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Abstract. The Rayleigh number-Nusselt number, and
the Rayleigh number-thermal boundary layer thickness
relationships are determined for the three-dimensional
convection in a spherical shell of constant physical pa-
rameters. Several models are considered with Rayleigh
numbers ranging from 1.1 x 10? to 2.1 x 10° times the
critical Rayleigh number. At lower Rayleigh numbers
the Nusselt number of the three-dimensional convection
is greater than that predicted from the boundary layer
theory of a horizontal layer but agrees well with the re-
sults of an axisymmetric convection in a spherical shell.
At high Rayleigh numbers of about 10° times the erit-
ical value, which are the characteristics of the mantle
convection in terrestrial planets, the Nusselt number
of the three-dimensional convection is in good agree-
ment with that of the boundary layer theory. At even
higher Rayleigh numbers, the Nusselt number of the
three-dimensional convection becomes less than those
obtained from the boundary layer theory. The thick-
nesses of the thermal boundary layers of the spherical
shell are not identical, unlike those of the horizontal
layer. The inner thermal boundary is thinner than the
outer one, by about 30-40%. Also, the temperature
drop across the inner boundary layer is greater than
that across the outer boundary layer.

1 Introduction

The thermal boundary layer theory is developed in order
to estimate heat transfer through an incompressible hor-
izontal layer of constant physical parameters by steady
state thermal convection (Turcotte and Oxburgh, 1967).
For fixed temperatures at the upper and lower surfaces,
the theory assumes that the interior of the layer is sub-
divided into three distinct regions: two thermal bound-
ary layers, one at the top and the other at the bottom,
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where convective velocity is horizontal and thus the ver-
tical heat transfer is solely by conduction, and the mid-
dle isothermal region where heat transfers by convection
alone. Due to symmetry, the two boundary layers have
identical thicknesses and temperature gradients. The ef-
ficiency of heat transfer denoted by the Nusselt number,
Nu (which is the ratio of surface heat flux of a convect-
ing layer to that of an identical but conducting layer),
and the thickness of a thermal boundary layers, § , are
related to the Rayleigh number, R,, of the convection
through the following power laws (Jarvis and Peltier,
1989}:
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and R, is the critical Rayleigh number. In Eq.(3) C,
is the specific heat, g is the gravitational acceleration,
¢ is the thermal expansion coeflicient, p is the den-
sity, AT is the total temperature drop across the layer,
D is the thickness of the layer, K is the thermal con-
ductivity, and 5 is the dynamic viscosity. However,
in a convecting layer the velocity vector does have a
vertical component within a thermal boundary layer,
and the boundary between the isothermal interior and
a thermal boundary layer is not sharp. This is spe-
cially so for a low-Rayleigh number convection. More-
over, a thermal boundary layer with dominantly hori-
zontal velocity thickens as a distance from the stagna-
tion regions of the convection circulations. The constant
thickness expressed by Eq.(2) is an effective thickness
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regarding a. single convection cell. The numerical solu-
tion of the dynamic equations of steady state thermal
convection in a horizontal layer of constant physical pa-
rameters also results in power-law relationships between
the Nusselt number and the Rayleigh number, and be-
tween the mean thermal boundary layer thickness and
the Rayleigh number, but with slightly different values
of the constants and exponents in the above equations,
possibly due to different aspect ratios of convection cells
(e.g., Jarvis and Peltier, 1989). This emphasizes that
the boundary layer theory provides a good approxima-
tion for the major characteristics of thermal convection
in a horizontal layer of constant physical parameters.

Modified versions of the boundary layer theory where
the thickness of the thermal boundary layer is deter-
mined by the local Rayleigh number has been used to
calculate the heat transfer through the mantles of ter-
restrial planets in order to determine the overall cooling
of their cores (Stevenson et al., 1983). Davies(1993) ap-
plied the boundary layer theory to study the cooling of
the Earth’s core. The boundary layer theory was also
used to examine the possibility of mantle overturn in
Venus where the upper mantle and the lower mantle
were assumed to replace each other from time to time
(Herrick and Parmentier, 1994). Aside from the fact
that the physical parameters of the mantles are certainly
not constant, the mantles of the planets are thick and
the radii of curvature of the surface and the core-mantle
boundary are quite different, by a factor of about 2 in
the case of the Earth. Detailed studies of convection in-
side cylindrical and spherical shells with different radi
of curvature of the upper and lower surfaces show that
the lower thermal boundary layer is thinner than that of
the upper one (Jarvis, 1994; Vangelov and Jarvis, 1994).
This implies that the core of the planets may cool much
faster than that predicted by the boundary layer theory
derived for a horizontal layer.

The relationships between the Rayleigh number and
the thermal boundary layer thickness, and between the
Rayleigh number and the Nusselt number, have been
investigated in some detail for thermal convection in-
side a spherical shell of constant physical parameters us-
ing axisymmetric convection calculations {Vangelov and
Jarvis, 1994). The calculations were limited to Rayleigh
numbers up to about 14,000 times the critical value
which is about an order of magnitude smaller than the
Rayleigh number of the Earth’s mantle at present. Sol-
heim and Peltier’s (1990) axisymmetric model with con-
stant density and no internal heating considered Rayleigh
numbers as high as 4 x 10* times the critical value.
However, the convection in the planetary mantles is
most likely three-dimensional with high Rayleigh num-
bers. The present paper investigates the r_e[aation‘s'hips
between the Rayleigh number and the thermal bound-
ary layer thickness, and between the Rayleigh number
and the Nusselt number, which are detived from solving
the three-dimensional thermal convection equations in-
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side a spherical shell. Moreover, the Rayleigh numbers
considered are as high as 2.1 x 10° times that of the
critical value, and thus are suitable for thermal convee-
tion inside the planetary mantles. The shell is assumed
to have constant physical parameters in order to single
out the effects of the different curvatures of the core-
mantle boundary and the surface on the heat transfer
through the shell, and to compare our results with those
of the horizontal layer and the axisymmetric spherical
shell models. For the same reason, no radioactive or
viscous heating is considered and the temperature at
the core-mantle boundary is fixed. It is shown in this
paper that the boundary layer theory derived for a hor-
izontal layer somewhat overestimates the cooling of the
planetary mantle, but substantially underestimates the
cooling of the planetary core.

2 Three-dimensional convection in a spherical
shell

This section investigates the relationship between the
Rayleigh number and the Nusselt number and between
the Rayleigh number and the thermal boundary layer
thickness of the three-dimensional thermal convection
inside an incompressible spherical shell of constant phys-
ical parameters with fixed temperatures at the inner and
outer surfaces and with no internal heating. The basic
equations are the conservation of mass,

V.-V =0, (4)

the equation of motion, assuming an infinite Prandtl
number and Newtonian viscosity,

7V?*V — V7 + RagaTr = 0, (5)
and the energy equation
(%+V-V)T—kvz’l‘=0, (6)

where V is the velocity vector, = is the perturbations
of pressure, T is temperature, t is time, k is the ther-
mal diffusivity, and r is the unit vector along the ra-
dius r. Rq is the Rayleigh number as defined by Eq.(3)
where D now is the thickness of the shell and AT is
the difference between the temperature at the inner sur-
face, Ty, and that at the outer surface, Tz, of the shell,
ie.,, AT = T; — Ty. The equations are solved by a
bi-harmonic method, using stress-free and isothermal
boundary conditions at the inner and outer surfaces of
the shell. The lateral dependencies of temperature and
velocity fields are expressed in terms of spherical har-
monics including harmonics of degree and order up to
9 inclusive (a total of 100 harmonics). The radial de-
pendencies are determined through the numerical so-
lution of the resulting second order integrodifferential
equation of motion and the energy equation, using a
finite difference technique (Arkani-Hamed and Toksoz,
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1984). There are 44 unequally spaced grid points in the
radial direction, with shorter spacing inside the upper
and lower thermal boundary layers. From the surface
toward the interior in both the upper and lower 100 km,
there are 4 layers of thicknesses 20, 20, 30, and 30 km,
respectively. The effects of the grid resolution will be
discussed later.

The spherical shell considered in this study is a rea-
sonable model for the Earth’s mantle as far as its dimen-
sion and average physical parameters are concerned. It
has an outer radius of Ry = 6370 km, an inner radius
of Ry = 3470 km, a density of 4460 Kg/m?, a thermal
expansion coefficient of 3 x 103K, a thermal conduc-
tivity of K=5.748 W m~1K~! (this is an estimate of the
mean thermal conductivity of the Earth’s mantle, as-
suming olivine rich material and taking into account its
temperature dependence (Schatz and Simmons, 1972)),
and a specific heat of 1200 J kg~*K~!. The gravita-
tional acceleration is determined assuming a core with
a uniform density of 1100 kg/m3. The outer surface
temperature is put to zero and that at the inner surface
is assumed to be 2500°C. We calculate several models
with identical physical parameters except for their vis-
cosities. Table 1 lists the models, their viscosities and
Rayleigh numbers. The Rayleigh numbers span a range
of 1.1 x 10? to 2.1 x 10° times the critical valuc of 711
{(Solheim and Peltier, 1990). The higher values are ap-
propriate for the convection in the planetary mantles.

Each model starts with a high temperature distri-
bution and calculations are continued until the model
reaches a statistically steady state (many of the models
show oscillatory behaviour, but resemble steady states
in their overall properties, i.e. they are statistically
steady state), which will be briefly called steady state
hereafter. A given model is initially perturbed by a
small amplitude velocity field. We monitor the surface
heat flux, the heat flux at the inner surface, and the
kinetic energy spectra of the convection, all of which
either become time independent or oscillate about con-
stant mean values, implying that the model has reached
a statistically steady state condition. Figure 1 shows
the laterally averaged temperature distribution inside
model My at certain times. The model has a low vis-
cosity of 10*! Pa s, which is similar to the viscosity of
the Earth’s upper mantle but lower than that of the
lower mantle. In a relatively short time period, a strong
thermal boundary layer develops near the inner surface
while the interior part becomes isothermal. The main
features of the temperature distribution are similar to
those of the horizontally averaged temperature distri-
bution inside a convecting horizontal layer. However,
in the spherical shell, with an inner surface area that
is about 25% of the outer surface area, a substantially
enhanced boundary layer is developed at the base com-
pared to that at the surface. Not only the total tem-
perature drop across the lower thermal boundary layer
is greater than that across the upper boundary layer,
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Fig. 1. Laterally averaged temperature distribution in model Ms.
The numbers on the ¢urves show the time in b.y.

but also the lower boundary layer is thinner than the
upper one, so that the total heat flow through the inner
surface is equal to that through the outer surface.

Figure 2a shows the heat flux at the upper surface of
the models versus time, demonstrating that all models
reach steady state conditions. Models M;, My, M3, and
M, oscillate about mean values (the low frequency os-
cillation of model M; compared to those of the other
models is an artifact. In the computer programming,
we output the results of computation at every 0.2 b.y.
in this model, rather than at (.02 b.y. used for the
other models). As mentioned earlier, all of the models
are initially perturbed by a small velocity field. The
initial velocity of the high viscosity models M; and Mg
diminishes in time, allowing the temperature in the inte-
rior to reach an almost steady state conduction profile
and resulting in the monotonic decay of the heat flux
at the upper surface in the first about 3.5 b.y. Then,
the instability suddenly develops and convection starts
which substantially increases the heat fiux in the early
stages. The heat flux, however, decays to a constant
value as time passes. The same models were also recal-
culated using initial perturbations in the temperature
field. The developments in the early stages were differ-
ent from those shown in Fig.2a, but as time passed they
converged to steady state conditions similar to those
seen in the figure. Figure 2b shows the time variations
of the ratio of the total heat flow at the bottom to that
at the top for some of the models, indicating that the
ratios approach unity as time passes. Figures 2a and 2b
suggest that the models reach steady state conditions
during the time considered.
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Fig. 2. a) Time variations of the surface heat flux of the three-
dimensional models. b) Time variations of the heat flow at the
inner surface of the shell normalized to that at the outer surface
for the three-dimensional models.
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2.1 Thermal boundary layers

There is no consensus among investigators about the
definition of the thickness of a thermal boundary layer.
McKenzie (1977) considered the intersection of the in-
terior isotherm with a constant gradient temperature
profile which is tangent to the laterally averaged tem-
perature at the surface. Hansen and Ebel (1984) defined
the boundary layer thickness as the distance from the
surface to where the temperature reaches the interior
isotherm. Jarvis and Peltier (1989) used two different
definitions, the intersection of the extrapolated interior
isotherm with the actual temperature profile in a bound-
ary layer, and the depth to a local maximum (or min-
imum) of the laterally averaged temperature distribu-
tion. Jarvis (1994) assumed the interior surface of the
boundary layer at the place where the advective heat
flux equals the conductive heat flux. McKenzie’s defini-
tion yields the thinnest boundary layer, while the local
maximum (or minimum) criterion results in the thick-
est boundary layer. To account for the slightly nonlin-
ear profiles of the laterally averaged temperature in the
thermal boundary layers, I determined the thickness of
the boundary layer from the intersection of the interior
isotherm with a quadratic profile fitted to the laterally
averaged temperature values of the outer parts of the
thermal boundary layer. The resulting boundary layer
thickness falls within between Jarvis and Peltier’s (1989)
first definition and Jarvis’ (1994) definition. The differ-
ences of the thicknesses obtained using these three def-
initions are minor. Therefore, in this paper two bound-
ary layer thicknesses are calculated, one using McKen-
zie’s definition and the other using the thicker boundary
layer definition of Jarvis and Peltier (1989}, in order to
include the two end members.

Figure 3a shows the relationship between the thick-
ness of the boundary layer d (normalized to the thick-
ness of the shell D) and the Rayleigh number R, (nor-
malized to the critical value R, = 711) for our mod-
els. The thickness decreases with the increase of the
Rayleigh number, obeying a slightly nonlinear relation-
ship in the log log plot. Moreover, the lower boundary
layer is thinner than the upper one, by about 30-40%,
for all the models. This is in distinct contradiction with
that obtained from the boundary layer theory derived
for a horizontal layer where the two boundary layers
have identical thicknesses. The boundary layer theory
of a horizontal layer predicts the isothermal tempera-
ture of the interior to be the average of the bottom and
top temperatures, whereas the three-dimensional mod-
els suggest a significantly lower value as also concluded
by Vangelov and Jarvis (1994) for a two-dimensional
axisymmetric spherical shell model. Included in the fig-
ure is the power law relationship between the thermal
boundary layer thickness of the horizontal layer and the
Rayleigh number calculated from Eq.(2). The slopes of
the curves are, in general, similar to that of the power
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Fig. 3. a) The relationship between the thickness of the ther-
mal boundary layers and the Rayleigh number Ra. The curves
dencted by a are determined using McKenzie's (1977) definition.
‘Those denoted by b are compnted using the thicker layer defini-
tion by Jarvis and Peltier (1989). The index 1 denotes the lower
thermal boundary and index 2 the upper one. d is the thickness
of the boundary layer and D is that of the spherical gshell. R
is the critical Rayleigh number. b) The relationship between the
thickness of the upper thermal boundary layer and the Rayleigh
number Ra. The curve denoted by a is determined using McKen-
zie’s (1977) definition. That denoted by b is computed using the
thicker layer definition by Jarvis and Peltier (1989). d is the thick-
ness of the boundary layer, D is that of the spherical shell, and
Re is the critical Rayleigh number. JP1 and JP2 are the bound-
ary layer thicknesses determined by Jarvis and Peltier {1989), and
TH is that of the horizontal layer computed by the boundary layer
theory. ¢} The relationship between the Nusselt number and the
Rayleigh number R, for the three- dimensional models. R, is the
critical Rayleigh number. JP, SP, and TH are the power law rela-
tionships given by Jarvis and Peltier {1989), Solheim and Peltier
{1990}, and the boundary layer theory of a horizontal layer, respec-
tively, JP and SP are linearly (in the log log plot) extrapolated
to higher Rayleigh numbers. The dots are the fine-grid resolution
models.
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law for the low Rayleigh numbers. However, at higher
Rayleigh numbers the curves become shallower.

Figure 3b shows the thickness of the upper thermal
boundary layer of the three-dimensional models and those
of the horizontal layer obtained from the power law of
the boundary layer theory and the two power laws sug-
gested by Jarvis and Peltier (1989) which are linearly
extended to higher Rayleigh numbers for comparison.
There is good agreement between our results and those
of Jarvis and Peltier, especially for the slopes of the
curves in the low Rayleigh number region. Our re-
sults, however, show a slightly non-linear relationship
at higher Rayleigh numbers that is probably partly due
to the coarser grid resolution in the boundary layers (see
below).

2.2 The Nusselt number-Rayleigh number relationship

The Nusselt number of a model is proportional to its
surface heat flux with a proportionality constant of ¥ =
[R2(R2 —R1)]/(KR1Ty), which is the inverse of the sur-
face heat flux of the corresponding steady state con-
duction model (for the above parameter values v =
370.47). Therefore, the time evolution of the Nusselt
numbers of the models is similar to that of the surface
heat flux (Fig.(2Za}). In the following we discuss the Nus-
selt number-Rayleigh number relationship in a steady
state, or statistically steady, convection.

The Nusselt number-Rayleigh number relationship of
an axisymmetric convection inside a spherical shell sig-
nificantly deviates from a power law (is strongly non-
linear in the log log plot) at very low Rayleigh numbers
(Machetel and Robinowicz, 1985). The Nusselt number
increases monotonically as Rayleigh number increases,
but suffers a sudden decrease at Rayleigh numbers of
about 7-8 times the critical Rayleigh number. The con-
figuration of the stream lines shows a transition from a 3
or 4 cell convection to a 2 cell convection at this Rayleigh
number (Machetel and Robinowicz, 1985). According
to axisymmetric models of Solheim and Peltier (1990),
the Nusselt number-Rayleigh number relationship also
shows significant changes at a higher Rayleigh number,
between 500-1000 times the critical value, as convection
changes from a steady state to a time-dependent oscil-
latory mode. At still higher Rayleigh numbers, up to
about 4 x 10* times the critical value which is the high-
est value considered by Solheim and Peltier, the sys-
tem is locked on to a power law relationship (linear in
the log log plot). The models considered in this paper
have much higher Rayleigh numbers than those stud-
ied by Machetel and Robinowicz, but includes the range
of Rayleigh numbers modeled by Solheim and Peltier.
The Nusselt number-Rayleigh number relationship of
our models at the steady state condition deviates from
a simple power law at high Rayleigh numbers, as it is
shown on the log log plot in Fig.(3c) (see Table.1 for the
Nusselt numbers at steady state conditions). Included
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in the figure are the relationships obtained by Solheim
and Peltier (1990) for an axisymmetric constant density
spherical shell, by Jarvis and Peltier (1989) for a hori-
zontal layer, and the one based on the boundary layer
theory calculated from Eq.(1), all of which are linearly
extended to higher Rayleigh numbers. Our models pre-
dict consistently lower Nusselt numbers than Jarvis and
Peltier’s model, and consistently higher than the model
based on the boundary layer theory. But there is good
agreement between Solheim and Peltier’s and our results
for the Rayleigh numbers up to about 10* of the critical
value. This close agreement is due to the similar geom-
etry of the models, both are spherical shells. At higher
Rayleigh numbers, however, the heat transfer through
the shell by a three-dimensional convection is less effi-
cient than that predicted by linear extrapolation of the
axisymmetric convection results of Solheim and Peltier
(1990).

Determination of the Nusselt number strongly depends
on the vertical resolution of the thermal boundary lay-
ers. At least 3 grid points are required to resolve a
boundary layer of two-dimensional Rayleigh-Benard con-
vection. The dependence on the grid resolution of the
Nusselt number of a two-dimensional convection, with
Rayleigh numbers up to 10* times the critical Rayleigh
number, was examined in detail by Hansen and Ebel

(1984) using vertically refined finite elements in the bound-

ary layers compared to those in the isothermal interior.
According to these authors, the Nusselt number does not
change significantly as long as the vertical dimension of
the boundary elements normalized to the total thickness
of the layer, £, remains smaller than 0.01, but strongly
deviates for coarser grids, ¢ = 0.02 and 0.04. Hansen
and Ebel’s models correspond to our low-Rayleigh num-
ber models (Mg to My). The layer thicknesses used in
the upper and lower 100 km of our spherical shell mod-
els (20, 20, 30, and 30 km) correspond to the £ value
of about 0.007, which is well within the range of 0.01-
0.001 found to be acceptable by Hansen and Ebel for
a low-Rayleigh number convection. However, the layer
thicknesses are somewhat coarse for our high-Rayleigh
number models M; to My, as seen from Table.1 which
shows the boundary layer thickness estimated from the
boundary layer theory, Eq.(2). To examine the effects
of the vertical grid resolution of a boundary layer on
the Nusselt number, the grid intervals are divided by 2,
resulting in 88 grid points throughout the mantle. The
layer thicknesses in the upper and lower 100 km are now
10, 10, 10, 10, 15, 15, 15, and 15 km from the surface
toward the interior, respectively, which correspond to
the £ value of about 0.0034. This € value is well within
the lower part of the range of 0.01-0.001, and accord-
ing to Hansen and Ebel’s conclusions the grid resolu-
tion of the models is now sufficient to produce reliable
Nusselt numbers with negligible errors. Figure 4 shows
the time evolution of the Nusselt number for the fine-
and coarse-grid models. Aside from the early stages of
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Fig. 4. Time variations of the Nusselt numbers of models M,
M4 and Ms. Primes denote the finer grid resolution models.

strongly time-dependent circulations, the Nusselt num-
bers of the two identical models, but with different grid
resolutions, converge to statistically steady states with
a constant difference. The Nusselt numbers of the fine-
grid models are greater than those of the coarser ones,
the differences increase at higher Rayleigh numbers. We
also ran our highest Rayleigh number model M; using
the fine-grid resolution. However, the laterally averaged
temperature of the final time step of the coarse-grid res-
olution model M, is used as an initial laterally averaged
temperature distribution in this run, to save computer
time. Figure 5 shows the time variations in the Nusselt
number and the ratio of the total heat flow from the
bottom to that across the surface for this run. Both
curves show a very oscillatory behaviour, that is the
main characteristic of convection at high Rayleigh num-
bers. Aside from oscillations, the figure shows that the
run has achieved a statistically steady state.

Included in Fig.(3c) are the average Nusselt numbers
of the fine-grid models exhibiting a general trend as a
function of the normalized Rayleigh number that is sim-
ilar to the trend of the coarse-grid models. The Nusselt
numbers of our models deviate from those of Solheim
and Peltier at very high Rayleigh numbers and tend
toward those predicted by the boundary layer theory.
However, at higher Rayleigh numbers (2 x 10° times the
critical value), that are characteristics of the mantle con-
vection of the terrestrial planets in the early stages of
their evolution, the Nusselt numbers are lower than the
one predicted by the boundary layer theory. These rel-
atively lower Nusselt numbers suggest that adopting a
simple power-law relationship between the Nusselt num-
ber and the Rayleigh number derived from the boundary
layer theory may overestimate the rate of cooling of the
planets, especially during their early stages of evolution.
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Fig. 5. Time variations of the Nusselt number and the ratio of
the heat flux at the bottom to that at the top for the fine-grid
resolution model M;.

Another parameter that has a strong effect on the
Nusselt numbers of the two-dimensional rectangular box
convection models is the aspect ratio (the width to depth
ratio} of the convection cells. According to the bound-
ary layer theory, the Nusselt number is maximum for an
aspect ratio of 1 (Turcotte and Schubert, 1982), whereas
the numerical solutions of the dynamic equations result
in a maximum Nusselt number at an aspect ratio of
0.7 (Olson and Corcos, 1980} or 0.8 (Hansen and Ebel,
1984). For aspect ratios higher than 1, models of dif-
ferent authors agree that the Nusselt number decreases
with the increase of the aspect ratio. However, the whole
aspect ratio idea is applicable to low-Rayleigh number,
steady-state, and two-dimensional convection inside a
rectangular box which is confined laterally. For con-
vection inside a spherical shell, with no lateral confine-
ment, the width of a cell changes (by a factor of about
2 in the Earth’s mantle) due to the different curvatures
of the lower and upper boundaries. Also, convection
is strongly time-dependent at high Rayleigh numbers,
both in a rectangular box (e.g., Jarvis and Peltier, 1989)
and in an axisymmetric spherical shell (e.g., Solheim
and Peltier, 1990). Hot (Cold) Plumes arc generated
almost randomly near the lower (upper) boundary with
irregular aspect ratios and some lose their integrity as
they ascend (descend) before reaching the top (bottom)
boundary, the notion of aspect ratio loses its ground.

The aspect ratio idea has a qualitative importance
when dealing with three-dimensional convection regard-
less of being in a rectangular box (Tackley, 1993) or
in a spherical shell (Schubert et al, 1990). This is es-
pecially the case for high-Rayleigh number convection
models which are strongly time-dependent. An aspect
ratic only addresses the overall statistical characteristics
of convection in time and space. This is demonstrated
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Fig. 6. Lateral temperature distribution on a spherical surface of
radius 4000 km in the last 2 b.y. of model Ma. The lower panel
is at the final time, the middle panel is at 1 b.y. earlier, and the
top panel is at 2 h.y. earlier.

in Fig.(6) which shows the lateral temperature distribu-
tion on a spherical surface of radius 4000 km (i.e., at
a depth of 2370 km which is almost the middle of the
spherical shell) in the last 2 b.y. for the high-Rayleigh
number model My with a fine-grid resolution. Although
the convection is time-dependent, its overall statistical
feature which is characterised by cells of about 3000 km
width (an approximate aspect ratio of about 1) changes
only slightly. The figure also demonstrates the stabil-
ity of the convection pattern even for the high-Rayleigh
number model, indicating the stability of the numer-
ical techniques adopted in this paper. This is partly
due to the integrodifferential form of the numerical so-
lution (Arkani-Hamed and Toksoz, 1984), the integral
part tends to stabilize the solution.

The circulation pattern of convection strongly depends
on the lateral resolution, i.e. the highest degree of spher-
ical harmonics used in modelling the mantle circula-
tions and lateral variations in the temperature distribu-
tion. Despite its great advantages of reducing the three-
dimensional partial differential equation of motion of the
thermal convection problem to a one-dimensional sec-
ond order integrodifferential equation, the bi-harmonic
technique utilized in this paper imposes strong compu-
tational limitations, both on memory and on CPU time.
Consequently, our models suffer from their low lateral
resolution, the highest degree harmonic used, n=9, has
a wavelength of 3435 km at the middle of the mantle,
the radius of 4920 km. However, the overall heat trans-
fer through the mantle, and thus the Nusselt number,
is mainly controlled by the long wavelength components
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of mantle circulations (Jarvis and Peltier, 1986; Leitch
and Yuen, 1991), suggesting that our models are prob-
ably adequate as far as the Nusselt number calculations
are concerned.

3 Discussion and conclusions

The Earth’s mantle is far from homogeneous. Not only
are there chemical variations in lateral and radial direc-
tions, the physical parameters controlling the thermal
evolution of the Earth, namely the rheology, density,
thermal expansion coefficient, and thermal conductiv-
ity are temperature- and pressure-dependent and thus
may significantly vary inside the mantle. The Newto-
nian rheology usually used in the thermal convection cal-
culations for mathematical simplicity may not faithfully
represent the mantle rheology. Moreover, the viscosity is
strongly temperature- and pressure-dependent and may
change by orders of magnitude laterally, by about an
order of magnitude radially, and by more than an or-
der of magnitude throughout the history of the Earth.
It is plausible to assume that the mantle of other ter-
restrial planets are also heterogeneous. The application
of convection models calculated using a homogeneous
mantle with fixed temperatures at the lower and up-
per surfaces may not be viable. The core of a planet
cools because of its limited energy budget, and the tem-
perature at the core-mantle boundary decreases during
the thermal evolution, substantially reducing the vigor
of mantle convection and thus the cooling rate of the
planet (Arkani-Hamed, 1994). In addition to these ma-
jor shortcomings, the boundary layer theory developed
based on convection in a horizontal layer, or the axisym-
metric spherical shell- convection models, overestimate
the cooling rate of the planetary mantle. The three-
dimensional thermal convection calculations presented
in this paper show that the Nusselt numbers obtained
at high Rayleigh numbers are lower than those predicted
by the boundary layer theory or by an extrapolation of
the results from axisymmetric models. It is also shown
that, unlike the boundary layer theory of the horizontal
layer, the inner thermal boundary layer of convection in
a spherical shell is appreciably thinner than the outer
one, by about 30-40%. Moreover, the temperature drop
across the lower boundary layer is about 3 times that
across the upper boundary layer. This suggests that
the boundary layer theory substantially underestimates
the cooling of the planetary core. Therefore, applica-
tion of the boundary layer theory to mantle convection
provides only a rough estimate of the thermal history
of terrestrial mantles, but does not yield a reasonable
assessment of the core cooling.
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Table 1.The viscosity, 5, Rayleigh number, Ra, and Nusselt num-
ber, Nu, of the models presented in this paper. & is the thickness
of the thermal boundary layer determined from Eq.(2) of the text.

Model n Ra Nu &

(Pa s) {x10%) {km)
M, 5 x 1020 153.39 415 21.9
M2 1 % 10°T 76.70  38.0 27.6
My 5 % 1071 15.30  30.2 47.2
M, 1 x 10%2 7.67 27.57 50.4
My B x 1072 1.53 18.6 101.8
Ms 1 x 10% 0.767 16.5  127.6
My 5 % 105 0.153 0.2 219.1
Mz 1 x 1024 0.0767 7.8 275.0
Mg 5.5 x 10°F  0.0140 4.1 4864
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