well as in the plots of the centerline height (figures 5
and 9) and in the time series of the integral invariants
{figures 13 and 15). Thereafter the particle positions
remains randomized. This effect has been noted by oth-
ers (Pavia and Cushman-Roisin, 1988). After day 2 the
time series of the integral invariants are quite similar to
those prior to the randomization event. We do not know
why the randomization occurs after about two days and
not earlier or later. The effect does not occur after a
fixed number of time steps: it occurs at about the same
time regardless of the size of the timestep. It is impor-
tant to note that the randomization does not appear to
affect the stability or quantitative aspects of the simu-
lation such as the invariants.

There are other unresolved issues regarding the util-
ity of this approach. No one has yet introduced a fully
dynamically interacting lower layer. By prescribing a
quasigeostrophic response in the lower layer Mathias
(1992) was able to use conventional gridded methods
for obtaining the solution in that region while using PIC
methods in the upper layer. This is more realistic than
the reduced gravity model but precludes full interaction
between the layers. Using PIC methods in both layers
would permit general layer interaction. We are currently
pursuing this.

Another issue is streaming flows where the particles
are advected out of one part of the computational do-
main and must be replaced by inflow from another part.
There is no experience with PIC methods in an oceano-
graphic setting with problems of this sort. This problem
is also under investigation.

Finally, it will be important to consider surface stress-
driven flow and flow over topography. In these cases it
will be necessary to incorporate viscosity, which will re-
quire some modifications in the approach used here. If
these issues can be addressed successfully, this method-
ology may allow application to a wide spectrum of im-
portant problems that heretofore have been treated only
approximately.
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