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Abstract.

In this paper we review some of the work done in in-
vestigating the scaling properties of Magnetohydrody-
namic turbulence, by using velocity fluctuations mca-
surements performed in the interplanetary space plasma
by the Helios spacecraft. The set of scaling exponents
&, for the g-th order velocity structure functions, have
been determined by using the Extended Self-Similarity
hypothesis. Wec have found that the g—th order veloc-
ity structure function, when plotted vs. the 4-th or-
der structure function, displays a range of self-similarity
which extends over all the lengths covered by measure-
ments, thus allowing for a very good determination of
&,. Moreover the results scem to show that the scal-
ing exponents are the same regardless the various ob-
servation periods considered. The obtained scaling cx-
ponents have been compared with the results of some in-
termittency models for Kraichnan’s turbulence, derived
in the framework of infinitely divisible fragmentation
processes, showing the good agreement between these
models and our observations. Finally, on the basis of the
actually available data sets, we show that scaling laws in
Solar Wind turbulence seem to be different from turbu-
lent scaling laws in the ordinary fluid flows. This is true
for high—order velocity structure functions, while low-
order velocity structure functions show the same scal-
ing laws. Since our measurements involve length scales
which extend over many order of magnitude where dissi-
pation is practically absent, our results show that Solar
Wind turbulence can be regarded as a testing bench for
the investigation of general scaling behaviour in turbu-
lent flows. In particular our resnlts strongly support the
point of view which attributes a key role to the inertial
range dynamics in determining the intermittency char-
acteristics in fluid flows, in contrast with the point of
view which attributes intermittency to a finite Reynclds
number effect.

Correspondence to: V. Carbone

1 The solar wind laboratory

The Solar Wind is a ionized, magnetized gas, composed
mainly of protons, electrons, a small percentage of al-
pha particles and traces of heavier ions. It continuously
flows away from the solar corona in all directions per-
vading the interplanetary space. The Solar Wind plays
an important role in space research for its relevance
to many solar, geophysical and astronomical phenom-
ena, as well as for its intrinsic physical interest. Gen-
eral informations are available for example in the mono-
graphs by Parker (1963), Hundhausen (1972), and some
recent reviews like the two books Physics of the In-
ner Heliosphere (1990, 1991; eds. R. Schwenn and E.
Marsch, Springer-Verlag, New York). Among other re-
cent reviews on turbulence in the Solar Wind see Tu and
Marsch (1993), Goldstein et al. {1995}, Bruno (1992).
Long time ago Parker (1958) conjectured the possi-
bility that the hot solar corona (T =~ 10°% °K) out of
hydrostatic equilibrinm, undergoes a steady expansion
where the flow velocity increases from a low value near
the Sun to a large supersonic expansion speed and van-
ishing pressure at large heliocentric distances. Due to
the extremely high electrical conductivity of the hot
corona! plasma, the magnetic field lines are frozen in
it, and the flow transports the solar magnetic field into
the interplanetary space. Since the Sun rotates, the re-
sulting magnetic configuration turns out to be the so
called Parker’s spiral. The universal acceptance of the
Parker's model was achieved only after the advent of
in sity interplanetary observations in the early 1960’s.
Spacecraft measurements revealed that the interplane-
tary space was pervaded by a supersonic plasma flow
with a "Parker’s spiral” average magnetic field config-
uration. Mariner 2 spacecraft measurements indicated,
for the first time, the presence of large amplitude mag-
netic field fluctuations. The power law observed in the
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Fig- 1. Hourly averages of wind speed (upper panel) and helio-
centric distance (lower panel) are shown versus time. Speed is
measured in kin/sec and the distance is in AU’s.

energy spectrum of these fluctuations leads Coleman
{1968) to evoke the use of turbulence concepts,

Magnetic field fluctuations in the interplanetary space
are present at all time scales from the ion gyro-period to
the solar rotation period, say over scale lengths between
few hundred kilometers and some Astronomical Units (1
AU = 1.5 x 10® km). There isn’t any Earth laboratory
where scientists could access such a wide range of spa-
tial and temporal scales; in this sense the Solar Wind is
now considered as the biggest "laboratory™ for the inves-
tigation of hydromagnetic turbulence. A great number
of data have been collected by other probes sent after
the Mariner spacecraft. We arc now in conditions to
study Solar Wind turbulence over a range of heliocentric
distances from 0.29 AU perhielion of the Helios probe
(in the inner heliosphere) out to the current position of
the Voyager spacecrafts {in the outer heliosphere), say
at the end of the Solar System. Recently the Ulysses
spacecraft has begun to furnish informations about the
out—of-ecliptic turbulence flowing from the polar hole of
the Sun (Phillips et al., 1994}.

As a matter of fact, within 1 AU the interplanetary
medium still conserves most of the structure character-
istic of the low corona where the wind is born. Beyond 1
AU the increasing bending of the spiral of the magnetic
field and the associated onset of shocks largely reprocess

the plasma changing its original properties. In Figure
1 we show the wind speed profile vs. time, as recorded
by Helios 2 during its primary mission to the Sun in
the first four months of 1976 when the spacecraft or-
bited from 1 AU, on day 17, to 0.29 AU on day 108.
The heliocentric distance is also shown. The most im-
pressive feature of this Figure is the alternate presence
of high-speed and low-speed regions. The fast wind is
produced mostly inside coronal holes which are char-
acterized by open field lines and are mainly located at
high latitude, within the least active regions of the pho-
tosphere. Slow wind mostly comes from open field line
areas located at low latitude, which represent the most
active regions of the Sun. Coronal holes topology expe-
riences a strong evolution with solar cycle. Around solar
minimum, polar coronal holes extend at very low heli-
ographic latitude showing a quite stable configuration
that can last for several solar rotations. At this time an
ohserver confined onto the ecliptic plane would sample
regions of space dominated by high-speed streams alter-
nating with regions dominated by low-speed streams.
The characteristics of magnetic and velocity fluctua-
tions at lowfrequency, display striking differences when
observed in fast and slow speed streams, a comphren-
sive survey is contained for example in Tu and Marsch
(1995). Here we would remind only some distinctive fea-
tures. In the high-speed streams a high level of correla-
tion between velocity §¥ and magnetic field fluctuations
6B occurs. This Alfvénic correlation can be written

" &8
6’0 = iW
(p is the plasma mass density) where the plus or mi-
nus sign corresponds to that found in small amplitude
Alfvén waves propagating away from the Sun. More-
over mass density and magnetic field intensity remain
almost constant, i.e. fluctuations are almost incom-
pressible. In the low—speed streams the Alfvénic cor-
relation is destroyed, while considerable levels of com-
pressible fluctuations are observed {Belcher and Davis,
1971; Veltri, 1994). In all the periods the spectral in-
dex p for magnetic and kinetic energy, as well as for
the pscudo—energies obtained through the Elsasser fields
62F = 67+ 6B/(47mp)1/2, is strongly variable. An im-
pressive feature can be recovered from the Figure 2a of
Marsch {1992) where it is shown that —2 < p < —1.

2  TFluid equations for Seolar Wind ?

The most reliable description of the Solar Wind plasma
can be obtained by using the kinetic collisionless Vlasov
equations for ions and electrons (Akhiezer et al., 1975).
Indeed, by calculating the collision frequencies v, =
2.9 x 10752, A, 7% and v, = 4.8 x 10~%n, A2 %2
{ne ¥~n; ~ 1land T, = T; = 5 eV being the mass



density and the temperature respectively for the elec-
trons and ions, and A, ~ 20 is the Coulomb logarithm)
it can immediately be seen that the electrons and ions
mean free paths A, = Vt(e)/ve and A; = Vt(i)/vz- {being
Vtw o~ Vtm ~ 40 km/sec. the thermal speed) are of
the order of 1 AU. Nevertheless the simpler two—fluid
approximation is often used. This approximation is de-
rived from the kinetic equations, by assuming that the
electrons and ions distribution functions are both al-
most Maxwellian. This hypothesis is satisfied only in a
very rough way in the Solar Wind. For this reason the
fluid equations obtained arc usually considered noth-
ing but balance equations for the low—order moments of
the distribution function, while no reliability is given to
the values of the transport coefficient obtained from the
usual technique {Braginskii, 1965).

When considering large scale phenomena, i.e. for typ-

ical frequencies lower than ion cyclotron frequency wg)

and lengths larger than the ion Larmor radius rg) =
V9wl which in the Solar Wind turn out to be re-

spectively of the order of wg) ~ {3.1 Hz and 'rg) ~ 400
Km, a one—fluid Magnetohydrodynamic (MHED) approx-
imation can also be derived by neglecting the electron
inertia and by assuming both zero ion—Larmor radius
and charge neutrality, i.e. equal values for the ions and
clectrons number density. Moreover in this approxima-
tion, a fundamental physical effect which is character-
istic of the kinetic description of plasmas is completely
neglected: the so called Landau damping (Akhiezer et
al., 1975). This damping dissipates wave energy by ac-
celerating and/or heating the particles and its efficiency
is directly related to the particular form of the particle
distribution function. It has been shown (Barnes, 1966)
that this damping is particularly efficient for compress-
ible fluctuations while it does not affect at all incom-
pressibie fluctuations. This theoretical argument as well
as the fact that in fast streams very low levels of com-
pressible fluctuations (i.e. density, magnetic field inten-
sity luctuations) are observed in the range of time scales
1 min. € 7 £ 1 day, has allowed for the extensive use
of MHD incompressible equations when studying fast
streams turbulence.

The application of incompressible hypothesis to tur-
bulence in slow streams, is much more questionable,
since in these streams compressible fluctuations are in
general present. However, as noted by Marsch and Tua
(1993) and Tu and Marsch (1994), these fluctuations
are much more relevapt at daily scales than at hourly
scales. For these reasons by limiting ourselves to fluctu-
ations with time scales between 1 min. and 1 day and by
taking in mind all the above mentioned caveats, the nse
of incompressible MHD cquations can be considered at
best as a rough approximation to describe Solar Wind
turbulence behaviour.

It is moreover clear that there is no chance to re-
cover a whatever value for the transport cocfficients of
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the fluid, like resistivity, viscosity, thermal diffusivity
ete., and then for the associated dimensionless numbers
(Reynolds number, Lundquist number, Prandtl num-
ber). The range of lengths where incompressible fluctu-
ations do not suffer any dissipation is nevertheless very
large. It extends from 1 AU to the ion-Larmor radtus:
i.e. about five or six decades. Since, as a very rough
approximation, when using the usual »V? dissipative
term the ratio between the dissipation length and the
injection length, i.e. the usuval inertial range extension,
behaves as a power of the Reynolds number R/# (be-
ing p the usual spectral index), this means that we can
safely assume an effective Reynolds number of the order
of 10% or 10°. Omn the other hand, since in the Solar
Wind w74 ~ 10°%, where 74 = r/ca is the Alfvén
time at the scale r and ca = |8a] (84 = Bo/(4np)t/?
is the Alfvén velocity associated to the large scale mag-
netic field By), the first—order corrections to the above
mentioned ideal and incompressible MHD approxima-
tion of the Solar Wind plasma are more probably rep-
resented by dispersive effects at frequencies somewhat
smaller than wg) rather than by dissipative effects which
probably occurs at the ion—cyclotron frequency.

3 Scaling laws for MHD
3.1 Scale invariance of MHD equations

The equations describing ideal, incompressible MHD tur-
bulence are

5 = (7:9)7- 9P+ (5-9)3 M
g_f;)'+(g.e/)g (5-9)% 2)

where P is the total (kinetic plus magnetic) pressure
and b = B/(47mp)'/2. By introducing a length scale r
and a characteristic value for both the velocity field and
the magnetic field, respectively v, and éb,, it can be
seen that the MHD equations are invariant under the
following scaling transformations (Carbone, 1993)

r—= AT Su, o SueATh | Bby — b ATh

(A >0, h is a free parameter and the pressure scales as
the square of the velocity). As a consequence, since for
each value of b the quantitics §v, /r" and &b, /" are also
invariant, we expect a scaling law where §v, ~ b, ~ r®.
Obviously this scaling cannot fix a value for h. This
means that the MHD equations are invariants for all the
allowed values of h. By looking at the usual multifractal
theory (Benzi et al., 1984) an entire spectrum of values
of A must be introduced. In the following, to compare
the MHD results with ordinary fluid turbulent scaling
laws, we confine curself to the study of the velocity field.
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3.2 Kraichnan’s and Kolmogorov’s scaling laws

The Richardson’s picture is usually introduced to de-
scribe the nonlinear energy cascade in ordinary fluid
turbulence as the excitation of smaller length scales 7 in
the inertial range. The Kolmogorov's refined similarity
hypothesis (Kolmogorov, 1941, 1962; Kraichnan, 1974)
relates the velocity fluctuations dv, at a given scale r,
and the energy transfer rate e, say

S, ~ l/3p173 (3)

The energy transfer rate assumes a value independent
on 7 only if h = 1/3 (sec for example Frisch, 1995).

This picture is qualitatively applicable also to MHD,
even if the Kolmogorov’'s refined similarity hypothesis is
no more valid, at least for strong enough magnetic fields.
In fact the main difference between MHD and ordinary
ftuid flows is the presence of the Alfvén effect, that is the
decorrelation of the interacting eddies traveling in op-
posite direction with respect to the large scale magnetic
field Eg (Troshnikov, 1963; Kraichnan, 1965; Dobrowolny
et al., 1980} which reduces the strength of the nonlinear
interactions. This leads to the fact that the nonlinear
energy cascade in MHD is realized in a time T, ~ 72 /74,
which is lower by a factor (7. /74) with respect to the
usual eddy—turnover time 7. ~ r/8v,. Then by defining
the energy per unit time transferred towards the smaller
scales e, ~ év2 /Ty, it can be found

bvp ~ e,‘,”ci{“r”" (4)

which is the relation analogous to (3). By using this last
relation it can immediately seen (Carbone, 1993) that
the energy transfer rate scales as €, — €, A'~*"_ 50 that,
if we require that e, assumes a value independent of the
scale r, we must impose h = 1/4.

More informations about the consequence of these
scaling relations, can be obtained by looking at the g—th
velocity structure functions, that is the spatial averages
of the longitudinal velocity differences

S0 = (8v]) (5)
where
bv, = (& +7) — 9(F)] - ;

Using (4) a linear scaling law

800 o pla = pa/d

which is the analogous of the linear ¢/3 Kolmogorov
scaling (Kolmogorov, 1941) should be obtained. From
experiments in fluid flows Anselmet et al. (1984) have
shown that the scaling exponents £, are nonlinear func-
tions of ¢, The corrections to the linear scaling law in
fluid flows are attributed tointermittency effects (see for

example the monograph by Frisch (1995), or the issue
"Kolmogorov ideas 50 years on”, Proc. R. Soc. Lond.
A, 484, Eds. J. C. R. Hunt and O. M. Phillips, 1995). In
fact from measurements we get the information that the
Probability Distribution Function (PDF) of év,’s is not
gaussian, with quasi—exponential wings and high values
for the kurtosis.

The scaling exponents £, obtained from Solar Wind
measurements (Burlaga, 1991; Marsch and Liu, 1993),
show a departure from both the linear scaling laws ¢, =
g/m (m = 3 for the Kolmogorov scaling law, and m =
4 for the Itoshnikov—Kraichnan scaling law). On the
basis of these first observations Carbone (1993) started
to introduce intermittency effects in MHD turbulence in
the same way as they had been introduced in fluid flows.

In the first multifractal interpretation of intermittency
(Parisi and Frisch, 1983; Benzi et al., 1984), it is intro-
duced an entire spectrum of values of A. Then, being
D(h) the h-dependent fractal dimension of the set of
points where the scaling év, ~ 7" is verified, by intro-
ducing the probability to observe a local scaling (namely
P ~ 3=P(R)) it can be written immediately

59 ~ f du(h)yrhard=DH) (6)

leading to (Benzi et al., 1984)
¢ = min[hg +3 — D(h)] (7)

By looking at the Kolinogorov (3) or at the Kraichnan
scaling law (4) and introducing the scaling exponents for
the energy transfer rate

<ed > gTe (8)
it can be found

'Sq :Q/m+Tq/m (9)

In this way the intermittency corrections to the linear
scaling are determined through a cascade model for the
energy transfer rate. This opens a "Pandora’s box of
possibilities” (Kraichnan, 1974), where cascade models
are built up in the framework of the general fragmen-
tation processes (Novikov, 1969). When 7, is a nonlin-
ear function of g, the energy transfer rate displayes a
multifractal behaviour (among other see Schertzer and
Lovejoy, 1983; Hosokawa and Yamamoto, 1990; Mene-
veau and Sreenivasan, 1991; Carbone, 1993; Marsch et
al., 1996; Frisch, 1995) which can be characterized by
introducing the generalized dimensions

Tq

(¢g—1)

{Ilentschel and Procaccia, 1983). The scaling exponents
of the velocity structure functions is related to D, by

Dy=1+

&= (= =1) Dy +1 (10)



The anomalous correction to the usual scaling laws is
then given by

€ —(g/m) = (1~ Dyym)(1 - q/m)

It can be immediately seen that when ¢/m < 1 the cor-
rection is positive, while-when g/m > 1 it is negative.
Moreover a general fractal behaviour (D = D =
const. < 1) gives a linear correction to the scaling ex-
ponents. The observed convex nonlinear correction to
&, {Anselmet et al., 1984) is obtained through the mul-
tifractal approach, say when D, is a decreasing func-
tion of g. The multifractal theory of the energy transfer
rate is obviously related in a simple way (Aurell et al.,
1992) to the oldest multifractals introduced by Parisi
and Frisch (1983) (see also Benzi et al., 1984).

An important point which requires to be stressed is
the fact that, by looking at the general infinitely di-
visible distributicns in turbulence (Novikov, 1990, 1994;
Hentschel and Procaccia, 1983), under some usual hy-
potheses {Novikov, 1969) the scaling exponents 7, are
positive for ¢ < 1 and negative for ¢ > 1, so that
71 = 0. Say intermittency corrections are zero for ¢’ = 1.
In the ordinary fluid flows the 4/5-Kolmogorov's law for
the third—order structure functions (Frisch, 1995)

4

53) = —zer (11)

derived from Navier-Stokes equations and valid in the
inertial range (Kolmogorov, 1941), assures that the third-
order structure function is unaffected by intermittency.
Equation (11) is often used as a formal definition of the
inertial range. The MHD analogous conjecture of (11)
(Carbone, 1994a), say of an inertial range defined by

54 = Cer (12)

(C is a constant) is obtained from the Kraichnan sim-
ilarity hypothesis (4).by assuming that = = 0 in (8}
Unluckly up to now no exact derivation of (12) from
MHD equations has been given, and due to the very
large uncertainties on the measurements of the scaling
exponents (e.g. Burlaga, 1991), we cannot use experi-
mental data neither to confirm that ; = 0, nor at least
to be sure that 7, = 0 for some value of ¢ # 1. On
the other hand independent measurements of the dissi-
pation field ¢(Z) in the Solar Wind turbulence do not
make sense. In ordinary fluid flows, due to the Taylor’s
hypothesis and to the existence of a well defined relation
between e(F) and the velocity field, the dissipation field
can be investigated by using its one-dimensional sur-
rogate e(t) ~ [dv(¢)/dt]> (Meneveau and Sreenivasan,
1091; Aurell et al., 1992). Of course this cannot be true
in the Solar Wind turbulence.
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3.3 MIHD intermittency models

Notwithstanding the lack of a firm theoretical and/or
experimental basis for equation (12), cascade models
for the energy transfer rate have been obtained in the
framework of general fragmentation processes also for
MHD turbulent lows. These intermittency models are
the analogous of the models built up in the fluid tur-
bulence framework, the only difference being the fact
that the Kraichnan's relation (4) is used instead of the
Kolmogorov’s refined similarity hypothesis (3).

The random—3 mode] has been iniroduced by Benzi
et al. {(1984). These authors conjectured that the space-
filling factor for the offsprings in the Richardson’s energy
cascade is given by a random variable 3. The probabil-
ity of occurrence of a given 3 is assumed to be a bimodal
distribution where the eddies fragmentation process gen-
erates either spacefilling eddies with probability ¢ or
planar sheets with probability (1 —¢) (0 € ¢ £1). The
MIID version of the model (Carbone, 1994a) is intro-
duced in the same way, and both versions give rise to
the unique formula

&=L —10gy [1 - C+¢(1/2) 79/ (13)
The parameter { must be fixed through a fit on the
experimental data.

The p-model (Meneveau and Sreenivasan, 1987) con-
sists in an eddy fragmentation described by a two-scale
Cantor set with equal partition intervals. That is an
eddy at the scale r, with a measure ¢,, breaks down
into two eddies at the scale r/2 with measures pe, and
(1 — p)er. The parameter 0.5 < p < 1 is not defined by
the model, but it is generally fixed by a fit on the ex-
perimental data. The MHD version of the p-model has
been introduced by Carbone {1993) (see also Carbone,
1994a), the generalized dimensions are given by

D - log [p7/™ + (1 — p)t/™]
e (1—7¢q)

and the scaling exponents of the structure functions

(14)

& =1~ logy [p/™ + (1= p)¥/™] (15)
In the She and Leveque (SL)} model {She and Leveque,

1994), one assumes an infinite hierarchy for the mo-

ments of the energy transfer rate, leading to E$q+1) ~

(918118, and a divergent scaling law elo?
for the most singular dissipative structures in the limit
g — oo. The MHD version of the SL-model has been
introduced independently by Grauer et al. (1994) and

by Politano and Pouquet (1995), who showed that

(1—2)+C [1 _ (1 - %)q/m]

~ ,r—:ﬂ

& = (16)

3=
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In equation (16) the parameter C' = z/(1 — 3) is identi-
fied as the codimension of the most intermittent struc-
tures. In the "standard” MHD case (Grauer et al.,
1994; Politano and Pouquet, 1993) = = # = 1/2, so
that €' = 1, that is the most singular dissipative struc-
tures are planar sheets. On the contrary in fluid flows
C' = 2 and the most dissipative structures are filaments.
The large ¢ behaviour of the p-model is given by £, ~
(g/m)log,(1/p) +1, so that (15) and (16) give the same
results provided that p ~ 277,

The models we have briefly outlined are based on the
hypothesis that the turbulence is fully developed, and
the only corrections to the usnal scaling laws are due
to intermittency through the scaling of €. Recently Tu
et al. (1996) introduced an extended structure—function
model to describe the observations of turbulence in the
Solar Wind. As we have alrecady seen the slope u of the
spectral energy is variable, and in some cases (quite in
all the cases, see the Figure 2a in Marsch, 1992) is dif-
ferent from both 5/3 and 3/2. Tu et al. (1996) attribute
this to the fact that turbulence is not in a fully devel-
oped state {mainly in the high speed streams). Then
they introduced a model which is based on the assump-
tions that i) the refined similarity hypothesis (either eq.
(3} or (4)) are still valid even in absence of fully devel-
oped turbulence, and ii} the energy cascade rate is not
constant, but its moments depend both on D, and p,
say

< €1 > e, el 0a
where the average €(r, ) is assumed to be
F(T, Ju’) ~ T—(wn/?-{-l)Pf/B

being P, ~ r# the usual energy spectrum (r is the in-
verse of a wave vector 1 ~ k1), The model gives rise
immediately to the expression

o= (E-)orrepg (Fo0)E o0

and in the limit of "fully developed turbulence”, say
when the spectral slopes are.given either by the Kol-
mogorov or the Kraichnan relations g = 2/m + 1, the
usual expression (10) for & is recovered, where corree-
tion is due to multifractals. Apart from the physical
arguments used to justify (17), the formula is nothing
but a two—parameter model to analyze the intermittency
of Solar Wind fluctuations.

To conclude this section we want to stress an impor-
tant point, say all the above mentioned models suffer
from one main limitation: they are set up only for the
velocity field, by assuming that, as we have shown in
the Section III from ideal MHD equations, the magnetic
fluctuations &b, obeys to the same scaling laws as év,.

4 What can be learned from Solar Wind obser-
vations 7

We have tried to use the Solar Wind low—frequency fiuc-
tuations as a testing bench for scaling laws in MHD tur-
bulence. We examined the g-th order velocity structure
function ${% =< [#(t + T) — F(¢)|9 >, where the brack-
ets indicate averages over the different lag—times 7. The
knowledge of the structure functions requires the mea-
surements at two different times, and the interpretation
in terms of a characteristic scale length is possible by
using the usual Taylor’s hypothesis, that is the struc-
ture function measured at a given scale T characterizes
the velocity of an eddy, frozen in the supersonic Solar
Wind with velocity V4, at the scale length r = 7V; (in
the following we will use either the symbols r and 7).
Pioneering measurements of the scaling exponents in
the Solar Wind plasma have been that of Burlaga (1991)
(see also Burlaga, 1993), followed by some other inves-
tigations (Marsch and Liu, 1993; Carbone, 1994a; Car-
bone et al., 1995a,b, 1996; Ruzmaikin et al., 1995). Due
to the difficulties encountered in the determination of
statistically homogeneous samples (which are even lim-
ited to data sets with a small number of points), the
high—order structure functions must be handled care-
fully. Notwithstanding this handicap, the curves £, are
reported in the papers just quoted, and these analy-
ses, along with the direct investigation of the non Gaus-
sian PDF’s for the velocity differences (Burlaga, 1993;
Marsch and Tu, 1994}, show convincing evidence for the
presence of intermittency in MHD turbulence. Burlaga
{1991} showed for the first time the presence of intermit-
tency by using the Voyager data in the outer heliosphere
at 8.5 AU. This author found that the velocity structure
functions show scaling behaviour in the range of periods
from 0.85 hour to 13.6 hours. Then by using measure-
ments at 1 AU, Burlaga (1993) found scaling laws in the
range from 8 hours up to 2.7 days. Burlaga {1991) fitted
the scaling exponents £, with the fluid random-2 model
(Benzi et al., 1984} and the fluid p-model (Menevean
and Sreenivasan, 1987). Marsch and Liu (1993) investi-
gated the intermittency in the inner Solar Wind by using
the Helios data. They found a remarkable difference be-
tween the high-speed and the low—speed streams. In
fact the high-speed streams behave like random field
with no well defined scaling law, while the scaling ex-
poncnts in the low—speed streams have been found to
be similar to that obtained in ordinary fluid flows (see
also Tu et al., 1996; Carbone and Bruno, 1996). Finally
Ruzmaikin et al. (1995) investigated the intermittency
of fluctuations by using the recent Ulysses data out of
ecliptic planc. The scaling exponents obtained in the So-
lar Wind turbulence are extremely variable. This is also
true for the Helios measurements, which in fact show
different scaling exponents depending on the streams
which have been investigated. As we have already said,
the extreme variability of the scaling exponents has been



r=B810 sec
3 . e r
o [ ]
™
58 ‘
S ' il ]
o :II ‘n..',l\-r.“l;‘j..‘.‘ lh..E...l.inuh.i.iJlu.'J |IL".| \.I .‘.J‘;“jx‘mil_lm. Jll :

0 20 40 60 80

Time (hours)

253

r=810 sec

log{PDF)

v /o

Fig. 2. We report the time cvolution of the velocity differences |6v,| {left—hand panel) and the PDF of the corresponding variables
[6vs]/ < u2 > (right~hand panel), for the data set D (see Table 1) at scale 7 = 810 sec.

attributed by Tu et al. (1996) to the absence of a fully
developed turbulent state in the Solar Wind turbulence.

In order to verify the universality of scaling laws in
the interplanetary MHD turbulence, we analyzed the
plasma measurements of the velocity field #(t) = V(t) Vo
as recorded by the German plasma instrument (P. I. H.
Rosenbauer) on board Helios 2 during its primary mis-
sion in the inner heliosphere. The original data were col-
lected in 81 sec. bing and the following five subintervals
of 2 days each were chosen: A) day 100:00 to 102:00 at
0.33 AU, B) day 81:00 to 83:00 at 0.58 AU, C) day 54:00
to 56:00 at 0.85 AU, D) day 46:00 to 48:00 at 0.89 AU
and, finally, E) day 36:00 to 38:00 at 0.94 AU. All the
intervals were selected within low-speed regions were,
as we have see in the Section I, the Solar Wind turbu-
lence appears in a state which is not Alfvénic (Grappin
et al., 1991). We investigate the scaling behaviour in
the range between 81 sec and 1 day, that is, by using
a typical value V5 ~ 350 km/s, the scales length under
investigation range between 10* km < r < 107 km. In
Figure 2 we report the time evolution of the differences
|6v-|, along with the PDF, at the scale 7 = 810 sec,
for the data set D. As it can be seen the intermittency
appears as localized spikes of high activity leading to
the non Gaussian PDF with wings which evidence the
fact that strong events have a probahility of occurrence
grater than a Gaussian cvent.

The scaling exponents of the low-frequency fluctua-
tions in the Solar Wind are extremely variable, this is
due to a difficulty in identifying the inertial range. As
an example of this difficulty in Figure 3 we show log 54
and log S s, log 7 for all our data sets. As it can be
seen an inertial range is not defined, even if the Reynolds
number is very high. Both the scaling relations (11) and
{12) are reported in the Figure as a thin line.

4.1 The Extended Self-Similarity hypothesis

To override the difficulties in determining the scaling
exponents, we have used the so called Extended Self-
Similarity (ESS), which in general allows for a better
determination of the scaling exponents (Benzi et al.,
1993a). When the refined similarity hypothesis (3) holds,
that is in the inertial range, due to the relation (11) the
structure functions are not independent, rather the g-th
structure function is related to the p-th one through

aplg)
S,(ﬁ') =Cpyq [Sf}’}] f (18)

with ap(g) = &/&. In fluid flows both S9 ~ ré&
and the usual models described in the last section fur-
nish £3 = 1, so that in the inertial domain the relation
as{g) = & holds. On the other hand, from the point of
view of the Navier-Stokes equations, the 4/5-law (11)
agsures this result. Benzi et al. {1993a) verified that in
fluid flows, almost unexpectedly, a linear relation be-
tween log 5t¢ and log 513 extends well outside the in-
ertial range within the dissipative range, showing that
equation (18) has a more general validity than the usual
scaling equation valid in the inertial range (see Dubrulle,
1994). This feature allows for a very good experimental
determination of af'(g) (here F is for fluid). The pres-
ence of E8S has been shown and the scaling laws have
been derived in a lot of different situations, say ordinary
fluid flows Benzi et al. (1993b, 1994, 1995, 1996a,b), sim-
ple models which mimic either fluid or MHD turbulence
(Carbone, 1994b; Frick et al., 1995), numerical simula-
tions (Briscolini et al., 1994; Grauer and Marliani, 1995)
and MHED turbulence (Carbone et al., 1995a,b, 1996).

Taking in mind the relations {12) and (18), in Figure

(4) we have reported the plots of log Sj(rq) vs. log 31(-4}

for seven different values of ¢. As it can be seen from
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Fig. 4. We show the behavicur of log S,(.Q) vs. log S,(.4) for some
values of ¢ ranging from ¢ = 1 up to ¢ = 7. The different data
sets are represented by different curves (from Carbone, 1996),

this Figurc the ESS exists for all the values of ¢ we have
examined, that is the range of self-similarity extends al-
most over all the length range covered by the measure-
ments. From the same data sets the values of ay(g) have
also been calculated and are reported in Table 1. In the
same Table we report the values of the scaling exponents
obtained by using the velocity differences merging from
all the data sets. As a first result let us note that the
turbulence, observed in different no—corotating streams
at different heliocentric distances, presents a universal
behaviour, in the sense that the scaling exponents a4(q)
obtained in the different data sets are quite the same
and no remarkable difference has been found between
the column All Data and the other columns. Finally
let us stress that, using a suitable normalization for the
velocity differences, say the average velocity V within
cach sample set, the relation (18) turns ont to be exact,
with 04"; =1.

Before discussing how the experimental values ob-
tained for the scaling exponents of the velocity struc-
ture functions compare with those derived from inter-
mittency models, let us discuss the direct consequences
of the observed ESS. First of all we would to stress that
the relation (18) is not a trivial property of fluid flows.
This can be seen by looking at the expression for the
structure function

549 = / dP{§v,)603



Table 1. The values of the scaling exponents as(g), for 1 € ¢ < 7,
calculated through ESS. The first column refers to the order g
of the structure functions. The next five columns refer to the
different five data intervals used in the analysis and list the values
of the scaling exponents obtained for the different ¢’s. The last
column reports the scaling exponents computed from the merged
data sets.

q A B C D E All data
0.209 0.272 0.302 0.284 0.303 0.292
0.554 0.535 0.564 0.546 0.573 0.553
0.786 0.778 0.793 0.782 0.799 0.788
1.000 1.000 1.000 1.000 1.000 1.000
1.200  1.205 1.191 1.199 1.194 1.198
1.384 1.399 1.370 1.388 1.362 1.382
1.556 1.585 1.543 1.566  1.351 1.361

=1 & o L b e

A simple dimensional analysis of (18) gives the rela-
tion ap(q) = ¢/p. Since from the data analysis the
scaling exponents a,(g) show intermittency correction,
we are forced to consider a nontrivial behaviour for the
probability measure (Benzi et al., 1995; Stolovitzky and
Sreenivasan, 1993). The triviality should come from the
great variety of situations where ESS is recovered, i.e.
since ESS is found almost everywhere, it is a trivial prop-
erty of turbulent fluid flows. With respect to this argu-
ment, the non triviality is assured by the simple obser-
vations that a strong velocity shear destroys ESS, that
is in presence of velocity shear the extended scaling law
breaks down at a given length scale of the order of the
shear length (Stolovitzky and Sreenivasan, 1993; Benzi
et al., 1995).

Notwithstanding the fact that no clear physical mo-
tivation for the occurrence of ESS has yet been given
(Benzi et al., 1995), two direct consequences of ESS can
be pointed out:

1) From relation (18) the velocity structure function sl
can be written on the basis of a function f(r/7) (n =
3 /¢ is the usual Kolmogorov dissipation scale and € is
the mean energy dissipation rate)

]C(Q) (19)

S = CUF | Zfr/m)

where €, are dimensionless constants, Uy = SJ(LS) and L
is the integral scale. This last rclation has been carefuily
checked on laboratory data (Benzi et al., 1995, 1996b).
2) From relation (18) a well defined PDF for the velocity
differences can be derived (Carbone et al., 1995b, 1996)

o ’ 2] -3 N v
k)9 orp(2g)
P{év,) = —ikbuy ﬂw (p) 20
{6v.) [mdke ;2“(2‘?)! {ST ] (209
(we have neglected contributions from odd moments).
This imnplies that, for each scale length 7, the knowledge
of the scaling exponents ap(g) determines the probabil-

ity distribution as function of a single parameter SW.
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Table 2. The best-fit values of the parameters ¢, p and € respec~
tively for the random-S-model, the p-model and the SL—model,
obtained through a fir on the data reported in Table 1.

Data sets ¢ P C

A 0.16 £0.05 0.7341+0.006 0.8910.04
B 0.134+0.05 0.714 +0.007 1.04+0.06
C 0.16 £ 0.06 0.743 £0.006 0.84+0.04
D 0.18 £0.06 0727 £0.006 0.94£0.05
E 0.17+£0.07 0739x£0.006 0.8610.04
All data 0.16£0.05 0.731+0.006 0.91+£0.04

This is true if the velocity structure functions are care-
fully normalized, so that €, ; = 1. As we have noted
{Carbone et al., 1996) this is verified in the Solar Wind
turbulence if the velocity is normalized to the average
velocity within each stream.

4.2 Comparison with intermittency models

The scaling exponents ay4(g) reported in Table 1 have
been fitted, through a minimum-y? method, to the model
for intermiitency which we have introduced in the Sec-
tion 3. We used the MHD version of the model, with
m = 4. The fit on the SL-model has been made by us-
ing # = 1/2 leaving C as free parameter. The best—fit
parameters {, p, and ' are reported in Table 2.

Both models (15) and (16) are in good agreement
with the values of a4(g) which we have measured, since
x? ~ 0.02 for all the data sets. On the contrary the
x* obtained when we use the random-# model is quite
higher x? = 0.4, even if it is yet acceptable. In Figure 5
we report the values of the scaling exponents along with
the curves obtained from the intermittency models (13),
(15), and (16).

We want to remark that the parameter p close to 0.7,
obtained firstly by Carbone (1993) in analyzing the in-
termittency in the Solar Wind turbulence, is close to
what has been found to describe the energy cascade in
the fluid turbulence Meneveau and Sreenivasan (1987,
1991). Marsch et al. (1996) have found higher values, of
the order of p ~ 0.87 by analyzing the intermittency in
the variables ¢, = |6v,|*/r. Indeed this variable, when
averaged, represents nothing but the third-order struc-
ture function. The results obtained by Marsch et al.
(1996) are somewhat affected by the fact that analyzing

structure functions of the type 3¢, they were obliged
to go up to ¢ = 5 to obtain the convergence of D, which
means the 15—-th order structure function where, if not
calculated through ESS, uncertainties are very large.
The result € ~ 1 is particularly significant from an
experimental point of view, as just discussed by Grauer
et al. (1994) and by Politano and Pouquet {1995). In
fluid turbulence the value of C turns out to he C ~ 2,
showing that the most singular dissipative structures are
filaments (vortices, as conjectured by She and Leveque,
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Fig. 5. The values of aa{y) for all the data sets we have examined.
The various symbhols refer to: set A (diamonds), set B {circles), set
C (triangles), set D {upturned triangles), set E (crosees), and the
values obtained by using all the merged data sets (squarcs). The
uncertainties refer to the values of the scaling exponents obtained
by using all the merged data sets. Superimposed we show the
MHD random-fg-model (dotted line) with » = 0.12, the MHD p-
maodel {full line} with p = 0.731, and the MHD 5L model {dashed
line) with € = 0.91. Shown also is the linear Kraichnan relation
cale) = /4,

1994). On the contrary in MHD turbulent flows, the
most intermittent structures should be two-dimensional,
i.e. they should be planar (current) sheets (C ~ 1).

Actually the model (16) strongly depends on the value
chosen for . Using a different choice for z, for example
z =~ —log, p, with the values of p reported in Table 2,
gives rise {0 a different value for the parameter ¢ which
is no more close to 1. Also in this case the reduced 2
of the fit is of the order of x? ~ 0.02. Finally note that
imposing the value for z throngh the equality x = 3
determines the value C' = z/(1 — x). A fit on the data
in this case gives the best-fit value z =~ 0.48 (thus € ~
0.92) for all the data set, but with a value of the reduced
x? which is somewhat higher, that is x% =~ 3.

4.3 A generalized extended self-similarity

Up to now the physical motivations of the fact that ESS
seemis to work remarkably well in & great variety of sit-
uations has not been captured. ESS suggests (Dubrulle,
1694) the existence of a generalized scale length

Sq(‘m)
< €p 2>

¢~

so that e, ~ 60 < €, > / 5™ and a generalized refined
similarity hypothesis can be recovered

g/m
qu) ~ [Sim)}q/m Q
[(e )%/

From this cquation a new form of ESS, which in its
essence has been introduced some time ago {see Ref.(1)
of Bershadskii, 1996), can be derived. In fact by looking
at equation {21) we can introduce a set of dimensionless
moments

(21)

{q)
W=
(S el m

which contains entirely the intermittent correction due
to the anomalous scaling laws of the energy transfer
rate. This suggests to look for a generalized form of
ESS through the scaling relations

GLO(r) ~ G (1)) (e (22

where the scaling exponents p,, (g, p) account for the en-
ergy transfer rate. Benzi et al. (1996a) (see also Benzi
ct al., 1996b) found that the generalized ESS (22) is
verified also in the cases where ESS (18) fails. On the
other hand the generalized ESS is implied by a conjec-
ture which should be a key to understand the occur-
rence of ESS. In fact Benzi et al. (1996a) (see also Benzi
et al., 1996b} conjectured that a sharp dissipative cut-
off does not exist in fluid flows, but the energy trans-
fer continues to hold also at very small scales. In this
case the PDF’s of év,. depends on the ratio (r/n), where
n = (v™/ < & >)1/U4™) the ysual length where the
local Reynolds number R, ~ 1. Following this conjec-
ture Benzi et al. (1996a) argued that, if hy represents
the scaling of the most singular structures and dy is the
corresponding codimension, the viscosity should reduce
the amplitude of these singularities, as r goes down.
Then the probability to observe these structures, pro-
portional to 7%, should decreases, which implies that
dp is an increasing function of r. ESS states that there
exists a balance between hy and dy such that do/hg is
constant, and in this picture ESS is broken when the bal-
ance does not exist. On the contrary, since the scaling
exponents g, (g, p) do not depend on hy, the generalized
ESS should coutinues to hold. Benzi et al. {1996a) (also
Benzi et al., 1996b) found that (22) is verified also when
ESS fails. Obviously relation (22) is verified in our case,
and the slopes are given by

_ am(g) —q/m
Pm(QaP) - am.(p) _p/m

obtained from Eq.s (22) and (18).
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Fig. 6. We show the normalized scaling exponents &;/£s vs. ¢
obtained from both the SL fluid model (full line} and the MHD
version of the same model (dashed line).

4.4  Are the scaling laws derived from ESS really dif-
ferent for fluid and MHD turbulence ?

Even if usually one determines the scaling exponents
of (q) in the fluid case and o #P{g} in the MHD case,
equation {18) shows that it should be possible to com-
pare the scaling laws obtained in the two cases by cal-
culating for example o (¢) also from data obtained in
fluid flows, simply through

ai (q) = of (9)/a5 (4) (23)

So an interesting guestion can be posed: are the scal-
ing exponents derived from experimental data through
equation (18) really different for fluid and MHD turbu-
lent flows, or rather the relation (18) represents a uni-
versal law valid in both cases with the same set of values
for a,{g)?

The knowledge of the scaling exponents is equivalent
to the knowledge of the PDF for the velocity differences.
If eup(q) for the fluid and MID turbulent flows were in-
distinguishable, through equation (20) this could be an
indication for the existence of a universal non Gaus-
sian PDF valid for both fluid and MHD velocity dif-
ferences dv,. Theoretical models provide different scal-
ings. But when we plot a4(g) = £;/&, obtained from
the SL-model (168) respectively for m = 3 {fluid flows)
and m = 4 (MHD flows), we can see that the curves
are practically superposed as far as ¢ < 8 and only for
g > 10 they separatc out (see Figure 6). From a physical
point of view, according to the She and Leveque mode]
{She and Leveque, 1994; Grauer et al., 1994; Politano
and Pouquet, 1995), a difference hetween ordinary fluid
flows and MHD flows is due to the different topological
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Fig. 7. In the plot are represented the scaling exponents af (g)
and ajf‘f HD(g) collected from different measurements both in ordi-
nary fluid flows and in the Solar Wind turbulence. White symbols
refer to the Solar Wind measurements, while black symbols refer
to laboratory measurements. White squares, diamonds and cir-
cles refer to the analysis in the inner Solar Wind on the Helios
data respectively during the periods B, D, and E. White triangles
refer to the data by Burlaga (1991) obtained in the Solar Wind
turbulence from the Voyager satellite measurements at 8.5 AU,
Black squares, diamonds and circles refer 1o the measurements by
Anselmet et al. (1984) on a turbulent jet and on a turbulent duct
flow. Black triangles refer to the measurements by L. Zubair (pri-
vate communication} in & wind tunnel. Black crosses and reversed
triangles refer to the measurements by Meneveau and Sreenivasan
(1991) by hot—wire measurements in wind tunnel respectively in
the boundary layer and in the wake of the cylinder. Finally black
stars refer to the measurements by Benzi et al. (1993) in wind
tunnel. Supcrimposed we reported the SL fluid model (full line}
and the MHD model (dashed line) (from Carbone et al., 1995b).

properties of the most singular structures. This differ-
ence is contained in the different values for the parame-
ter € in the models (16), and cannot be found in other
intermittency models. Obviously the difference becomes
visible only when we look at the most singular struc-
tures, that is when we examine the high-order scaling
exponents, because higher values of g enhance the more
singular structures.

In order to give an answer to the above mentioned
question, we have collected scaling exponents from both
laboratory measurements (fluid flows) and space data
(MHD flows). The scaling exponents £ have been ob-
tained in laboratory flows, say turbulent jets, duct flows
and wind tunnel. From these exponents the values of
af (g) can be derived, and are reported in Figure 7. The
scaling exponents we used can be found in literature (see
the caption of Figure 7). As concern the MHD flows we
used the scaling cxponents £ obtained by Burlaga

(1991). Even in this casc the values of a7 (q) are



258

plotted in Figure 7. Moreover we used the scaling expo-
nents af?# 2P (q) obtained from Helios spacecraft.
Looking at Figure 7 it can be seen for smaller values of
g, the scaling exponents ol (¢) and a¥#2 () follow the
same curve, while as ¢ increases it can be noted that the
scaling exponents seem to belong to two distinct pop-
ulations. To show that this behaviour is statistically
meaningful, we divide our data in two different samples.
The first sample is built up with the scaling exponents
aMHD (g} coming from the Solar Wind measurements,
and the second sample is built up with the data ol (g)
coming from laboratory measurements on ordinary fluid
flows. For each value of ¢ we calculate the average values
for both the samples, say u™# 2 (g} and u¥(q). Through
a t—test we make inferences about the means of the two
populations, for each value of ¢, by testing the hypoth-
esis Hy that the two populations have the same mean

Holg) == {u™*P () =p"(9)} (24)

By using a Satterthwaite’s procedure, we have calcu-
lated the probabilities P[Hg(g)] that the hypothesis (24)
is true. This probability is shown in Figure 8. As it
can be seen P[Hy(q)] is about 0.7 for ¢ < 7. This is
in agreement with what we expect, because the scal-
ing exponents are almost the same for low values of ¢
and the difference between the most intermittent struc-
tures in fluid and MHD flows are not achieved for low
values of ¢g. For 8 < ¢ < 10 the probability is about
P[Hy(g)] = 0.1, while for ¢ > 12 the probability of ac-
cepting Hy falls down to P[Hy(g)] = 1073, This in-
dicates that for high values of ¢ the two populations
are well separated, that is the complementary hypothe-
sis H(q) := {u™ 1P (q) # uF (¢)} can be accepted with
the very high probability 1 — P{Hp(q)].

We want to stress that, as it is well known, from an ex-
perimental point of view higher order velocity structure
functionsg are in general calculated with a progressively
lower reliability. This is due to the fact that the aver-
ages in (5) imply a statistics on events more and more
rare with increasing order g and thus require very long
data sets which are not yet at our disposal. On the
other hand, due to the occurrence of very strong events
("wild” singularity in Schertzer and Lovejoy, 1992), mo-
ments < $vf > with g greater than the exponent corre-
sponding to the algebraic fall-off of the PDF’s of §v, di-
verge (Schertzer and Lovejoy, 1987, 1992). This should
also affects our results, by making unreliable the high—
order velocity structure functions. For these reasons the
result which we found must be considered only as an in-
dication that differences exist between scaling exponents
in fluid flows and hydromagnetic flows.

5 Conclusions

In this paper we have reviewed some of the work done by
using the satellite observations of the velocity and mag-

log P[Ho(q)]

Fig. 8. We show the probability P[Ho(g)] of the hypothesis Ho{q)
that the two populations in figure 7, made with the laboratory
measurements and the Solar Wind measurements, belong to a
single sample with the same mean (from Carbone et al., 1995b).

netic field in the interplanetary medium, to recover the
scaling laws of the associated MHD turbulence. Space-
craft observations are particularly useful in this regard
because the Solar Wind reptesents the almost unique
laboratory were hydromagnetic turbulence can be inves-
tigated. Owing to the lot of observations from different
spacecrafts at heliocentric distances from 0.29 AU up
to the end of the Solar System, turbulence in the Solar
Wind can be investigated in detail for a wide range of
scale lengths. The most interesting features obtained
are summarized in the following.

1) The good agreement found between scaling expo-
nents derived from general fragmentation models and
those measured in Solar Wind, indicates that intermit-
tency should be rather independent of the dissipation
mechanism. In fact, also if we think that the dynamics
of nonlinear energy transport process is sufficiently well
described by ideal MHD equations, we are absolutely
sure that the physical dissipation mechanism in the So-
lar Wind plasma is related to kinetic effects and has
nothing to do with the usual assumed MHD dissipation
V2-terms. This supports the point of view which at-
tributes intermittency in the inertial range (Kraichnan,
1974, 1995; Chen et al., 1995; Stolovitzky and Sreeni-
vasan, 1994) much more to the dynamics than to the
characteristics of dissipation mechanism (see also Borne
and Orszag, 1996; L’vov and Procaccia, 1995).

2) Kraichnan scaling law (4), say the analogous of
the Kolmogorov refined similarity hypothesis, has been
conjectured to be the true scaling for hydromagnetic
turbulence. Second-order scaling exponent (the usual
spectral index) measured in the Solar Wind, shows ex-



tremely variable value 1 < p < 2 (Marsch, 1992; Tu
and Marsch, 1995), thus not always allowing for a clear
distinction between Kolmogorov and Kraichnan scaling
laws.

3) Scaling exponents of the velocity structure func-
tions has been found to depend strongly on the local
state of plasma. This has been attributed to the fact
that fluctuations are not in a fully developed turbulent
state (Marsch et al., 1996). Indeed by using ESS we find

that the plots of log S'? vs. log S are linear over all
the range of the measurements, thus allowing for a very
good determination of the scaling exponents as(g). On
the other hand these plots show a unexpected universal-
ity, that is the values of a4(g) are the same within the
low-speed streams observations of Helios 2 spacecraft.
These scaling exponents are in a very good agreement
with the MHD models for intermittency. This universal-
ity is at variance with the results obtained by Tu et al.
(1996) using the two-parameters extended structure-
function model. Indeed these authors find values of p
which for low—speed streams range from p ~ 0.73 to
p ~ (L81. We think that the difference can bhe attributed
to our use of the ESS hypothesis which has allowed for a
much better determination of the scaling laws from the
experimental data.

4} On the basis of our analysis we are lead to the
conclusion that there is a strong probability that the
low—frequency MHD turbulence in the Solar Wind tur-
bulence is physically different from turbulence in the
ordinary fluid flows. The physical difference seems to
be due to the topological properties of the most inter-
mittent structures, which appear to be filaments in fluid
flows and planar sheets in MHD flows. Our results are
in agreement with the different versions of the SL-model
for intermittency in fluid flows, which is the only model
which takes into account the physical difference. As
concerns the Solar Wind turbulence our results show
that measurements indicate a strong tendency to follow
the MHD scaling laws, even if (Tu and Marsch, 1995)
the small-order scalings (including the usual spectral in-
dex), do not allow for a meaningful distinction between
the Kolmogorov and the Kraichnan scaling law.

5) The measurements of scaling exponents require the
definition of the usually called "inertial range”. In MHD
the inertial range is not defined, the problem arising
from the fact that the analogue of the Kolmogorov 4/5-
law does not exists in this framework. We are then
forced to define the inertial range as the range of scales
where (4) is verified. From an observational point of
view we measure the structure functions and the scaling
exponents, which are affected by intermittency. Then
the problem arises on what is the order of the structure
function (if any exists) which is not affected by inter-
mittency (in the usual multifractal framework). Look-
ing at the Kraichnan scaling, one can conjecture that
the fourth—order velocity structure function should have
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unitary slope in the inertial range. When we try to in-
vestigate this conjecture on the data, we found that only
a very small fraction of scales exists where S,(nd‘) ~7T, A
different way to face this question counsists in the anal-
ysis of high—resolution numerical simulations. The first
results of this analysis (Pouquet, Politano and Carbone,
1997 paper in preparation), seems to strongly corrobo-
rate the conjecture.
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