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Abstract. Many vital insights into the nature of tur-
buence in fluids have originated from experimental data
obtained in geophysical flows. Geophysical data have of-
ten helped to stimulate the creation of new turbulence
theory, while theory has in many cases motivated the
experimental efforts. The present brief review discusses
several key examples of this interaction between exper-
iment and theory, citing mainly work which is of par-
ticular interest to the author. No attempt is made to
provide a complete listing of the extensive and currently
rapidly developing literature for some of the problems
discussed. '

1 Introduction

New experimental results for turbulent flows can stim-
ulate the creation of new theory when 1) the experi-
mental results conflict with accepted existing theory, or
2) the experiments uncover or suggest some effect or
simplification not previously considered by the theory.
Turbulence theory has a complementary impact on ex-
perimental studies . The study of turbulence in fluids is
a continuing saga of this interaction between experimen-
tal results and theory. Geophysical turbulence data has
such a profound influence upon turbulence theory be-
cause, in terrestrial flows, Reynolds numbers sufficiently
large to provide conclusive tests of many of the most co-
gent theoretical results are readily obtained only in the
geophysical flows found in the earth’s oceans and atmo-
sphere. The present account reviews some examples of
this process, highly restricted to only a few questions in
which the author has had particular interest. The focus
here is on the impact of geophysical data on theory, with
no discussion of the considerable impact of laboratory
experimental results on turbulence theory.

2 Isotropy, Energy Spectra, and Structure Funec-
tions

Symmetry breaking associated with the preferred di-
rection of the vertical coordinate z in the atmosphere
and oceans, and the presence of rotation and vertical
stratification precludes any global large scale isotropy
in geophysical flows. However, for the smaller scales of
motion the turbulence can be locally isotropic. While
making meteorological measurements aboard ships us-
ing tethered balloons, Taylor (1927) noticed that, when
subjected to buffeting by atmoespheric turbulence, the
horizontal, lateral, and vertical excursions of his bal-
loons were roughly equal. This led him to the con-
cept of globally isotropic turbulence, for which the mean
square fluctuating velocities are equal in all three coor-
dinate directions, the application by Taylor (1935) of
the principle of invariance with respect to rotations |
and the elegant employment of isotropic tensors in the
theory of isotropic turbulence by Karman and Howarth
{1938). These developemeuts also led to the very use-
ful concept of local isotropy , in which the exact rela-
tions given by local isotropy theory apply only over re-
stricted finite ranges of length scales or wavenumbers,
and the global isotropy restriction of equality of the
mean square velocities in different directions is not in-
voked. In the 1940°s , the statistical theory was further
developed in terms of structure functions, moments of
differences in velocity measured at two different spa-
tial locations separated by a distance r, by Kolmogorov
(1941) and in spectral terms by Obukhov (1941). These
results, which include the inertial subrange r?/% behav-
ior of the second-order structurc function and the cor-
responding k~%/3 ( k is wavenumber) behavior of the
energy spectrum , are sometimes referred to as the K41
theory. Obukhov’s spectral formulation was rediscov-
ered by Onsager (1945), von Weizsacker (1948), and
Heisenberg (1948). Obukhov also made the first at-
tempt to use geophysical (atmospheric) data for veri-



232

fication of the theory. In several experimental papers
from his group published between 1941 and 1960 the 2/3
and -5/3 power laws were confirmed, but the instrumen-
tation had insufficient resolution to resolve dissipation
range behavior. Definitive, quantitative verification of
full inertial and dissipative range K41 scaling was found
in tidal channel measurements by Grant et al. (1962)
using an instrumented ship-towed underwater body |,
and then in the atmospheric boundary layer by Pond
et al. (1966). The tidal channel measurements also
showed that the variance of €., the rate of dissipation
of turbulent kinetic energy € averaged over a spatial re-
gion of characteristic length scale r, was relatively large.
Universal spectral scaling was obtained employing e, ,
thus precluding successful universal scaling when em-
ploying the long term average valuc of e. To address
similar observations by Gurvich of strong variability of
the dimensional coeflicient in the -5/3 law , Kolmogorov
(1962), and Obukhov (1962) proposed refined similarity
hypotheses based on ¢, , instead of simply on the over-
all value of e. Statistical quantities involving moments
of €, thus acquired an additional r-dependence through
the r-dependence of the pdf of €,. Assuming a lognormal
form for the pdf of €., with a variance which depended
on r, as suggested by Kolmogorov {1962) , Yaglom,
AM. (1966), and Gurvich and Yaglom (1967), yielded
small modifications to the -5/3 spectral and +2/3 struc-
ture function power laws. The modifications became
increasingly larger as the order p of the structure func-
tion < {n(x +r) — u(z)})? > increased for p > 3, and
were strongly dependent on the assumed form of the
pdf of €, for large values of e,. Experimentally mea-
sured large deviations from the K41 scaling were first
found , in geophysical data for higher-order structure
functions measured in the atmospheric boundary layer
over the ocean, by Van Atta and Chen (1970), and by
Van Atta and Park (1972). Aspincreasedfor3 <p<9
their measured values of (;, the power law exponent for
the pth order structure functions, increased with p, but
at a significantly slower rate than the values of {, = p/3
predicted by a straightforward extension of K41. Quali-
tatively similar behavior has been found in all successive
experiments in both geophysical and laboratory flows,
and in direct numerical simulations, as discussed be-
low. Higher-order structure function behavior is natu-
rally strongly dependent on the tails of the pdf’s. Gagne
et al (1990) compared their data taken in the very large
Modane wind tunnel with Ry = 2720 , where R, is the
turbulence Reynolds number based on the Taylor mi-
croscale A, with the atmospheric data of Van Atta and
Park (1972) for Ry = 3000, and with the laboratory
data of Anselmet et al. (1984) for R, in the range 513-
852 . Numerical values of the slopes of exponential fits to
the positive and negative tails of the pdf’s were very sim-
ilar for the atmospheric and Modane data sets, defining
unique power law functions of r/%, where 7 is the Kol-
mogorov scale. The slopes were smaller for the Ansel-

met et al. (1984) data, increasing with increasing Ry,
and following the same power law dependence on r/y.
This comparative behavior suggests a significant Ry de-
pendence of the (,, and that an R, at least as large as
several thousand is required to achieve conditions which
might be characteristic of the asymptotic limit of infinite
By, This suggestion is apparently not supparted by the
recent atmospheric boundary layer data of Schertzer et
al. (1995), who find, for p < 7, {, that are the same for
atmospheric and laboratory flows. However, for p > 7
their ¢, are found to depend on the length of the time
series they used. Thus, while they argue that the be-
havior they cohserved is compatible with divergence of
moments for empirical data, proposed in Schertzer and
Lovejoy (1987), the dependence on sample size could be
a consequence of nonstationarity . Instead of focussing
on the behavior of individual structure functions, Benzi
et al. (1993) have examined the comparative behav-
ior of structure functions of different orders . Structure
functions obey scaling when each structure function has
a power law dependence on r. Plotting the structure
function of order m versus that of order n will then also
yield a power law, and the structure functions then obey
relative sceling . If two different normalized structure
functions, each made dimensionless by dividing by the
appropriate powers of the third-order structure function,
obey relative scaling , this is called normalized relative
scaling. Benzi et al. (1993) find that their measured
structure functions obey relative scaling, persisting even
for small values of r in the viscous range, a behavior to
which they give the name extended self similarity. Their
data suggests that the improvement in scaling behavior
is due to the similar dependence of all structure func-
tions in the dissipative range on p-dependent powers of
a universal function f(r/%), which itself does not de-
pend on p. L'vov and Procaccia (1994) argue that this
extended universality stems from the structure of the
Navier-Stokes equations and from the property of the
locality of interactions, and examine the possibility that
experimentally observed deviations from K41 behavior
are due to the finite values of the Reynolds numbers
and anisotropy of the turbulence. Segel et al. (1996)
have demonstrated extended self-similarity analytically
in the context of the Kraichnan (1968) model of a pas-
sive scalar advected by a very rapidly varying velocity
field.

The Kolmogorov (1962) lognormal hypothesis yields
pathological structure function behavior for large p, and
many other pdf’s, fractal scaling recipes for the spatial
distribution of ¢, and other scaling scenarios have been
hypothesized to model the measured dependence of
on p . These models include those of Frisch et al (1978),
Kida (1991), Saito (1992), Kailasnath et al (1992), She
and Leveque {1994), Schmitt et al. (1994}, Dubrulle
(1994}, She and Waymire (1993), Nelkin (1995), and
Chen and Cao (1996). Many of the scaling theories are
expected to apply strictly only for very large values of



Iy, and the Reynolds number does not appear in the
theoretical predictions for the (. Another theoretical
approach is to calculate the pdf of Awu from its govern-
ing equation, as derived from the Navier-Stokes equa-
tions by Lundgren (1972) and Monin (1967) , and then
to calculate the structure function moments directly us-
ing this pdf. However, the integro-differential equation
for the pdf of Auis not closed , since the equation for the
n-point pdf ( where n=1,2,...) includes also the (o+1)-
point pdf ( similar to the BBGKY heirarchy of equa-
tions for the pdf in the kinetic theory of gases. Lund-
gren (1972) proposed some model closures of this equa-
tion . A great number of other closures were proposed
in later years { sce, e.g., the surveys by Kollmann and
Pope (1990,1991), for some examples) and their appli-
cations to higher-order structure functions are a subject
of currrent research { see, e.g. Pedrizzetti and Novikov
(1994)). A more rigorous approach is to calculate the be-
havior of higher-order structure functions directly from
the Navier-Stokes cquations. This has been done using
DNS (direct numerical simulations) for modest values of
Ry < 200 by Caoc et al.  {1996) and Boratov and Pelz
(1996). Their computed values of relative scaling expo-
nents arc numerically close to those measured by Benzi
et al. (1993} and thosc predicted by She and Leveque
(1994).

It thus appears that results from experiments, mod-
elling, and DNS for some aspects of higher-order strue-
ture function behavior may be converging. Some ques-
tions remain about the behavior of higher-order struc-
ture functions for large Reynolds number . Due to the
uncontrollability of geophysical flows | lack of suflicient
stationarity, etc. , data obtained in geophysical flows
may not provide the decisive evidence for the bchavior
of higher-order moments that was obtained for lower-
order structure functions and spectra. It is desirable to
continue large Reynolds number laboratory studies of
both shear flows and unsheared grid generated turbu-
lence. The latter flow provides an important benchmark
as there are no cffects of mean shear ( which is zero) and
the turbulence is locally isotropic over a large range of
scales. As discussed by Uberoi (1957) and Durbin and
Speziale (1991), mean shear can significantly decrease
the degree of local isotropy , even in the limit of infinite
Reynolds numbers (for some flows). Systematic, closely
coordinated DNS and experimental studies of the influ-
ence of varying mean shear and Reynolds number would
be valuable.

3 Higher-order spectra

The synergistic interaction of gecphysical turbulence ex-
periments and turbulence theory is also evident in stud-
ics of higher-order spectra. Initial studies focused on
the discrepancy between measured higher-order spectra
and K41 dimensional analysis. Successive developments
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have dealt with other fundamental theoretical issues.

As noted by Dutton and Deaven (1972) , in analogy
with K41 inertial subrange scaling, dimensional analyis
predicts that spectra of the nth power of the velocity
fluctuation will scale as Eyn(k) = Cpe2n/3f—2n+3)/3
However, in their atmospheric turbulence data obtained
at four different altitudes with instrumented aircraft, a
different behavior was observed. Rather than increasing
in slope with increasing order, in the inertial range the
higher-order spectra either retained an approximately
k~5/3 power law behavior or decreased somewhat in
slope as n increased. This puzzle stimulated Van Atta
and Wyngaard (1975) to propose an alternative exten-
sion of Kolmogorov's ideas. The key factor in their argu-
ment is an order-dependent dissipation term e, which
appears in the dynamical equation for < v™ > . In a
separate analytical and numericat study , they also de-
rived expressions for higher-order inertial range spectra
based on the assumption of & Gaussian velocity distribu-
tion . Results of their dimensional arguments and Gaus-
sian analyses showed good agreement with the measured
spectral slopes and energy levels of Dutton and Deaven
(1972) and with those of the higher-order spectra com-
puted from the same open ocean atmospheric boundary
later data that was employed earlier by Van Atta and
Chen (1970) and Van Atta and Park (1972} in their
studies of higher-order structure functions. In studies of
higher-order spectra of a different sort, bispectral analy-
sis of velocity fluctuations in the atmospheric boundary
layer by Lii et al (1976) and Van Atta (1979) indi-
cated a k™% behavior in the inertial subrange, as pre-
dicted by extension of K41 scaling. More recently, Zhou
et al (1993) extended ideas of Kraichnan (1963) to
predict that higher-order spectral moments can scale as
E=5/3 for any order without the assumption of Gaus-
sianity, In agreement with the results of the ¢,-based di-
mensional analysis of Van Atta and Wyngaard (1975),
which also did not assume Gaussianity . In a differ-
ent theoretical context Nelkin and Tabor (1989) noted
that a consequence of the random sweeping hypothesis
is that the spectrum of the kinetic energy u” scales as
k=3/3. If, on the other hand, the u? spectrum satis-
fies the By = C1e"/*k~7/? scaling predicted by the ex-
pression for FE, derived in the spirit of K41 , then the
renormalization group theory prediction of no sweep-
ing is recovered. Since the experiments clearly indicate
that the spectrum of u? goes as k=%/% at high Reynolds
numbers, they provide positive support for the sweeping
hypothesis.

4 Skewness and flatness of velocity derivatives

Geophysical data for moments of velocity gradients have
stimulated a great deal of theoretical work , as the nu-
merical values of the normalized moments, such as skew-
ness and flatness factors { denoted by S and F') measured
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for large R differ greatly from those obtained for lower
R in laboratory experiments.

The K41 equilibrium hypothesis predicts that for suf-
ficiently large R, dimensionless ratios of mean powers
of velocity derivatives, like skewness and flatness factors,
should be absolute constants independent of Reynolds
number ( see, e.g., Batchelor (1953)). Except for the
very low Reynolds numbers associated with the final pe-
riod of decay , measured skewness and flatness factors
of velocity derivatives increase with increasing Ry ( see
the data compiled by Van Atta and Antonia (1980)).
Intermittency corrections in the spirit of K62 predict
that S and K will increase with increasing R, as seen
in the experimental data { for scalar variables | see, e.g.
Van Atta (1973)). Many other models , e.g., scaling
intermittency models, wounld also predict such a depen-
dence. Another approach to the problem is the use of
vortex-based physical modeis of turbulence fine scales
using spatial ensembles of small-scale structures repre-
sented by local solutions of the Navier-Stokes equations.
Pullin and Saffman (1993) have used the statistical
methodology of Townsend (1951) combined with the
Lundgren (1982) spiral vortex model to calculate higher-
order moments of velocity derivatives for homogeneous
turbulence. Lundgren (1982) showed that an ensemble
of such spiral vortex structures produces a k~°/% range
in the energy spectrum of velocity, so its use lends dy-
namical credentials to the calculation. Numerical values
of two dimensionless groups in the model are fixed by
requiring agreement with experimental estimates of the
Kolmogorov constant and with the skewness 5. When
the vortex lateral scale R is assumed to be the geometric
mean of the Tayor microscale A and the smallest physi-
cal scale of the model (v/a)/?, where v is the kinematic
viscosity of the fluid and a is the rate of strain, the flat-
ness factor F is found to be proportional to By '/* . From
figure 4 of Pullin and Saffman (1993) , one notes that
there is effectively a discontinuous upward jump in the
F data at Ry = 700. The R\'/* dependence is in good
agreement with the experimental data and that of DNS
{for the presently available DNS results the maximum
R, is about 2z10%). For R, > 300 the experimental
data lie in a ” scatter” band lying significantly above a
continuation of the Ry'/* fit to the data for the lower
values of Ry, but a separate B,\1/ 1 it to this data also
looks quite reasonable. The model thus furnishes an
interesting predictive physical theory for iniermittency
effects based on the essential mechanism of balance be-
tween vorticity production through amplification of the
vorticity by local rate-of-strain and vorticity dissipation
by viscosity. In contrast with the above findings, recent
data of Tabeling et al (1996) show a decrease in § and
K with increasing R, for their largest values of R, so
this question cannot yet he considered to be closed. The
recent review of Sreenivasan and Antonia (1997) con-
tains an updated discussion and list of references on this
subject.

5 Final Comments

I hope that the above brief account gives the reader
some useful insight into the impact of geophysical data
on turbulence theory, and that it may encourage oth-
ers to continue the interactive process by devising new
experiments and complementary theories .
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