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Abstract

We present a modelling study of the effect of cirrus clouds on the moisture budget of
the layer wherein the cloud formed. Our framework simplifies many aspects of cloud
microphysics and collapses the problem of sedimentation onto a 0-dimensional box
model, but retains essential feedbacks between saturation mixing ratio, particle growth,5

and water removal through particle sedimentation. The water budget is described by
two coupled first-order differential equations for dimensionless particle number den-
sity and saturation point temperature, where the parameters defining the system (layer
depth, reference temperature, amplitude and time scale of temperature perturbation
and inital particle number density, which may or may not be a function of reference10

temperature and cooling rate) are encapsulated in a single coefficient. This allows us
to scale the results to a broad range of atmospheric conditions, and to test sensitivities.
Results of the moisture budget calculations are presented for a range of atmospheric
conditions (T : 238–205 K; p: 325–180 hPa) and a range of time scales τT of the tem-
perature perturbation that induces the cloud formation. The cirrus clouds are found15

to efficiently remove water for τT longer than a few hours, with longer perturbations
(τT&10 h) required at lower temperatures (T.210 K). Conversely, temperature pertur-
bations of duration order 1 hour and less (a typical timescale for e.g., gravity waves)
are not found to efficiently dehydrate over most of the upper troposphere. A conse-
quence is that (for particle densities typical of current cirrus clouds) the assumption of20

complete dehydration to the saturation mixing ratio may yield valid predictions for upper
tropospheric moisture distributions if it is based on the large scale temperature field,
but this assumption is not necessarily valid if it is based on smaller scale temperature
fields.
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1. Introduction

Water vapor is the atmosphere’s most important greenhouse gas (e.g. Held and So-
den, 2000) and condensed water in clouds strongly affects the Earth’s radiation bal-
ance. Hence, understanding water distribution in, and transport through, the atmo-
sphere is an important aspect of understanding the climate system. Here, we present5

a modelling study that addresses the impacts of cirrus clouds on the moisture budget
of upper tropospheric air masses. Specifically, we explore the relation between the
time scales of atmospheric motions that induce clouds and the time scales of water
removal by the sedimenting ice particles, and the efficiency of cirrus cloud dehydration
at various levels of the upper troposphere.10

The formation of ice particles through homogeneous or heterogeneous nucleation,
their subsequent growth and sedimentation provide a challenge to any modelling ef-
fort, and the net effect of a cirrus cloud on the water vapor budget of an atmospheric
layer often strongly depends on a large number of parameters and boundary con-
ditions. These include, but are not restricted to: temperature and relative humidity15

profiles, aerosol concentrations and the air masses’ temperature history, on both long
timescales (determining the available amount of water) and short (relevant for nucle-
ation). Consequently, a broad range of phenomena are observed in the atmosphere,
often associated with very specific atmospheric conditions. For example, Hall and
Pruppacher (1976) showed how ice particles could survive a fall over several kilome-20

ters in subsaturated air, giving rise to so-called ‘fall-streaks’. Their study, however, also
showed that such phenomena can occur for a limited range of relative humidity profiles
and initial particle sizes only.

Given the strong and non-linear coupling of particle nucleation, particle number den-
sity, growth/evaporation of particles, and sedimentation fall speeds, models may be25

required to track individual ice crystals as they fall through the atmosphere in order to
accurately model cloud evolution and the vertical redistribution of water. Such models
have been successfully applied to denitrification in the polar vortex (Fueglistaler et al.,
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2002) and for the modelling of thin cirrus near the tropical tropopause (Luo et al., 2003;
Jensen and Pfister, 2004). However, since these models were tailored to address very
specific questions, they are not suited to address more general questions regarding
typical dehydration timescales of cirrus clouds. Studies addressing issues of moisture
transport on the large scale therefore often employ highly simplified cloud physics (e.g.5

Pierrehumbert, 1998; Dessler and Sherwood, 2000; Fueglistaler et al., 2005), which in-
troduces uncertainty in their results regarding the order of magnitude of errors brought
in by these simplifications.

In order to obtain a better understanding of typical timescales of cirrus clouds, and
their implications for modelling moisture transport, we employ a simplified model of the10

water budget of an upper tropospheric layer. We neglect details of the microphysics but
retain the important couplings between particle growth/evaporation, saturation mixing
ratio and water depletion through sedimentation of particles. We consider only cases
where ice crystals nucleate in the layer of interest, and exclude cases (for example
convective anvils) where nucleation and growth occurr under very different atmospheric15

conditions than particle sedimentation.
The model calculations are used to evaluate a) whether the dehydration is fast or

slow), and b) the efficiency of the cloud to dehydrate the air mass, where efficient
means that the layers’ terminal mixing ratio is close to, or equal to, the minimum satu-
ration mixing ratio of its temperature history.20

Section 2 describes the model physics. Section 3 shows the evolution of the layer
water budget for specific scenarios. In Sect. 4 we define a dehydration efficiency and
calculate it for the range of reference temperatures and perturbation time scales typ-
ical of the upper troposphere. Section 5 provides a discussion of the applicability of
the model results to the atmosphere, and of the model limitations. Finally, Sect. 625

summarizes the conclusions.
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2. Model description and model parameters

The 0-dimensional model employed here describes the water budget of an atmospheric
layer with depth h. Most of the results shown are based on the assumption of homoge-
neous ice nucleation following the parameterization based on water activity by Koop et
al. (2000), where we used simplifications similar to the ‘fast growth’ scenario by Kärcher5

and Lohmann (2002). However, in Sect. 4.3 we show that the overall character of these
results is not very sensitive to this assumption, and that our conclusions can be scaled
to include heterogeneous nucleation.

Once formed, particles are assumed to be in equilibrium with the surrounding gas
phase, an assumption well justified for the cases discussed here with relatively high10

particle number densities, such that diffusive equilibration is a fast process (time scale
of minutes) compared to the time scale of the temperature perturbations (hours). The
available water vapor is equally distributed among all particles in the layer, giving rise
to a uniform, monodisperse particle size distribution in the layer. Hence, the model
does not resolve the complexities of a condensed water flux resulting from ice particles15

with a spectrum of fall velocities, but it does retain the important coupling between
temperature (and hence saturation mixing ratio) and particle size and associated fall
speed.

The water loss due to gravitational settling of the particles is calculated using the
Locatelli and Hobbs (1974) parameterization of fall velocities as function of crystal size.20

Once a cloud is present in the layer, no new ice nucleation is assumed to occur, and
the particle number density decreases as the particles fall out of the layer. This may
lead to a small bias in particle sizes towards larger values (since the available water
vapor during the cooling phase is distributed among fewer particles), and consequently
the condensed water flux is somewhat overestimated.25

As the temperature perturbation of the air mass is prescribed, the calculations ig-
nore radiative impacts on the clouds. Possible impacts of radiation on the conclusions
derived from the model calculations are discussed in Sect. 5.1.1.
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The model formalism is presented in the Appendix, and we discuss here some input
parameters that deserve special attention.

2.1. Temperature perturbation δT

We prescribe isobaric temperature perturbations leading to the formation of cirrus
clouds as harmonic oscillations around a reference temperature Tref . The period of5

the oscillation (and hence the time scale of the temperature perturbation) is τT, ∆T is
its amplitude, and δT (t) denotes the temperature deviation at time t from the reference
temperature Tref , i.e.

δT (t) = T (t) − Tref

= −∆T · sin(2πt/τT ),0 ≤ t ≤ τT/2. (1)10

Note that we have chosen to restrict t to the ‘cold phase’ of the temperature oscilla-
tion only. For these computations we associate a pressure p(Tref) with each value of
Tref taken from a typical measured sounding during cirrus events at the Atmospheric
Radiation Measurement Program (ARM) site Oklahoma.

The dependence of the model equations on ∆T is complex because this parameters15

enters the model in various ways. In most calculations we use ∆T=2 K, a simplification
in order to keep the number of free variables as low as possible. A discussion of results
for varying ∆T is provided in Sect. 4.1.

2.2. Layer depth h

Obviously, there is not a single number that can be assigned to the layer depth h based20

on firm physical grounds. Note that h is not the thickness of the cloud; rather it is merely
the scale of the layer in which we assume particles nucleate, grow and eventually leave
through sedimentation. The treatment of the layer as a homogeneous ‘box’ requires
sufficiently homogeneous conditions within that box, which puts an upper bound to h
of a few hundred meters. A deeper layer would not only have very inhomogeneous25
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temperatures due to the vertical lapse rate or inhomogeneities in relative humidity, but
would also be strongly affected by vertical wind shear over the time scales considered
here.

We have therefore assigned a value of h=300 m, which we consider as a sensible
value, with a possible range at different atmospheric conditions of about a factor two.5

Section 4.3 shows how the results may be scaled to account for variability in h.

2.3. Initial particle number density n0

Homogeneous nucleation of ice particles depends on the cooling rate at the time when
the critical saturation is reached, and therefore inherently depends on short time scale
temperature fluctuations. In order to simplify and render the calculations comparable10

with one another, we specify conditions at time t=0 (when δT=0) such that nucleation
immediately sets in. Hence, the cooling rates at the time of nucleation are

dT/dt(t = 0) = −∆T 2π
τ

[K/h], (2)

that is for an amplitude ∆T=2 K and a period τT=2 h the cooling rate at the time of
nucleation is ∼−6 K/h.15

We compute the initial ice particle number density n0 [cm−3] at each temperature
for these cooling rates from the Kärcher and Lohmann (2002) parameterization. This
parameterization yields a maximum of n0≈1.0 cm−3 at Tref =205 K, p=179 hPa and
τT=1 h, and a minimum of n0≈0.001 cm−3 at Tref =238 K, p=325 hPa and τT=10 h.
These values compare well with observations, with a typical value of 10−1 cm−3,20

ranging from 10−3 cm−3 to 101 cm−3 (see e.g. observations compiled by Dowling and
Radke, 1990).

Note that coupling of particle nucleation to the cooling rate derived from the tem-
perature perturbation leads to perhaps artificially small values of n0 for very long time
scales (i.e. τT∼10 h). In reality, shorter period temperature perturbations with higher25

cooling rates (see e.g. Hoyle et al., 2005) and heterogeneous nucleation would then

9775

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/9769/acpd-5-9769_p.pdf
http://www.atmos-chem-phys.org/acpd/5/9769/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 9769–9799, 2005

Cirrus dehydration
potential

S. Fueglistaler and
M. B. Baker

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

dominate the particle formation. Consequently, the calculations tend to underestimate
n0, and hence overestimate the sedimentation velocity, for long τT. This point that will
be discussed in Sect. 4.3 below.

2.4. The scaling parameter P

As shown in the Appendix, in our approximation the differential equations governing the5

system at fixed ∆T depend on a single nondimensional parameter P that encapsulates
the temperature perturbation time scale τT, layer depth h, and initial particle number
density n0:

P ≡
τT

2πh/v
(
r0)

≡
τT

2πτfall
, (3)

where v(r) is the sedimentation velocity of a particle of effective size r , and r0 is a10

particle radius scale involving the initial ice particle density and ∆T (see Appendix).
Since in our simple model P governs the results, a wide range of values of the input
parameters can be explored by simply relating them to the associated value of P and
looking-up the results shown below for that specific value of P .

Figure 1 shows the dependence of P for ∆T=2 K on τT and reference temperature15

Tref for values characteristic of the upper troposphere. The two time scales are similar
(τT≈τfall) for P≈0.16. For P much greater than this value the sedimentation time scale
is much shorter than τT, and we say that the dehydration is fast. Conversely, for P.0.1
the sedimentation time scale is long compared to τT, and the dehydration is slow.
Figure 1 shows that the conditions in the upper troposphere encompass both regimes,20

with values of P ranging from order 0.01 to 10. Under upper tropospheric conditions
cirrus dehydration is in the fast regime (P�0.16) for all τT&3 h at Tref ≈235 K, increasing
to all τT&10 h at Tref ≈210 K. Similarly, cirrus dehydration is in the slow regime for all
τT.1 h at Tref ≈235 K, increasing to all τT.4 h at Tref ≈210 K.

Figure 2 shows the contours of P for fixed n0=0.1 cm3. The overall character of25

the P contour pattern is very similar to that of the homogeneous nucleation scenario
9776
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as shown in Fig. 1. For high Tref and/or long τT the number of ice crystals nucleated
homogeneously is less than 0.1 cm−3, so P contours have moved to the right in Fig. 2.
At lower Tref and/or shorter τT the reverse is true; P contours have moved to the left.

The impact of increasing n0 on P is seen in Fig. 3, where the P=0.16 contour is
shown for fixed n0=0.1,0.5 and 1 cm−3. For the lowest n0 value only the lower left5

hand portion of the τT, Tref graph falls into the slow regime, whereas for only a factor
of 10 increase in particle density most of the upper troposphere would correspond to
values in this regime. This implies an important role for ice nuclei in the hydrological
cycle of the upper troposphere.

3. Cloud evolution10

To facilitate comparison among model results at different reference temperatures, we
express the total water content of the cloud layer in terms of the saturation point tem-
perature T ∗and its difference from the reference temperature, δT ∗(t)≡T ∗(t)− Tref, rather
than in terms of the mixing ratio in the layer. At a given pressure and given total water
content the saturation point temperature T ∗is the temperature at which the air would be15

exactly saturated with respect to ice (Betts et al., 1982).
Results are presented in terms of the non-dimensionalized deviations of temperature

and of saturation point temperature from Tref,

δT̂ (t) ≡ δT (t)/∆T (4)

and20

δT̂ ∗(t) ≡ δT ∗(t)/∆T. (5)

The number density of ice particles left in the layer at time t is n(t) and the fraction
of originally nucleated particles that remains in the layer is n̂(t)≡n(t)/n0 (see also Ap-
pendix).
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Figure 4 shows the evolution of δT̂ and δT̂ ∗ as functions of the non-dimensionalized
time t̂≡2πt/τT for each of the (Tref, τT) conditions shown by a colored dot in Figs. 1 and
2.

All cases for which P <0.16 (dashed curves) are in the slow regime. That is, particle
sedimentation is slow compared to the time scale of the temperature perturbation.5

Figure 4 shows that for these cases the layer, indeed, slowly dehydrates, and that the
total moisture at t=τT/2 (before the onset of the warming phase) is only marginally
reduced by the cirrus cloud. Figure 4 further shows how the character of the cloud
impact on layer dehydration changes in the transition region P≈0.16 where the two
time scales τT and τfall are similar. (See the two turquoise curves, corresponding to10

P=0.1 and P=0.2 in these figures.) The cases with P≥1 are clearly in the fast regime.
All cases with P≥1 experience complete fall-out before t=τT/2; however, their ter-

minal moisture content shows an interesting, non-monotonic dependence on P . One
might expect that for faster dehydration the final moisture content should always de-
crease. Figure 4 shows that for the cases with P≥1 (purple, yellow and red; solid15

curves) this is not the case. Rather, in these cases the fall-out is so fast that all parti-
cles have left the layer before the temperature minimum is reached. This is in part due
to the low bias of the calculated n0 at long time scales τT as discussed in Sect. 2.3, and
Sect. 4.3 shows that this behaviour largely vanishes when the bias in n0 is corrected.

Our discussion of specific scenarios has highlighted the role of P in determining20

whether dehydration is fast or slow. We have touched upon the relation between P and
the final moisture content at time t=τT/2, which is the focus of the next section.

4. Dehydration efficiency

We define the dehydration efficiency ε of a cloud as the amount of water actually
removed by the cloud during a given isobaric cooling perturbation, divided by the max-25

imum water made available for gravitational removal by that perturbation. Using the
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previously introduced notation, ε is defined as

ε ≡
Q(T ∗(t̂ = π)) −Q(T ∗(0))

Q(Tref −∆T ) −Q(T ∗(0))
(6)

where Q is the total water vapor mixing ratio.
In cases for which ε≈1, the cloud event removes the maximum possible water from

the layer; i.e., at the end of the event the mixing ratio is close to the saturation mixing ra-5

tio at T=Tref−∆T , whereas ε≈0 indicates that the most of the ice particles re-evaporate
within the layer.

Figure 5 shows that the cirrus clouds efficiently dehydrate the layer for high temper-
atures and time-scales τT longer than a few hours. As τT gets shorter, the dehydration
efficiency decreases rapidly (depending on Tref), and temperature perturbations shorter10

than ∼1 h are too short to allow the particles to fall significantly at all. For fixed ∆T ε es-
sentially depends on the governing parameter P only (see Appendix). Figure 5 shows
this in that the contours of ε parallel those of P . The figure shows the previously noted
increase of ε as P gets larger, with a slight decrease of ε at very high values of P .

Note that the P=0.16 curve lies very close to the ε=0.5 contour, so that the fast and15

slow regimes correspond to ε>0.5 and ε<0.5, respectively. This coincidence is closest
for ∆T=2 K but does not change greatly for other values of ∆T .

4.1. Dependence of the dehydration efficiency on Tref and ∆T

From the definition of ε it can be seen that it is almost independent of Tref at constant
P . For δT ∗, δT�Tref, we can linearize the expression for ε in Eq. (6), to yield20

ε ≈
δT̂ ∗(t̂ = 0) − δT̂ ∗(t̂ = π)

1 + δT̂ ∗(t̂ = 0)
(7)

In this equation Tref enters implicitly through its influence on the value of δT̂ ∗ at cloud
initiation (t̂=0). The term δT̂ ∗(t̂=0) represents the supersaturation needed for nucle-
ation to occur.
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The dehydration efficiency depends on ∆T in the following ways. The sedimen-
tation velocity scale v(r0), and hence P (Eq. 3), depend on the maximum available
condensed-phase water, as well as on the initial particle number density n0. The max-
imum available condensate depends on Tref and ∆T . Further, n0 is a function of the
cooling rate (and hence ∆T , see Eq. 2). Finally, the scaled initial condition, δT̂ ∗(t̂=0),5

also depends on ∆T . Thus both the numerator and denominator of Eq. (7) depend on
∆T .

Figure 6 shows the dehydration efficiency as function of P and ∆T . For P >1 the effi-
ciency is near unity for all ∆T , but for small P the efficiency decreases with increasing
∆T ; the amount of water that falls out of the cloud does not increase as fast as does10

the maximum potential water loss as ∆T increases.
For ∆T=2 K, ε(P ) is well fit by the polynomial

ε(P ) = 3.58P − 6.99P 2 + 8.57P 3 − 6.22P 4 + 2.38P 5 − 0.36P 6. (8)

This fit may be useful for studies of upper tropospheric humidity involving dehydration
due to cirrus clouds. The change in total water content of an atmospheric layer due15

to clouds within it can be estimated as follows: When the critical supersaturation for
nucleation is reached (no matter what its value is assumed to be), determine Tref and
τT (approximated for example by twice the time span until temperatures exceed Tref
again). Next, τfall is specified based on assumed n0 and h (see Appendix). Now P is
given by Eq. (3) which is inserted into the fit for ε (Eq. 8). Finally, Eq. (6) is rearranged20

to obtain the removed water

∆Q = Q(T ∗(t̂ = π)) −Q(T ∗(0))

= ε ·
(
Q(Tref − ∆T ) −Q(T ∗(0))

)
.

4.2. Sensitivity of ε to changes in P

For two reasons we are interested in examining the variations in ε due to uncertainties25

in P . First, the values of the parameters that determine P are not precisely known, and
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hence introduce an uncertainty. Second, processes in the climate system that would
systematically change the parameters that determine P , for example cloud particle
number densities, would induce a change in ε. These variations of ε to changes in P
can easily be derived from Eq. (8).

Figure 7 (solid line) shows the classically defined sensitivity dlnε/dP, i.e. the frac-5

tional change of ε due to a given change in P . Evidently, the sensitivity is largest at
small P , indicating that the dehydration efficiency of clouds in the slow regime is most
sensitive, whereas the dehydration efficiciency in the fast regime is largely insensitive
to changes in P .

A somewhat different, but equally useful, quantity is the response dε/d ln P (not10

to be confused with the previous ‘sensitivity’) of ε to a relative change in P (Fig. 7,
dashed line). One can argue that it is not so much the relative change in ε, but rather its
absolute change, that is relevant here (because, for example, the climate system reacts
to absolute changes in ε). Further, for at least some of the parameters determining P ,
the values may be known to within a certain factor, rather than an absolute value.15

The ‘response’ defined in this way shows a maximum at P≈0.16, i.e. where the two
timescales τT and τfall are equal. The response decreases as P approaches both the
slow and fast regime. In other words, dehydration remains inefficient in the slow regime,
and remains efficient in the fast regime.

4.3. Scaling arguments20

The results presented in the previous section were evaluated for ∆T=2 K, h=300 m
and particle number densities for homogeneous nucleation parameterized in terms of
maximum cooling rates. We now show that these results can be scaled to provide
results for other parameter combinations.

In our simple model the parameters P and, to a lesser extent, ∆T , govern the evo-25

lution of the scaled saturation temperature (T̂ ∗). Hence, for a given ∆T any parameter
combination that yields the same value for P will have the same solution.

For example, the dehydration efficiency for an assumed depth h=600 m instead of
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300 m is readily read off from Fig. 6 by scaling τT correspondingly with a factor 2. The
dehydration efficiency at a given reference temperature and a specific τX (for example
5 h) for the deeper cloud is then read off from Fig. 6 at the same reference temperature,
but at τT=2×τX (in this case 10 h).

We have mentioned above that assuming homogeneous nucleation as function of5

δT (t) yields very low values of n0 at relatively high temperatures and/or long τT, which
is a bit nonphysical, since it ignores the role of the (superimposed) high frequency
temperature perturbations (Hoyle et al., 2005) and neglects any contribution of ice
nuclei. These low n0 values then artificially inflate the value of P leading to an apparent
decrease in ε at long τT. Using the scaling properties of P , we may determine the10

impact of higher n0 for these cases.
To determine the dehydration efficiency at n0=0.1 cm−3 for given Tref , τT), we read

off the P -value for those parameter values from Fig. 2, which we can denote P=P0.
Now, using Fig. 1 we find that τT at the same reference temperature for which P=P0.
Thus we have two equivalent situations, in which the difference in n0 is compensated15

by a difference in τT. For example, to find the dehydration efficiency for the conditions
corresponding to the large red dot of Fig. 2 (Tref =230 K, τT=10 h, P0=1), we find the
equivalent (P0=1) homogeneous nucleation case in Fig. 1. This obtains for Tref =230 K,
τT≈5 h, for which the dehydration efficiency (Fig. 6) ε≈1, i.e. higher than in the ho-
mogenous nucleation (coupled to the cooling rate proportional to τT) scenario.20

Thus, a shift towards higher particle number densities induces a shift in P towards
lower values, mitigating the previously noted peculiarity of slightly decreasing efficien-
cies at long τT. The decrease in ε with τT is thus shifted to very long temperature per-
turbations τT�10 h, which is (for most cases) of little relevance since cloud formation
and evolution would occur by superimposed shorter temperature perturbations. Note25

that for the cases where the homogeneous nucleation scenario yielded n0>0.1 cm−3,
the shift is in the other direction, towards higher values of P (faster). For example, the
case τT=1 h and Tref =230 K (small red dot) has P≈0.05 in the homogeneous nucle-
ation scenario, and P&0.1 for n0=0.1 cm−3.
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5. Discussion

These results of this modelling study do not allow us to directly deduce conclusions
about atmospheric moisture distribution, or, for example, frequency of cirrus cloud oc-
currence. Rather, these quantities must be determined by specific studies that pre-
scribe the dynamic regime (e.g. mid-latitude frontogenesis, or subtropic large-scale5

descent) to determine the temperature history, and prescribe the water source terms
(e.g. from moist convective updrafts, or mixing with moist layers). As pointed out in the
introduction, the vertical cloud structure (and hence for example also the cloud’s opti-
cal depth) might depend crucially on the relative humidities of the air masses below the
layer studied here. If this layer were near saturation, one would expect a vertically thick10

cloud, whereas for a very dry layer the particles would immediately evaporate. Further,
aspects such as cloud occurrence frequency may depend on nucleation thresholds
and highly resolved temperature fields (e.g. Jensen and Pfister, 2004). In other words,
cirrus cloud distributions and (vertical) structure depend crucially on the air masses’
history in terms of temperature and moisture flux, and may be very sensitive to param-15

eters such as particle number density or nucleation threshold.
What our scaling results, however, robustly predict, is that in the upper troposphere

the atmosphere cannot hold more water than given by the saturation mixing ratio for
temperature perturbations of order 1 h and longer at high temperatures (230 K), and
longer than a few hours at very low temperatures (205 K). Conversely, typical sedi-20

mentation in cirrus clouds is too slow to substantially dehydrate upper tropospheric air
masses for temperature perturbations shorter than these time scales. In practice, this
means that the temperature field as resolved by large-scale atmospheric models com-
bined with dehydration to the minimum saturation mixing ratio is a reasonable basis to
study upper tropospheric moisture transport and distribution.25

This has been implicitly assumed in previous studies which have shown empirically
that model runs with complex and simple cloud microphysics yield similar results for the
atmospheric moisture distribution. We believe that our study provides useful scaling
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arguments as to why this is the case in the upper troposphere.

5.1. Limitations

5.1.1. Radiation

In the formulation of our framework we have neglected effects of radiation, which may
tend to destabilize a cloud layer through longwave cooling at the top, and longwave5

heating at the bottom. We have excluded these effects because of the large range of
possibilities resulting from variable solar insolation, and, particularly, underlying cloud
cover. Further, the impact of radiation depends on the cloud’s optical depth, which in
turn depends on its entire vertical structure, and not just the atmospheric layer with
depth h. Our results have shown that for low temperatures, cirrus lifetimes of at least10

several hours are to be expected. These lifetimes are long enough to allow radiation
to affect the evolution of the cirrus cloud. While we do not expect that radiative effects
would entirely change the results of, for example, dehydration efficiency, we stress
that these limitations should be borne in mind when applying the results to the real
atmosphere.15

5.1.2. Turbulence, wind shear and mixing

The implicit assumption of a 0-dimensional model as employed here is that the box’s
integrity is not affected over the time of the model evaluation. Turbulent mixing and
wind shear, however, might be expected to invalidate this assumption particularly for
the cases with longer time scales τT . While it is in principle possible to include effects of20

turbulent mixing with ambient air masses, one would have to introduce scenarios of the
composition and temperature structure of these ambient air masses and the turbulent
mixing time scale (which in turn might depend on the radiative heating/cooling of the
cloud). Estimates of this time scale, based on measured turbulence spectra in the
upper troposphere, vary over three orders of magnitude, ranging from minutes to many25
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hours. Thus each case would have to be carefully assessed to determine the impact of
turbulence on atmospheric dehydration via cirrus clouds. Such assessment is clearly
beyond the scope of the treatment presented here, in which we present a limiting (zero-
turbulence) case, yielding maximum water removal from the layer.

6. Conclusions5

We have used a simple model to describe dehydration of an upper atmospheric layer
by cirrus clouds that formed in-situ. Scaling arguments show that the results can be
applied to a broad range of parameter values. Expected variability/uncertainty of these
parameters under atmospheric conditions, and model limitations prevent applying the
model results directly to specific observations. The model results do, however, provide10

general and useful insight into the dehydration potential of cirrus clouds in the upper
troposphere.

The parameter combination P that governs the impact of cirrus clouds on the air
mass moisture budget, is essentially the ratio of the temperature perturbation time
scale to that of the ice particle sedimentation. We find that under typical upper tropo-15

spheric conditions, dehydration is fast for τT of order hours (and longer), or slow for
shorter τT. More specifically, the results of our scaling study indicate that

a) for the range of the governing parameters under current conditions, the
upper troposphere cannot hold substantially more water than given by the
saturation mixing ratio based on the larger-scale temperature field (This result20

would change if n0 were a factor 10 or more larger than under present conditions);

b) high frequency temperature perturbations τT<τcrit. are too short to allow signifi-
cant dehydration, with τcrit. being temperature dependent. At Tref =235 K τcrit≈1 h
and at Tref =205 K τcrit≈7 h;25
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c) the dehydration efficiency decreases with increasing magnitude ∆T of the tem-
perature perturbation for slow cases; it is independent of ∆T for fast cases.

The overall character of our results is independent of details of the ice nucleation
mechanism, the cloud microphysics, the temperature fluctuation spectrum and/or the
cloud depth. The major impact on our results of shifting any of these (for example, to5

higher nucleated ice particle density, to deeper clouds, or to a more complex represen-
tation of the particle size spectrum) is to simply shift the occurrence frequency of fast
and slow regimes in the upper troposphere. For example, as n0 increases strongly,
the boundary between regimes is shifted in the τT/Tref space, as shown in Fig. 3, but
the general character of P and ε contours remains unchanged. Thus it may be argued10

that in a different climate regime, for example, in which n0 and/or typical values of τT
might change, the behaviors we have described would occur but in different regions of
the atmosphere. In particular, the relationship between dehydration efficiency and P
given by Eq. (8) would hold in another climate regime; however, the values of P and
therefore of dehydration efficiency ε corresponding to fixed temperature and τT would15

change.
Our model, in conjunction with data on the frequency distribution of clear air humidity,

and spectra of temperature perturbations, could be used to estimate the distribution of
τT characteristic of the current upper troposphere. This would allow an assessment of
the relative importance of the fast and slow regimes in today’s atmosphere, a useful20

way to characterize the current state and predicted shifts in atmospheric behavior under
changes in aerosols, greenhouse gases or other perturbations.
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Appendix A

The formalism

Equations for cirrus model

Let Q(t) (qice(t)) be the total water (ice) mixing ratios (kg H2O/kg air) in the cloud at
time t:5

Q(t) = qvapor(t) + qice(t) (A1)

and let n[m−3](t) be the number density of ice crystals, all of the same radius r , in the
cloud at time t.

Assume the temperature history:

T (t) ≡ Tref − ∆T · sin(2π · t/τT ) (A2)10

where τT is the period of the temperature oscillation, assumed isobaric, and ∆T [K ] is
its amplitude.

The cloud evolution equations are

dQ
dt

= −qice
v(r)

h
, qice > 0, (A3)

and15

dn
dt

= −n
v(r)

h
(A4)

where the sedimentation velocity of an ice particle of radius r is (Locatelli and Hobbs,
1974):

v(r) = C · rx. (A5)

C and x are constants depending on the flow regime (and consequently on the particle20

size), and r is a measure of the particle size.
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Now, we assume a monodisperse particle size distribution in the cloud layer (for
discussion see Sect. 2), such that the ice water mixing ratio is approximately given by

qice = n
4π
3

·
ρice

ρair
· r3 ≡ B(n) · r3 (A6)

where ρice is the density of solid ice and ρair that of air at the given temperature and
pressure. Expressing the particle radius and fall velocity in terms of condensed water5

content, particle number density and ratio of densities yields

r =
(
qice/B(n)

)1/3, v(r) = C
(
qice/B(n)

)x/3 (A7)

which we can insert into the time dependent equations for Q and n (Eqs. A3 and A4):

dQ
dt

= −C
q(1+x/3)

ice

h
·
(

1
B(n)

)x/3

(A8)

dn
dt

= −Cn
h
·
(
qice

B(n)

)x/3

. (A9)
10

Under the approximations of our model, we can express Q and qice as functions of
the saturation point temperature T ∗, defined for a layer of total water mixing ratio Q at
pressure p as the temperature for which

Q = qsat(T
∗, p) (A10)

where qsat is the saturation mixing ratio over ice. For small perturbations in temperature15

δT≡T−Tref�Tref the Clausius-Clapeyron equation can be written

qsat(T, p) ≈ qsat(Tref, p) exp
(
A(Tref) · δT

)
(A11)

where A(Tref)≡
Lsub

RvT
2
ref

for Lsub [J/kg], Rv [J/kg/K], being the latent heat of sublimation and

the gas constant for vapor, respectively. A(Tref) varies betwee 0.1 and 0.14 over the
temperature range considered here.20
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Then the water conservation equation (Eq. A3) becomes an equation for δT ∗:

dδT ∗

dt
=

1
A(Tref)

d lnQ
dt

(A12)

= − 1
A(Tref)Q

· C
q(1+x/3)

ice

h
· ( 1
B(n)

)x/3 (A13)

and, assuming that in the presence of ice the cloudy air is exactly saturated with respect
to ice,5

qice(t) = qsat(Tref + δT ∗(t), p) − qsat(T (t), p) (A14)

≈ qice,0 · ( ˆδT ∗ − δ̂T ) (A15)

where we define

qice,0 ≡ A(Tref) ·∆T · qsat(Tref). (A16)

It is convenient to nondimensionalize these equations. Let10

ˆδT ∗ ≡ δT ∗/∆T

δ̂T ≡ δT/∆T

t̂ ≡ 2πt
τT

n̂ ≡ n
n0

ˆqice ≡
qice

qice,015

r̂ ≡ r
r0

where the particle radius scale is

r0 ≡
( qice,0

B(n0)

)1/3

. (A17)
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The time scale for fall-out is

τfall ≡
h

v(r0)
. (A18)

Note that τfall depends on ∆T and on n0.
We define

P ≡
τT

2π · τfall
. (A19)

5

The non-dimensionalized equations then are, from Eqs. (A8) and (A4),

dn̂

dt̂
= −P q̂x/3

ice n̂(1−x/3) (A20)

and

d(δT̂ ∗)

dt̂
= −P · q̂(1+x/3)

ice · n̂−x/3 ×

exp(−A(Tref)∆TδT̂
∗) (A21)10

Equations (A20) and (A21) constitute our model. The initial conditions are
n̂(0)=1;δT̂ ∗(0)=δT ∗

nuc/∆T , where δT ∗
nuc is that saturation temperature displacement re-

quired for nucleation.
The model equations and the initial conditions involve three parameters Tref , ∆T

and P . Over the range of temperatures considered here, 0.1≤A(Tref)≤0.15. More-15

over, the nucleation temperature displacement remains in the range 3−3.2 K for
205 K≤Tref≤235 K. Therefore the influence of variations in Tref on our results is very
small. On the other hand, the temperature perturbation amplitude ∆T determines the
initial condition, it comes into the equations (see Eq. A21) and it determines the veloc-
ity scale v(r0), so, indirectly, the third parameter, P . In most of the results presented in20

this paper we focus on the influence of P at fixed ∆T , and we deal with the impact of
variations in ∆T in Sect. 4.1.

9790

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/9769/acpd-5-9769_p.pdf
http://www.atmos-chem-phys.org/acpd/5/9769/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 9769–9799, 2005

Cirrus dehydration
potential

S. Fueglistaler and
M. B. Baker

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Acknowledgements. This publication is partially funded by the Joint Institute for the Study of
the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA17RJ1232,
Contribution # 1168. M. B. Baker is grateful for support by NSF ATM-021147. S. Fueglistaler is
grateful for additional support by NASA grant NNG04GM23G.

References5

Betts, A. K.: Saturation Point Analysis of Moist Convective Overturning, J. Atmos. Sci., 39,
1484–1505, 1982. 9777

Dessler, A. and Sherwood, S. C.: Simulations of tropical upper tropospheric humidity, J. Geo-
phys. Res., 105, 20 155–20 163, 2000. 9772

Dowling, D. R. and Radke, L. F.: A summary of the physical properties of cirrus clouds, J. Appl.10

Meteorol., 29 (9), 970–978, 1990. 9775
Fueglistaler, S., Luo, B. P., Voigt, C., Carslaw, K. S., and Peter, Th.: NAT-rock formation by

mother clouds: a microphysical model study, Atmos. Chem. Phys., 2, 93–98, 2002,
SRef-ID: 1680-7324/acp/2002-2-93. 9771

Fueglistaler, S., Bonazzola, M., Haynes, P. H., and Peter, T.: Stratospheric water vapor pre-15

dicted from the Lagrangian temperature history of air entering the stratosphere in the tropics,
J. Geophys. Res., 110(D8), D08107, doi:10.1029/2004JD005516, 2005. 9772

Hall, W. D. and Pruppacher, H. R.: The Survival of Ice Particles Falling from Cirrus Clouds in
Subsaturated Air, J. Atmos. Sci., 33, 1995–2006, 1976. 9771

Held, I. M. and Soden, B. J.: Water vapor feedback and global warming, Annu. Rev. En. Env.,20

25, 411–475, 2000. 9771
Hoyle, C., Luo, B. P., and Peter, T.: The Origin of High Ice Crystal Number Densities in Cirrus

Clouds, J. Atmos. Sci., 62, 2568–2579, 2005. 9775, 9782
Jensen, E. J. and Pfister, L.: Transport and Freeze-drying in the tropical tropopause layer, J.

Geophys. Res., 109, D02207, doi:10.1029/2003JD004022, 2004. 9772, 978325
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Fig. 1. The non-dimensional parameter P as function of Tref and τT at ∆T=2K . Higher P
values correspond to lighter gray values. The green dashed curve is P=0.16 and the green
solid curve is P=1. Colored dots are the Tref, τT values for cases discussed in Sect. 3. The P
values associated with these dots are as follows: starting from the small red dot on the upper left
and moving counterclockwise; P=.05, .035, .015, 0.1, 0.2,0.3, 0.64, 1.0, 2.5, 3.8. Small dots
correspond to P≤0.16 (slow regime) and large dots to larger P values (fast regime).
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Fig. 2. Contours of P at fixed ∆T=2K for fixed n0=0.1 cm−3. Color coding and contours as in
Fig. 1.
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Fig. 3. P=0.16 contour for fixed n0=0.1 cm−3 (black), n0=0.5 cm−3 (blue) and n0=1 cm−3,
(red). As n0 increases, more and more of the (Tref , τT) range falls into the P≤0.16 (slow)
regime, where clouds persist for most (or all) of the perturbation period.
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Fig. 4. Evolution of nondimensionalized temperature δT̂ (t̂) (bold black) and of nondimension-
alized saturation point temperature δT̂ ∗(t̂) over a single cooling event. Each curve corresponds
to a (Tref , τT) pair shown by a dot of the same color in Fig. 1. Dashed curves correspond to the
small dots in that figure and solid curves to the larger ones.
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Fig. 5. The dehydration efficiency ε (see Eq. 6) for ∆T=2K for the range of Tref and τT shown
in Fig. 1. P=0.16, 1 (green curves) and colored dots as in Fig. 1.
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Fig. 6. Dehydration efficiency ε for a range of values of ∆T and P , contours are as in Fig. 5.
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Fig. 7. Two measures of the variation in dehydration efficiency ε to variations in P at constant
∆T=2K : the response R(p)≡dε/d ln P (dashed), and sensitivity S(p)≡d (lnε)/dP (solid) for
the full range of P values in this study.
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