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Abstract. The centre manifold approach is used to de-
Tive an approximate equation for nonlinear waves prop-
agating in a sheared, stably stratified fluid layer. The
evolution equation matches limiting forms derived by
other methods, including the inviscid, long wave approx-
imation leading to the Korteweg-deVries equation. The
model given here allows large modulations of the height
of the waveguide. This permits the crude modelling of
shear layer instabilities at the upper material surface of
the waveguide which excite solitary internal waves in the
wavegtide. An energy argument is used to support the
existence of these waves.

1 Introduction

Much interest has focused on solitary internal waves
in stable stratifications ever since the weak nonlinear,
long wave analyses of Benney (1966) and Benjamin
(1966). The former used a singular perturbation ex-
pansion of the infinitely long wave hmit with vertical
modal structure given by the solution to the Taylor-
Goldstein eigenvalue problem. Including a more detailed
physical description (viscosity and short wave distur-
bances) by regular perturbation [Zimmerman and Ve-
larde (1995);(1994a); (1996) and Zimmerman and Rees
(1996)] is a cumbersome process for hand calculation.
Eventually, further progress in modelling real physical

situations will require computational fluid dynamics meth-

ods even to produce accurate 1-D wave evolution mod-
els. It has been frequently commented that incorpo-
rating all the physical mechanisms in a 1-D nonlinear
evolution equation will be no easier to solve than the
full Navier-Stokes equations. It is true that 1-D models
present an enormous simplification in the dimensional-
ity of the problem, but at a cost of analytical complexity
that may lead to diminishing returus in incorporating re-
alistic model conditions for meteorological and oceano-
graphic conditions.
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Nevertheless, 1-D models have not yet outlived their
utility. For instance, consideration of high shear waveg-
uides leads to the possibility of a propagating chaotic
wave [Zimmerman and Velarde (1994a);(1994b)]in ver-
tical velocity stitnulated by a passing decoupled tem-
perature wave. This qualitatively describes some ob-
served solitary wave propagation over an Antarctic ice
shelf Rees and Rottman (1994). In this paper, an ap-
proximate nonlinear evolution equation for solitary in-
ternal waves in a viscous fluid layer with stable strati-
fication and shear is derived by a centre manifold tech-
nique [Roberts (1994) and references therein]. The
centre manifold approach permits large modifications to
the wavegnide height and thus the possibility of distur-
bances from other layers exciting waves in the waveg-
uide, providing sufficient energy to overcome dissipative
losses. Further, centre manifold approximation does not
require the basic disturbance to be inviscid, of small am-
plitude, or a long wave. The error in the approximation
diminishes exponentially with time in a viscous fluid.

2 Model system
2.1 Equations and scaling

Consider a fluid layer bounded above and below by par-
allel stream surfaces. The height of the layer is nom-
inally h. The upper material surface is constrained to
move at velocity I/ and is held at constant temperature
T = 1. The lower is held at T = 0. The fuid has
viscosity u and thermal diffusivity a. All lengths are
scaled by h, velocity by U/, and time by 2/U. The flow
is assumed to be two-dimensional and divergence free,
thus able to be expressed in terms of a streamfunction,
(u, v) = (4#y, —¥z). Scalar transport is modelled by this
dimensionless convective-diffusion equation

é
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A Boussinesq fluid is assumed, with density linearly
related to temperature. The dimensionless density is
p= BT + 1, where 3 is the dimensionless group formed
from the coefficient of thermal expansion 3%, the un-
scaled temperature difference between the upper and
lower surfaces AT, and pg, the density of the fluid at
the reference temperature of the lower surface. Namely,
8 = f*AT/pg. § = p/poUh is the inverse Reynold’s
number. The Prandtl number Pr = u/ppa is the ratio
of kinematic viscosity to thermal diffusivity.
Vorticity w = — V24 is transported by

['U"yt + U"y'wa:y - U"a:'l.byy]y + W’xt + Vf)ywrx -
+ RiT, = §V*¢

'v[’a':'%l”xy]_.,, (2)

which is the curl of the Boussinesq momentum equa-
tion. The Richardson number is a measure of the rela-
tive importance of buoyant forces to shear forces, Ri =
Bgh/U?. The assumption of a Boussinesq fluid is that
the velocity field is divergence-free, that 3 = 0, but the
Ri remains finite. Stress-free boundary conditions are
imposed:

Ply=0 = Tly=0 = Pyyly=0,y = 0
Ply=n = Tly=n =1

Because there is no dynamic boundary condition, pres-
sure was eliminated, resulting in the momentum equa-
tion (2). Although the nominal height of the waveguide
is h, a centre manifold approach allows the dimension-
less height 77 = n* /h to be smoothly changed by even an
O(1) amount as long as the change is slow. (see Roberts
(1994)).

(3)

2.2 The wave evolution equation

Generally, the flow and temperature fields can be arbi-
trarily decomposed into background fields and distur-
bance fields. To make the procedure deterministic, the
assumption is made that the disturbance field has zero
mean in some sense. The sense adopted here is that the
background fields are time-averaged and thus steady.
Further, the background fields are prescribed and inde-
pendent of the horizontal x-coordinate.

T =T (y) +0 (2,5,)
ph = 1;(y) +e¥ (mv y,t)

€ = Ap/h is the dimensionless characteristic size of the
disturbance fields, where Ag is the maximum value of
the initial disturbance. For simplicity, constant buoy-
ancy frequency is assumed, T = y. Since it is the long
time waveform which is required, and it is expected that
that the form of solution will be asymptotically steady
in a the frame of reference of the phase velocity, the
following coordinate transform is made:

& ad
T E=r—ct) Fr — BE
(i)-ﬂ( r=1t )’ (—;’7:%—()5@?) (5)

(4)
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with % = 0 imposed at the outset since only steady
waves are considered in this section. Substituting (4)
into (1) and (2) yields

O¢ (i —c) — ¥g = e (—Or + V0, — ¥, 0)
&
+ Pr (@¢e + Oyy)
[¥ye (& = ¢) — iy ¥¢], + RiO¢
+ [¥ge (8 — ), = e (—Tyr — ¥gr)
+e ([‘I’Eq’yy — Uy Wy ], + [PeFey — 'I'y‘I'EE]E) +
6 (tyyy + Tyyyy + 2Weeyy + Yeege)

(6)

Previous treatments [Benney (1966) Lee and Beard-
sley {1974) Maslowe and Redekopp (1980) Weidman
and Velarde (1992) Zimmerman and Velarde (1995)]
begin with the inviscid, vanishing amplitude limit of
& = ¢ = 0. This basic disturbance ©(%), ¥{%) satisfies

0 (i —c) - ¥ =0

©) - = (0} a0
[‘I’yf (& —c)— ¥, ]y + RiO; (7)
+ ¥ @@ -0 =0

¥ (-,
= zj;y has been introduced to agree with prior treat-
ments including Davey and Reid (1977). The expecta-
tion that the disturbance should be a stationary horizon-
tal wave in the reference frame moving with the phase

velocity ¢ at any given height y leads one to seek a so-
lution in the form of the separated variables

0 (&, y) = 4(£)8(y)

8
T, y) = 4(8) o (v) ®
The system (7) then simplifies to
A @(i-0)— ) =0 o

Ag [y (@ —¢) — 0y, + RifA; + Agee (B — )¢ =10

The system (9) only has solutions if a separation condi-
tion on A is satisfied, namely

AEEE + k2A5 =0 (10)

The separation constant was chosen to clarify that A
must be a harmonic wave to leading order. If (10) holds,
then the system (9) reduces to

&
e p (11)
[6y (& =€) = iy ], — ¥ (8 ) + Ri=2— =0

i—c

g =

The second equation above is the well known Taylor-
Goldstein equation [Taylor (1931); Goldstein (1931)]
for the particular case of a constant buoyancy frequency.
For prescribed @ and Ri, (11) is & two point bound-
ary value problem (¢|y=0 = ¢ly=y = 0) for the eigen-
value ¢. In the long wave limit and with 4 = y, the



112

regular spectrum [Davey and Reid (1977} of ¢,, n =
+1,+2, ..., and the singular spectrum [Maslowe and Re-
dekopp (1980)] (¢ € [0,1]) are known when Ri > 1/4.
For 0 < Ri < 1/4, ¢, are complex conjugates, implying
that one harmonic wave grows without bound and the
other decays.

If the solvability condition is developed to O(g), Zim-
merman and Velarde (1996) found the following modi-
fications to (10):

Afff + szE =
ev1AAg + 8 (—|12lA + |3l dee — |14l Aeces + 70)

12)

Explicit quadratures are given for the +4;, depending
solely on the eigenfunction ¢ and Ri and Pr. (12) sim-
plifies to the steady Korteweg-de Vries equation in the
inviscid case é = 0. This steady wave equation is valid
in a slightly viscous fluid. In the next section, the tran-
sient approach to the centre manifold is computed in
a fully viscous fluid. The resulting nonlinear evolution
equation has the same steady limiting form as (12).

2.3 Centre manifold approach

In the development of the Taylor-Goldstein equation
above, there are only small amplitude harmonic waves
propagating horizontally if the vertical boundary value
problem has non-trivial solutions. Specifically, there ex-
ist nontrivial vertical stationary modes & and ¢ with a
given phase velocity ¢ which depends on the wavenum-
ber k and Ri. Perturbation expansions have been de-
veloped leading to nonlinear evolution equation for the
amplitude A (£, 7) for the steady wave in a weakly vis-
cous fluid {Zimmerman and Velarde (1996)] and for the
weakly transient case in and inviscid fluid [Zimmerman
and Rees (1996)] with arbitrary wavenumber. In this
paper, a centre manifold approach is put forth for the
nonlinear evolution. It is based on the normal mode
expansion of ¢ (y),

¢(y)=sin({)+assin(2() + azsin(3{) + ... (13)

where { = %}E. Because of viscosity, these normal modes

—éx° —48r° —9bx?

have temporal eigenvalues: e and
thus decay with erp('—""':—"), e:r:p(%"’"), erp("—g";'?—'),. .

Clearly, very rapidly anll but the first normal mode be-
comes unimportant. There is also a zero eigenvalue as-
sociated with variation of the layer height 5. This zero
eigenvalue is due to the fact that there is a one parame-
ter family of solutions with any layer height n and thus
n can be smoothly varied in space and time [Roberts
{1994)]. The centre manifold analysis leaves 7 as a free
parameter and fixes contributions from only the slowest
decaying vertical modes

¢ {y) = sin(

0(y) = fin( (1)

u—c

The momentum equation (2) is then required to be sat-
isfied on weighted average over the layer. The weighting
function that gives most satisfactory nwmerical results
is sin { (private communication with A.J. Roberts). For
instance, in the é§ = £ = 0 limit, the momentum equa-
tion becomes (10) with

P -
kI_?rﬂ

] ]

sin® ¢ ] et T
+R1fﬁ—cdy_/5m2 ( z H”) W (1)

(15) is the one mode Rayleigh-Ritz approximation to
the horizontal eigenvalue k% given the phase velocity
¢ and the Richardson number Ri. Alternatively, once
k(cn, Ri) 1s known, along any branch ¢, the relation
can be inverted to find ¢, (k, Ri).

The above harmonic, inviscid eigenvalue relation (15)
can then be used to guide the approximate viscous, tran-
sient evolution of the approach to the centre manifold.
Allowing the full 4 (z,t) dependence in (8), then solv-
ing the heat equation (1) for T, substituting T, in the
momentum equation (2), and taking the sin { weighted
average over the depth of the layer, developing the equa-
tion O(g?), results in a nonlinear evolution equation:

Ao, 1As + A0ds + A2 1 Azae + A3,04000 =
—£ ((ST’oAz +ridd +rpAA + érSAAmm) (16)
+ 6(AOA + AZ'DAIJ,‘ 'f‘ A4,()14:1:.1:::::1: + .f)

with the coeflicients A; ; and r; given by

) .
3 i i /( 7 sin ¢ 2w, sin? ¢
00— o a1 B - - .
2nt Pr it —e nu(i — c)?
n o (@—c) nu(i—c) (17)
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T A B O Py
0
7

L 3 _ o
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u Y
0 0
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f xcos {sin® ¢ sin® 4
7'27?'7'1+Ri/ - _ y2 dy
0

ni(id—c) Qi —c)
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27 Prpf W (a-o) Y
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For any background shear flow 7, phase velocity ¢, and
Ri, the above coefficients of the nonlinear wave equa-
tion (16) can be determined. The form of the nonlin-
ear wave equation is similar to that found earlier in the
steady-wave limit {Zimmerman and Velarde (1996)] and
in the inviscid limit [Zimmerman and Rees (1996)], with
the exception that the centre manifold technique easily
gives the dependence of the coefficients on modulation
of the height of the waveguide. The drawback of the
centre manifold approach is that the order of the ap-
proximation is unclear, although it improves with time
in a viscous fluid.

Strictly, (16), is valid only in the transient approach
to the centre manifold, not the full range of t in an initial
value problem. It follows that the steady wave equation,
using (5) is given by

K IAg + IAg =
— & (broA” + (rp — cr1)Adg + Eradde) (19)
+ (Ao A+ AzpAge + Aaodgeee + )

If terms of O(£é) are neglected, the the form of (19) is
identical to that derived by slightly viscous perturbation
theory (12).

3 Solutions to the forced nonlinear wave equa-
tion

There are two types of modes for the boundary value
problem (11). Regular modes have ¢, > % for y € [0, 1].
Singular modes have ¢, = & (yerir) for a critical height
yerit- The analysis given here tacitly assumes that ¢,
is positive, i.e. the waves move rightward. For regular
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modes, it is clear that the denominator I in the coeffi-
cients A; is always negative, regardless of k, Rz, and Pr.
Singular modes are inadmissible to this study as they
violate the assumption of regularity of ¢(y), permitting
the vertical Fourier expansion. This is a commnon bane
of Orr-Sommerfield type analysis.

If transients, viscous and thermal diffusive effects were
ignored and only weak dispersion retained, only the ac-
cumulation term A, the dispersive term Az and the
nonlinear term AAg survive in (16). Regardless of the
values of the coefficients (unless zero), this equation is
equivalent to the KdV equation and always has localised
sech® soliton solutions and periedic cnoidal wave solu-
tions. The addition of dissipative effects leaves open the
question of whether or not there are nontrivial asymp-
totic attractors to the transient dynamics. This ques-
tion can be addressed in terms of the energy integral
formed by multiplying (16) by the amplitude A and in-
tegrating over all £. Since it is required that sclutions
be localised, at +oc, A = Ag = Age = ... = 0, s0 it is
readily shown that the energy integral (accumulation) of
the KdV terms in (16) vanish. The surviving equation
(ignoring O(ed) terms) is

a7 .,
_ de =
doags [ i
(= Mgl f AZdE — a0 / Alde (20)
—00 —o

— Aol 7A2d£+f 7 Adf)

Clearly, A = 0 can satisfy this constraint only if f = 0.
The LHS represents the pseudo-energy present in the
wave. The Ap,Az0, and Ayo terms dissipate wave en-
ergy. The f term pumps energy into the disturbance
from the viscous decay of a nonuniform background vor-
ticity profile in the waveguide. It has been propesed
[Zimmerman and Velarde (1996)] that localised-in-¢
disturbances of the boundary or at critical layers due
to either shear layer instability or critical layer instabil-
ity can be crudely modelled as a localised-in-£ effective
f term. In the analysis here, the level of the waveguide
can be smoothly varied to model the gross effects of a
Kelvin-Helmholtz vortex being shed from a shear layer
instability. If the level of the waveguide 5 were to change
abruptly as a roll is shed and then abruptly return to
normal, then 5 is unity plus a pulse. The shear layer
instability is bound to create a boundary layer where
the shear profile has it,y, # 0 with thickness §*/2. It
follows that the propagating Kelvin-Helmholtz roll pro-
vides a localised-in-£ energy source to a solitary internal
wave. The dissipative terms will asymptotically match
this energy input, resulting in a non-trivial solitary in-
ternal wave of permanent form. Since the phase velocity
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of the Kelvin-Helmholtz roll sets ¢ and the Richardson
number Rt is a property of the background conditions,
(15) approximates the wavenumber of the internal soli-
tary wave and (17-18) approximately gives the coeffi-
clents of the nonlinear wave equation it satisfies.

4 Conclusions

A centre manifold approach was used to derive an ap-
proximate nonlinear wave equation satisfied by 1-D dis-
turbances (16). The waveguide is a stable stratification
of viscous fluid under shear. The equation simplifies to
the well known time-reduced Korteweg-deVries equation
for inviscid long waves, so that 1t must have solitary in-
ternal wave solutions similar to the famous sech? wave-
form under some conditions. Because a centre manifold
approach readily permits modulation of the height of
the waveguide, a crude model for shear layer instabil-
ity at the upper material surface of the waveguide is
proposed. This model predicts that Kelvin-Helmholtz
rolls that propagate at the shear layer interface pump
energy into internal wave disturbances that propagate
in phase with the roll. These solitary internal waves
perforce must be localised. An interesting question is
their waveform, which can only be derived by numerical
solution of the nonlinear evolution equation.
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