N
N

N

HAL

open science

A note on chaotic vs. stochastic behavior of the
high-latitude ionospheric plasma density fluctuations
A. W. Wernik, K. C. Yeh

» To cite this version:

A. W. Wernik, K. C. Yeh. A note on chaotic vs. stochastic behavior of the high-latitude ionospheric
plasma density fluctuations. Nonlinear Processes in Geophysics, 1996, 3 (1), pp.47-57. hal-00301804

HAL Id: hal-00301804
https://hal.science/hal-00301804
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00301804
https://hal.archives-ouvertes.fr

Errata

A note on chaotic vs. stochastic behavior of the high-latitude ionospheric plasma
density fluctuations

A.W. Wemik®' and K.C. Yeh?

! Space Research Center, Polish Academy of Sciences, ul. Bartycka 18a, Warsaw, Poland
2 College of Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C.

Nonlinear Processes in Geophysics (1996) 3: 47

Please note that this is the correct country name of the second author. We kindly ask our readers to
excuse the printing error made in the original publication.

Bernd Rauchalles, Editorial Office



Nonlinear Processes in Geophysics (1996} 3: 47 - 57

!\Ionlinear Rrocesses
in Geophysics

© European Geophysical Society 1996

A note on chaotic vs. stochastic behavior of the high-latitude ionospheric plasma

density fluctuations

A.W. Wernik' and K. C. Yeh?

' Space Research Center, Polish Academy of Sciences, ul. Bartycka 18a, Warsaw, Poland
* College of Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, P.R. China

Received 11 July 1995 - Accepted 20 November 1995 - Communicated by E. Marsch

Abstract. Four data scts of density fluctuations measured
in situ by the Dynamics Explorer (DE 2) were analyzed in
an atiempt to study chaotic nature of the high-latitude
turbulence and, in this way to complement the conven-
tional spectral analysis. It has been found that the prob-
ability distribution function of density differences is far
from Gaussian and similar to that observed in the intermit-
tent fluid or MHD turbulence. This indicates that iono-
spheric density fluctuations are not stochastic but coherent
to some extent. Wayland’s and surrogate data tests for
determinism in a time series of density data allowed us to
differentiate between regions of intense shear and moder-
ate shear. We observe that in the region of strong ficld
aligned currents (FAC) and intense shear, or along the
convection in the collisional regime, ionospheric turbu-
lence behaves like a random noise with non-Gaussian
statistics implying that the underlying physical process is
nondeterministic. On the other hand, when FACs are
weak, and shear is moderate or observations made in the
inertial regime the turbulence is chaetic. The atiractor
dimension is lowest (1.9} for “old” convected irregulari-
ties. The dimension 3.2 is found for turbulence in the
inertial regime and considerably smaller (2.4) in the
collistonal regime. It is suggested that a high dimension in
the inertial regime may be caused by a complicaied
velocity structure in the shear instability region.

1 Introduction

Plasmas in the high-latitude F region ionosphere are highly
irregular over a broad range of scale sizes from hundreds
of kilometers to centimeters (¢.g. Tsunoda, 1988; Keliey,
1989). Several mechanisms have been suggested for the
production of irregutaritics: particle precipitation from the
magnetosphere, plasma instabilities, turbulent mixing, and
neuntral atmosphere dynamics. The relative imporiance of
each mechanism apparently depends on the scale size and
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location in the magnetic latitude-local magnetic time
coordinates. It is believed that for scale sizes between tens
of kilometers and tens of meters plasma instabilities are a
dominant source of irregularitics. This is reasonable since
a varicty of free energy sources nceded to drive
instabilities exist in the high-latitude ionosphere; they are
for example density gradients, velocity shears, and
currents. Due to the magnetic field geometry at high
latitudes, and large paraltel conductivity, the strong
coupling between the ionosphere and magnetosphere plays
an important role on imregularity generation and its
subsequent convection. Plasma instabilities in the iono-
sphere have been exiensively discussed in the linear
regime, but a full understanding of turbulence and its
comparison with experiments is possible only for
nonlinear models.

Keskinen and Ossakow (1982) have proposed the ExB
instability as a source of high-latitude irregularities.
Numerical 2D simulations of the nonlinear evolution of
the ExB instability with the jonosphere-magnetosphere
coupling effect included (Mitchell et al., 1985; Huba et al |
1988) showed a difference in the evolution of irregularities
between the inertial (strong ionosphere-magnetosphere
coupling} and collisicnal (weak coupling) regimes. Re-
cently, Keskinen and Huba (1990) introduced a scale size
dependent coupling into simulations and found that for
scale sizes of a few kilometers interchange modes can be
characterized as neither purely inertial nor purely colli-
sional.

Similar simulations (Keskinen et al., 1988; Huba et al.,
1988) have been made for the Kelvin-Helmholtz (K-H)
instability due to the velocity shear flows (Kintner, 1976,
Kintner and Seyler, 1985). The nature of K-H instability is
different from that of the ExB instability, since it is driven
by the ion inertia, rather than ion Pedersen currents, Thus
it is expected that the Kclvin-Helmholtz instability will
operate in the topside F region and in the magnetosphere.
Simulations show that collisions suppress large scale
structures resulting in shallower spectra than that in the
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inertial regime.

The main characteristic obtained in simulations is the
spatial power spectrum of the electric field (SE) and
plasma density fluctuations (3n/n) which can be directly
compared with observations. Experimentally it has been
found that spectra can be represented by a power-law form
k¥ where the spectral index p is usually slightly different
in the two orthogonal directions perpendicular to the
magnetic field. Practically, the density spectra for the K-H
instability are indistinguishable from the ExB instability
spectra, thus measurements of density spectra alone will
not help in identifying the source of observed turbulence.
For the K-H instability the ¢lectric field spectra are evi-
dently steeper than density spectra, while for the ExB
instability spectral indices of 8E and dn/r are very close.

Simultaneous density and clectric field in situ measure-
ments at high latitudes are discussed in details by Basu ¢t
al. {1988, 1990). It was found that in the moderate shear
regions the spectra of 5E and 8n/7 in the direction of
velocity shear agree with simulations. The same conclu-
sion can be reached for auroral “blobs” and polar cap
“patches” believed to be dominated by the ExB instability.
A dramatic difference has been found in 5E which was an
order of magnitude larger in the velocity shear regions
than in the ExB regions for the same levels of density
fluctuations.

In a recent paper Heppner et al. (1993) analyzed a large
data base of spectra and intensities of clectric field as
measured by AC spectrometers on board of DE-2 satellite.
it is proposed that the averaged intensities and spectral
characteristics represent superimposed contributions from:
(1) an omnipresent 4 — 512 Hz signal from 2000 — 15 m
spatial irregularities with an average power law spectral
index p = 1.9 + 0.2, (2) intermittent signals from locally
generated shear Alfven waves having maximum power at
frequencies < 4 Hz and averaged p < 2.8 extending only to
the oxygen ion cyclotron frequency, and (3) the spatial
irregularity modulations of both locally and remotely
generated Alfven waves.

An interesting discussion of the interchange instability
in the context of chaotic system has been given by Huba et
al. (1985) and Hassam et al. (1986). Huba ¢t al. have
shown that if only three modes are considered then the
system can exhibit a strange attractor in the inertial re-
gime, but not in the collisional regime. However, in a
many-mode system, even in the inertial regime, large scale
convective cells do not exhibit chaotic behavior (Hassam
et al., 1986).

The aim of this paper is to extend the data analysis be-
yond the spectrum estimation and the phenomenclogical
description of ionospheric irregularities. Plasma density
data as measured in situ most often show a lack of periodic
or quasi-periodic oscillations, and have a noisy, intermit-
tent character apparently not associated with the instru-
mental errors. Such a complicated patlern is characteristic
of the stochastic or chaotic nonlinear dynamical systems.
It is known (Eckmann and Ruelle, 1985; Biskamp, 1993)

that whenever the physical system is nonlinear the classi-
cal methods {e.g. the spectral analysis) alone are not ade-
quate lo describe it. New statistical techniques are re-
quired. Among those one can name the higher-order
structure functions, fractal and multifractal analysis,
multispectral analysis, etc. In this paper we first discuss
the probability distribution function of density fluctua-
tions. We show that the statistics of density fluctuations is
non-Gaussian. Such a behavior is usuvally conceived as
resulting from a nonlinear deterministic, chaotic, process.
Whether really ionospheric plasma turbulence represents a
deterministic chaos, or non-Gaussian correlated neise can
be judged using tests especially designed for this purpose.
Deterministic chaos implies that the dynamics can be
described by only a few degrees of freedom, which can be
viewed as the dimension of a state space (in mathematics
the “state space” is often called the “phase space™) in
which the system evolves forming a fractal set - strange
attractor, We analyzed the density data along this line in
an attempt to find if the ionospheric turbulence represents
a chaotic system and if some characteristics of the system
can be used to discriminate between various geophysical
situations.

It should be noted that in the following discussion we
assume “frozen in turbulence”, which is valid only if the
satellite velocity relative to the plasma is much larger than
the tarbulent velocity, While this is almost always true in
the case of satellite measurements it may be not satisfied
in the intense velocity shear regions (Basu et al., 1988;
Kintner and Seyler, 1985). Additional complications in
converting measured temporal fluctuations into spatial
variations arise if plasma density irregularities are ani-
sotropic providing some ambiguity in the interpretation of
data.

2 Data sets

Four data sets of plasma density fluctuations observed by
the DE 2 satellite using the retarding potential analyzer
(RPA) (Hanson et al., 1981) are discussed. The RPA
provided the ion density values at a rate of 64 Hz or ap-
proximately every 120 m along the satellite path. The
meaningful nonlinear statistical analysis requires long data
sets. As a rational compromise between this demand and
the need for conservation of geophysical parameters
determining the state of the ionosphere data sets of 4096
points, or 64 seconds, long have been chosen. The parame-
ters of the data sets are given in Table 1. The data sets
have been selected to cover various geophysical situations.
For the first two data sets the orbit plane is orthogonal to
the direction of convection. The convection is predomi-
nantly sunward for the data set 1, and fluctuating for set 2
{c.f. Figs. 1 and 8 of Basu et al. (1990) where also a more
detailed description of orbits 4429 and 3223 can be found.
The orbit 1189 is described in Basu et al. (1988)). These
two data sets are considered as cxamples of structures
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Table 1. Parameters of data sets

Set# Orbit# uT Geographic Geographic Invariant Local Altitude Average
(hh:mm:ss)  latitude (deg) longitude latitude magnetic (km) concen- Remarks
(deg) (deg) time (hr) tration
m™)
Across convection.
Convection
21:49:20 — -54.05 ~ 128.49 6R8.85 — 7.22 - 350.15 10 predominantly
1 29 915024 -5828 128.23 73.40 7.32 36198 010 sunward. Large FAC
and intense shear.
"Collisional” regime.
Across convection.
21:50:40 — -59.34 - 12817 74.52 - 735—  365.05- o  Convection is changing
L S T P -63.56 12791 78.97 7.52 37780 4310 direstion. Small FAC
and moderate shear.
“Collisional” regime.
0338:55- 6323 -59.99 - 7282 2384 48179 g Along anti-sunward
30N ;3399 67.33 -60.25 76.51 2398 46514 310 convection. “Old
irregularities.
4 1180 22:57:08 - 81.59 - 145.22 - 75.58 - 742-  93325- 49400 “Inertial” regime.
22:58:12 85.20 145.04 78.67 7.14 939.24 Moderate shear.

across the convection. The main difference between these
two sets is in the strength of the ficld aligned currents
(FAC), being as large as 40 pA m for set 1, and low (~ 1
nA m* ) for set 2 (Basu et al_, 1988). Our data set 2 does
not coincide exactly with the region identified by Basu ct
al. {1988) as the medium velocity shear region (5,, in
Basu et al. notation), but the pattern ol horizontal drift is
similar (Fig. 5 of Basu et al) thus it is reasonablc to
assume that set 2 falls into this category of shears. Set 1
encompasses the region of intense velocity shear (57). For
comparison a data set 3 has been chosen. In this casc the
antisunward convection coincides fairy well with the
orbital planc of the satellite.

The satellite altitude for the first two data sets was
around the F region peak. Set 4 was observed in the top-
side ionosphere. If the local parameters are considered,
then the first two data sets correspond to the collisional
regime and a set 4 to the inertial regime. For this reason
we will call the first two sets “collisional”, and the last
one “inertial”,

Figure 1 shows the relative plasma density fluctuations
dn/n for all four analyzed data scts. Time is given in
seconds relative to the instant of the first data point as
given in Table 1. The relative density fluctuations have
been computed by subtracting a linear trend from each
original data point and dividing by the background density
at this point. The standard deviations oy, are given in
Table 2. The fluctuation pattern is similar for all data sets,
except set 3 which looks smoother and is dominated
by large scale variations.

In Fig. 2 the power spectra are computed using Welch

Table 2. Derived statistical parameters

Set # Opvm  Skewness Kurtosis  Spectral  Aftractor dimension

stope
d, dy
i 0.23 -0.06 9.0 1.82 22 2.9
2 0.16 -0.31 12.4 1.73 24 37
3 0.09 -0.16 9.6 1.51 1.9 24
4 0.06 0.05 72 1.70 32 4.4

method (Welch, 1967) with 2048 points in FFT. Spectra
ar¢ normalized to the variance and plotied using the dB
ordnate scale and logarithmic frequency scale. All spectra
cxhibit a familiar power-law behavior f ¥, The spectral
index p has been calculated over the frequency range from
0.5 to 10 Hz and is listed in Table 2. All spectra, except
sct 3, are well characterized by a single slope in this
frequency range. Spectrum for the data set 3 shows three
slopes. namely 1.76, 1.26, and 1.86 for 0.5-1.2, 1.2 - 10,
and 10 — 30 Hz, respectively. The domination of large
scale fluctuations appears on the spectrum as a relatively
large spectral power at frequencies less than 0.3 Hz. A
detailed discussion of the plasma density and electric field
spectra can be found in Basu et al. (1988, 1990),
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Fig, 1. Relative plasma density fluctuations from RPA for four analyzed
data sets,

3 Probability distribution function

In general any signal x(¥) generated by a linear or Gaussian
process has a Gaussian probability distribution function
(pdf) for the differences Ax(Bdy = x(+6 — x(1). The
multivariate Gaussian probability distribution function of
random fluid variables is a basic assumption in the classi-
cal fluid or MHD tubulence (Biskamp, 1993). well as
simulations (Vincent and Meneguzzi, 1991) show, how-
ever, that this is true only for large time lag 5¢. For a small
lag 8¢, the distributions differ significantly from Gaussian,
being sharply picked and narrow at small Ax¢5f) and broad
for large differences. The non-Gaussian behavior of
distribution at a small separation is interpreted as evidence
for intermittency and dominance of the local deterministic
dynamics over random processes. Therefore analysis of
probability distribution functions of relative plasma
density fluctuations 5n/i measured in the ionosphere could
provide a first test for nonlinear, and/or deterministic
nature of ionospheric turbulence generation processes. In
the experimental study of turbulence the velocity field is
usually analyzed. However, Basu et al. (1990} have shown
that 8n/n is proportional to the electric field flucmations
5E (hence velocity fluctuations) both in the velocity shear
and polar cap patches regions, thus we should expect that
the velocity pdf will be similar to that of the density.
Similarity between density and velocity pdf's is evident
for solar wind fluctuations (Marsch and Tu, 1994).
Probability distribution functions of the differences
An(Bt) of relative density fluctuations normalized to zeto
mean are shown in Fig. 3 for the data sets considered. The
time lag 8¢ is one sampling time or 0.015625 s. For
comparison the Gaussian (dashed line) and Laplace
(double-sided exponential) (continuous line) pdf’s are also
plotted. The parameters of these distributions (c and p for

—40 - . : S

-60

|
fw]
o

-1.89£0.05

-1.73+0.05

760_

Spectral Power Density {dB)

|
o]
<

-100r -1.51+0.06 —-1.70+0.65

10 0.01 0.1 1 10 100

Frequency (Hz)

0.01 ¢.1 1

Fig. 2. Power spectra of plasma density fluctuations. Slopes of the spectra,
given in Fig., have been calculated over the frequency range 0.5-10 Hz.
Note, however, that spectrum 3 has different slopes in different frequency
ranges.

the Gaussian and Laplace pdf, respectively) have been
calculated from the data. The area under the observed and
calculated pdf’s is normalized to umity. In all four cases
the observed pdf”s differ markedly from a Gaussian pdf,
since each is more peaked in the central part and curved
upwards with an enhanced tail. Except for large fluctua-
tions the distributions are closer to the Laplace pdf. This
has been qualitatively confirmed by the x° test applied to
the data. Such behavior of pdf’s is a direct evidence of
intermittency in ionospheric plasma tubulence. The
turbulence is intermittent whenever the energy transfer or
dissipation rate is fluctuating and nonuniformly distributed
in space, and is typical in fully developed turbulence.

Table 2 lists skewness and kurtosis of the observed pdf’s
with 8¢ = 0.015625 s. To discuss the significance of ob-
tained values note that the standard deviation of skewness
for the Gaussian distribution is J6/~ = 0.04, where N is
the number of points in the data set. The skewness is
considered significant if it is several times larger than this.
Thus only sets 2 and 3 have a notable negative skewness
indicating that the distribution has an asymmetric tail the
extending towards negative differences. In all four cases
kurtosis is larger than 3 showing that distributions are
more sharply peaked than the Laplace pdf.

In Fig. 4 an example of pdf’s for two time lags is given.
A similar picture emerges for other data sets. One can
notice that for a large lag the observed pdf becomes
Gaussian, again in agreement with experiments on fluid
turbulence and simulations.

The conclusion of this section is that ionospheric den-
sity fluctuations have the probability distribution function
similar to that observed in the intermittent fluid turbulence
and MHD turbulence.
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4 Tests for determinism

Non-Gaussian probability distribution function of plasma
density fluctuation is a convincing argument for the non-
lincar nature of dynamical processes Icading to
ionospheric plasma turbulence. However, additional tests
are needed to answer the question whether the observed
variability of plasma density is duc to internal
deterministic, low dimensional, dynamics or represents
just a noise with non-Gaussian pdf. In fact a variety of
tests for determinism in experimental data exist and
unfortunately none is fully reliable. The problem is that
experimental data are often noisy and too short. Additional
difficulties are encountered when data are dominated by
the colored noise with power-law power spectra (Osborne
and Provenzale, 1989; Theiler, 1991). Nevertheless, data
must be tested for determinism since otherwise the
derived correlation dimension or Lyapunov exponent
might indicate chaos where there is none. Such examples
are abundant, and they also appear in space physics., Thus
before proceeding further we perform additional tests for
determinism in the ionospheric plasma density data.

Two tests are applied: (1) Wayland’s test (Wayland et
al., 1993), (2) surrogate data test (Theiler et al., 1992). The
first test makes use of the “stale space contimiity” in
deterministic systems, i.e. tangents to the trajectory in a
given region of state space have similar orientation. From
a time series x(f;), in our case a series of dn/n values, the
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Fig. 4. Probability density function of differenced plasma density
fluctuations for iwo time lags (full circles). Dashed and continuous lines
are Gaussian and Laplace distributions, respectively.

sequence of m-dimensional vectors is formed

X; =) x40, Xt (m-1)T) (D

The time delay t is chosen according to a normal proce-
dure used in the reconstruction of the state space (Section
5). Let X, be a fixed, but otherwise arbitrary, vector, and
let us choose its & nearest neighbors X, . Form the images
Y; of these vectors (Y; = Y{£) = X{t;+ 1)) and the transla-
tion vectors v ;= Y ;- X;. If the data are deterministic we
expect the translation vectors to be nearly equal. To
quantify this notion, let compute the translation error

ko, 2
! Ivi— <v >
e,= @
k+1,§) ll<v >{?
where <v> =

—ZVJ and ||f| denotes the Euclidean
k+143

norm, Division by the length of the vector <v> makes the
translation error independent of the overall scaling. If the
system is deterministic the translation error will be small.
In real computations the translation error has been caleu-
lated for many (usually 200} randomly chosen centers and
averaged. The number of neighbors & has been taken to
be 4 and the value of embedding dimension m has ranged
from 2 to 9. Results of computations are presented in Fig.
5 for all four data sets (stars and continuous lines) and for
comparison, in the botiom pan¢l, for the Lorenz attractor
(squares) and white Gaussian noise {diamonds). Onc can
sec that the whitc Gaussian noise gives the translation
error close to 1. The translation ¢rror for density is small
and close to, or even smaller than that for the Lorenz
attractor. This implies that we are dealing with a determi-
nistic system. But this is still not fully convincing conclu-
sion because random data with the same power spectrum
as the original data may also lead to a small transiation
error. Yet another test using the surrogate data should be
applied.
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The surrogate data scrics has been generated from the
original daia sct using the amplitude adjusted Fourier
transform (AAFT) algorithm (for details see Theiler ct al.,
1992). It gives a time scries which has the same power
spectrum and amplitude distribution as the original, how-
ever any coherency which may be present in the original
data is destroyed. The AAFT algorithm has been used
instead of the simpler randomization of the Fourier phase
because, as we have seen in the previous section, the data
have apparently non-Gaussian distribution. The surrogate
data set generated with AAFT can be considered as result-
ing from a monotonic nonlinear transformation of a linear
random Gaussian process. This is our null hypothesis
against which observations are tested. As a discriminating
statistics (Theiler et al., 1992), which is a number
quantifying the departure of observations from the null hy-
pothesis, we will take the translation error and, in the next
section, the correlation dimension.

The translation error as calculated for surrogate data is
plotted in Fig. 5 in dashed lines. One can see that for sets 1
and 3 the wanslation error is similar to that for the original
data which suggests that the original data behave like the
non-Gaussian random nroise. The surrogate data for sets 2
and 4 give the translation errors larger than that for the
original data. To evaluate the significance of the
difference we apply a Student stest and calculate the
probability when the translation error for the original data
and that for the surrogate data are equal by chance. For
sets considered these probabilities are: 0.31, 0.02, 0.84,
0.09, respectively. Thus we conclude that in the region of
strong FAC, and intense shear, or along the convection in

the “collisional” regime, ionospheric turbulence behaves
like a stochastic random notse with non-Gaussian statis-
tics. On the other hand, when FAC are weak, and shear is
moderatc or observations made in the “inertial” regime the
turbulence is chaotic.

5 Correlation dimension

The correlation dimension is the most widely used
parameter to characterize the complexity of chaotic behav-
ior of a dynamical system. It counts the number of degrees
of freedom of a system, or the number of independent
variables needed to describe the physical process. The
popularity of the correlation dimension stems from relative
ease with which it can be calculated. But in fact, the
correlation dimension is only one from a whole set
(spectrum) of dimensions which is normally requited to
fully describe a system. In this paper, however, we will be
concerned only with the correlation dimension.

Calculation of the correlation dimension is relatively

simple and many algorithms in existencc can be used.
However, the important guestion about reliability and
accuracy of these methods remains open in spite of long-
lasting discussion among specialists (Mayer-Kress, 1989;
Theiler, 1990; Oit et al., 1994), Most algorithms require
the following steps: (1) reconstruction of the system trajec-
tory in the m-dimensional state space, (2) calculation of
the dimension, (3) verification of results.
One of the most remarkable findings of the chaos theory is
that the system trajectory (atiractor) can be reconstructed
from a time series of one state variabie (e.g., temperature,
plasma density, AL magnetic index) (Packard et al., 1980).
The impact of this discovery on the practical implementa-
tion of chaos theory is tremendous: even the most compli-
cated systems can be analyzed based on the knowledge of
only one state variable. The reconstructed trajectory is not
exactly the same as the original one, but it reproduces
many topological features, and in particular has the same
dimension as the original (Takens, 1981). This, so called
time-delay coordinates method, has already been used in
Section 4.

For a long time series of the noise-free, stationary data
arbitrary time delay t can be taken. In practice, however,
the choice of <t is critical (Havstad and Ehlers, 1989,
Theiler, 1990) and should assure the independence of
coordinates of the vector X; . Fraser and Swinney (1986)
have presented a method to find the optimum value of T by
calculating the first minimum of the mutual information.
The mutual information measures the dependence of two
variables in a more general way than the autocorrelation
function. However, the method is complicated and
requires very large data sets unless the dimension is low.
Therefore in our calculations we have chosen t equal to
the correlation time, defined as a time of the first zero of
autocorrelation function.

The correlation dimension is calculated using a com-
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mon correlation integral method {Grassberger and
Procaccia, 1983). The correlation integral Cimr) is
defined as follows:

Ner N
ZZ H(r—X; - X,|) 3)

Cimr) =
()= ,,fav )&

where H(z) is the Heaviside step function: Hyz) is zero for
z <0 and one for z > 0. [X; - X; | is a distance between
points X; and XJ in the m—dlmensmnal state space. N, is
the number of reference vectors. In most algorithms this is
equal to a total number of vectors N. Howcver, we have
found, in agreement with Holzfuss and Mayer-Kress
(1989), that significantly smaller number of reference
vectors is sufficient and took N, = 200. This substantially
saves the amount of computer time and memory.
For small distances » the correlation integral scales as:

ling Comr) «< p'n 4

where v,, is the correlation dimension at the embedding
dimension m. If the correlation dimension is computed for
a number of embedding dimensions then, for sufficiently

large m, v, should be independent of m. This constant
value of v,, is a measure (lower bound) of the attractor
dimension d.

It is generally accepted that the dimension cstimate is
more reliable for longer data sets. However, specialists in
chaotic system analysis have not rcached a consensus as
what is the smallest useful data set. For instance, Eckmann
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and Ruelle (1992) claim that i{ (hc dimension is deter-
mined from N vectors, then one should not belicve a
dimension cstimate that is not well below 2/og,,N. When
the number of refercnce vectors N, is not equal to the
total number of vectors N this result should be slightly
modificd and assumes a form log,(N- N,.4. From a series
of N, data points N, - m- 1t +1 vectors can be constructed.
Our data sets are N; = 4096 points long which for the
longest obscrved correlation time T = 270 points and  m =
10 gives N = 1395 vectors. With N,,, = 200 the upper
limit to the dimension d is 5.4. Roberts (1991) argues that
N> 1P s required. It seems that this is too pessimistic an
estimate. Havstad and Ehters (1989) have shown by nu-
merical computations that the independence of vectors in
the state spacc is essential and, if satisfied, even a small
data set would suffice for reliable reconstruction of the
attractor and its dimension, provided all measures are
taken to corrcct for short data set effects.

The correlation dimension v, has been computed using
two methods: (1) by a linear least squarcs fitting to the
log C vs. log r plot, (2) by calculating a local slope
dilog C)/d( log r). As an cxample, in Fig. 6 we present Jog
C vs. log r plot for the data set 4 and m ranging from 1 to
10. The behavior of curves is typical and its discussion can
be found in the literature (¢.g. Havstad and Ehlers, 1988:
Theiler, 1990, 1991). By definition (4), v,, is the correla-
tion dimension only in the limit of small ». However, al
small # (fog r < -3 in our example) the instrumental and
measuremend noise is dominant. Since random noisc fills
all dimensions of stale space, the slope in this region
approaches the value of c¢mbedding dimension. Often
cxperimentalists are tempted to improve the data quality
by filtering out the noise, but this is not recommended
since, as shown by Badii et al. (1988), low-pass filiering
increases the comrelation dimension. Al large » (Jog r >
-0.8 in our cxample) the slope increases. The rcason for
this is that when » is largc we approach the edge of the
attractor where scaling of Cym,r} is different (Theiler,
1990). The algorithm used for the least squares fitting
has a provision for aulomatic search for the scaling region
of log r for which v, is calculated (Wernik and Yeh,
1994), It gives the cormrelation dimensions agreeing, within
errors, with that obtained by the local slope method.

In the local slope mcthod a derivative dilog Ci/d(log r)
is calculated numerically. Next, a plot difog C)/dflog r) vs.
log r is constructed for each embedding dimcnsion. If the
scaling region exists, then for sufficiently large m the
curve would exhibit a platean at dilog C)/ddog v) ~ v,
Graphs of slopc versus log » are shown in Fig. 7 for the
original and surrogate data of set 4. The embedding
dimension changes from m =I to 10. Three distinct regions
can be distinguished in the original data plot: the noise
region at small r, plateau or scaling region (-2.8 < log r <
-0.8), and “edge effect” region at large r. To get the corre-
lation dimension the local slopes have been averaged
within the scaling region for cach emebedding dimension.
For the surrogate data the scaling region is practically non-
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Original

Local Slope

Fig. 7. Plot of slope ddog C)/deg r) vs. log r for the original and
surrogate data sets 4. Different curves correspond to different embedding
dimensions.

existent. Nevertheless, the correlation dimension has been
calculated using the same scaling region as estimated for
the original data.

In Fig. 8 the correlation dimension v, is plotted versus
embedding dimension m for all four pairs of the original
(crosses) and surrogate (stars) data sets. The attractor
dimension 4 is calculated as a mean of v,, for embedding
dimensions for which v, levels off. Theoretically the
limiting value of m should be close to int(2d+1) (Takens,
1981), but in practice asymptotic behavior is reached at a
smaller . Final values of attractor dimensions are given
in Table 2 for both the original (d,) and surrogate (d,) data.
To assess the statistical significance of the difference
between 4, and d, the Student’s t-test is applied to v,, from
which the attractor dimension is calculated. In all cases the
difference is significant at level less than 10° which means
that the null hypothesis should be rejected. In other words
the original data do not portray non-Gaussian noise. This
seems to contradict the conclusion of previous Section
where it bas been found that only sets 2 and 4 represent
chaotic systems. However, closer inspection of Fig, 7
reveals that original and surrogate correlation dimensions
for sets 1 and 3 are, slighily but evidently, closer to each
other than those for sets 2 and 4. Therefore we claim that
sets 1 and 3 indeed conform to the null hypothesis
(although on a very low probability level), while sets 2 and
4 do not. This leads us to the conclusion that the surrogate
data test for chaoticity in plasma density data, with the
correlation dimension as a discriminating statistical pa-
rameter, gives result in agreement with the Wayland’s test.
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Fig. 8. Plot of the correlation dimension vs. embedding dimension for
original (crosses) and surrogate (stars) data for each of the analyzed sets.

6 Discussion and conclusions

We have analyzed four data sets of fluctuating plasma
density measured in various geophysical situations in the
high-latitude ionospheric F region. In all cases the prob-
ability distribution function of density differences An(S¢) is
significantly different from Gaussian for relatively short
delays 3¢, being sharply peaked for smail An, reduced for
intermediate, and enhanced for large An. Distribution
approaches Gaussian for large delays. This behavior is
similar to that observed in the laboratory and simulations
of fluid and MHD mrbulence. Distributions resemble
recent observations of solar wind density and velocity
pdf’s (Marsch and Tu, 1994). This result means that the
statistics of 6n/n is dominated by sparsely distributed large
scale fluctuations, a direct evidence of temporal intermit-
tency. The temporal intermittency can be identified with
the spatial intermittency for “frozen in™ turbulence. One
should keep in mind, however, that the “frozen in” as-
sumption may be violated in the regions of large velocity
shears. Different statistical properties of dn/r at different
scales indicate that density fluctuations have a multifractal
character.

Intermittency is discussed in various models of fluid and
MHD turbulence (c.f Paladin and Vulpiani, 1987,
Biskamp, 1993). In fact, it is intermittency which led
Obukhov(1962) and Kolmogorov (1962) to the lognormal
model of energy dissipation in turbulence. Recently, She
and Orszag (1991) (sec also Biskamp (1993)) derived the
probability distribution function based on the argument
that at small scales only small amplitude eddies undergo



the Kolmogorov local cascade, while large amplitude
vortices suffer self-distortion and stretching. The simplest
form of their probability distribution function for a turbu-
lent velocity &v is then given by:

P(Bv ) exp(~cl&v|"" ) &)

For 4 = 0 P(%v) reduces to the Laplace distribution with
¢ = 1/B. Although PSv) has been derived for velocity
fluctuations it should still hold for rclative density fluctua-
tions, thus we tried to fit the parameter 4 to the observed
pdf’s with 8f = 0.015625 sec, and found that it is ncgative
and its absolute value is relatively small, tess than 0,13,
This means that at small scales the large amplitude eddies
undergo rather weak stretching, It should be noted, how-
ever, that the random B - model of turbulence (Novikov
and Stewart, 1964), which does not assume any stretching
of large amplitude eddies, also gives pdf (Benzi et al.,
1991) which can fit our observations. Thus it is risky to
make any firm conclusions about the model of turbulence
based just on the observed probability distribution
function.

Intermittancy in the ionospheric plasma densily means
that there is an excess emergy in large scale stractures,
Consequently, spectra are steeper than that for a homoge-
neous turbulence. In this context we note that Kintner and
Seyler (1985), implicitly assuming homogeneity of turba-
lence, have estimated the spectral indices for density and
electric ficld in the ExB and K-H instabilities which are
consistently smaller than those derived from nonlinear
simulations (Mitchell et al., 1985; Keskinen et al., 1988;
Keskinen and Huba, 1990).

Non-Gaussian statistics of density fluctuations implies
that the turbulencc is either a nonlinear, chaotic process, or
represent a non-Gaussian noise. Wayland’s and surrogate
data tests show that in the regions of weak field-aligned
currents and moderate shear (data set 2) and in the topside
ionosphere, in the “inertial” regime (set 4), the turbulence
is chaotic. On the other hand, in the region of strong FAC
and intense shear (set 1), and along the convection (set 3),
ionospheric turbulence behaves like a noise. Basu et al.
(1988) have found that the density spectral indices p in the
moderate and intense shear regions are practically the
same. On the other hand, electric field spectral indices
differ substantially. They have found that the moderate
shear spectra for both density and electric field agree with
simulations of the collisional K-H instability. Results of
tests for determinism show that a more sophisticated
density data analysis reveals the difference between the
moderate and intense shear region turbulence not easily
discernible with the simple spectral analysis. Non-
deterministic nature of turbulence in intense shears sup-
ports the suggestion (Basu ¢t al., 1988) that in these
regions multiple generation mechanisms of irregularities
could operate.

Set 3 corrcsponds to the situation when the data are
taken along convection. The large scale density gradients
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along the orbit are weak, which otherwise would favor the
generation of irregularities by the ExB instability. The
flux of precipitating electrons is rather small (c.f. Plate I
of Basu et al., 1990), and no velocity shears are observed.
Therefore it is rcasonable to assume that irregularities
observed in this set are not locally generated but rather
were convected across the polar cap from some remote
generation regions. An additional argument for this as-
sumption is given by the spectrum which exhibits a rela-
tively small slope for structures larger than 25 km (f < 0.03
Hz), in agreement with Kelley et al. (1982) who showed
that on the transit of the polar cap small scale irregularitics
are washed out by turbulent diffusion. Apparently, during
their lifetime the “o0ld” irregularities are subject (o various
influences, some deterministic, some stochastic, so that the
locally measured turbulent density can not be considered
as an autonomous system which is required for chaoticity.

In set 4 no appreciable density gradients are observed
and the velocity shear falls into the moderate category
(Fig. 14 of Basu et al., 1988). The main difference
between this data set and set 2 is the altitude, which is
much lower for the later. It is reasonable to assume that set
4 corresponds to the locally inertial, collisionless, regime,
and set 2 (o the collisional regime. While geophysical
conditions and certain characteristics of turbulence are
similar for both sets, one should keep in mind that meas-
urements arc not simultaneous. Nevertheless, it may be of
interest to discuss these sets as examples of two different
turbulence regimes: collisional and inertial. Spectral
slopes are not very much different, atthough the inertial
regime spectrum (c.f. Fig. 2) seems to be broader at large
scales.

Tests for determinism imply deterministic chaos in both
cases. The chaotic behavior of fluctuations generated by
the interchange instability has been discussed by Huba et
al. (1985) and Hassam et al. (1986). Huba et al. have
shown that if only three modes are considered then the
equations describing the interchange instability reduce to
the famous set of Lorenz cquations (Lorenz, 1963) which
characterize Rayleigh-Benard instability in fluids, and the
system can exhibit a strange attractor. However, the ion
inertia plays a crucial role in that if it is neglected (as
below 450-500 km in the jonosphere) the system fails to
be chaotic and a stable convcction pattern results. Hassam
et al. (1986) claim that in a many-mode system large scale
convective cells are not chaotic, even in the inertial re-
gime. The physics of K-H instability is different from that
of the ExB instability, a typical interchange instability,
since it is driven by the ion polarization current, rather
then ion Pedersen currents. There is no analogy between
K-H instability and Rayleigh-Benard instability, that is
obvious in the case of ExB instability. Therefore Huba et
al. (1985) results are not applicable to the K-H instability.
It is true, however, that any many-mode system, character-
ized by a large number of degrees of freedom (attractor is
high-dimensional), would behave like a random system.
The fact that we observe low-dimensional chaos in both
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inertial and collisional regimes suggests that only a small
number of modes are involved in generating the
turbulence in these cases.

The most pronounced difference in the attractor dimen-
sion is found between a high value of 3.2 in the inertial
regime and a low value of 2.4 in the collisional regimes.
Large attractor dimension means that density in the iner-
tial regime is more structured. This contradicts simulations
(Keskinen ¢t al., 1988) which show that when collisions
are neglected K-H instability forms characteristic large
scale vortices and spirals. Only in the collisional regime
small scale irregular structures are developed. The model
used in simulations assumes a localized single shear
interface with a single shear frequency (highest
velocity/shear gradient scale length). In reality the satellite
traverses several adjacent shear interfaces with different
shear frequencies. Vortices generated by cach shear
interface interact with each other resulting in a structure
which is much more complicated than that for a single
interface. This effect has a lesser consequence in the
weakly collisional X-H instability when the imregular
structure is determined by finite Pedersen conductivily
and the vortices form only at the initial stage. Therefore a
relatively high attractor dimension in the inertial regime
indirectly reflects a complicated structure of the velocity
in shear region.

Attractor dimensions derived for sets 1 and 3 are very
low. We do not have any immediate physical arguments to
explain this surprising result. We only note that some kind
of self-organizing process must be present in the iono-
sphere which reduces originally large number of degrees
of freedom to just a few degrees of freedom sufficient to
describe the turbulent ionosphere. This is a typical
problem of synergetics.

The results presented in this paper are based on only
four data sets, thus should not be generalized. Yet they
show that application of more sophisticated methods of
data analysis can provide additional physical insights,
especially when the spectral analysis gives ambiguous
results. It would be of great interest to apply these methods
to results of numerical simulations and compare with
observations.
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