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Abstract. A one-dimensional, nine-mode spectral model for
temperature, velocity, and the mixing ratios of suspended and
precipitating ice-particle components is shown to be consistent
with ice-cloud observations. The observations include
Doppler radar time-series measurements of a single winter ice
cloud and direct measurements of mean particle size vs. ice-
water content for a set of ice clouds. Fitting of the model to
the Doppler vertical-velocity measurements allows a
prediction to be made of the vertical scale and turbulent
Prandt! number active in the ice-cloud vertical motions. The
model is then used to explore the question of how turbulence
and gravity-wave motions affect the microphysical properties
of an ice cloud. The model predicts interesting dynamical
effects on the mixing ratios due to these motions, but no
significant effects on the time-averaged microphysical
quantities.

1 Introduction

Ice clouds are synoptic and mesoscale systems that make
important contributions to the radiative balance of the earth's
atmosphere. They are currently under intensive study because
of the need to better understand their role in the potential
climate change induced by anthropogenic injections of
radiatively active gases into the atmosphere. Of particular
interest is the feedback response of ice clouds to global
warming. Because ice clouds are not blackbody radiators,
their radiative properties and feedback response will depend
on the size, shape, and concentration of the ice particles and
the dependence of these microphysical properties on cloud
ambient conditions.

Ice clouds are also interesting, open, nonlinear dynamical
systems on time scales associated with stable-layer gravity-
wave and turbulent motions. These dynamical motions are not
resolved by climate models and have not been explicitly
included in recent microphysical models of ice clouds. These
motions are important to understand in their own right,"and

a particularly relevant question for the climate impact of ice
clouds is whether or not these motions significantly influence
the radiatively important microphysical propertics of the
cloud,

In this paper, we utilize a simple truncated spectral model of
stable-layer turbulence coupled to a two-component Kessler-
type model (Kessler, 1969; Wacker, 1992) of the ice-particle
growth and removal processes in order to address both of
these issues. Comparison of the model with ice-cloud
measurements found in Palmer and Martner (1995) suggests
that the model captures some of the dynamics of ice-cloud
microphysics. The model results also suggest that the com-
mon practice of modeling the time-averaged microphysical
properties of an ice cloud separately from the turbulent
dynamics is probably an acceptable approximation.

2 Thermodynamics

The thermodynamics portion of the model is a simple
truncated spectral model known as the Burgers-Chao model
(Zheng and Liu, 1993). In this model both the velocity and
temperature fields in the one-dimensional Navier Stokes
equations are separated into a vertically averaged component
dependent only on time and a perturbed component dependent
on time and the vertical coordinate. An attractive feature of
this model js that aperiodic behavior is found for flow
parameters that are reasonable for turbulence in atmospheric
stable layers such as are found in ice clouds. In Zheng and
Liu (1993), the nonlinear dynamical properties of these
equations were examined for stable stratification conditions
and for a Prandtl number equal to unity. Fixed-point, limit-
cycle, and chaotic dynamical attractors were found to be
generated by these equations for values of the Reynolds
number and Richardson number that occur in the atmospheric
boundary layer. Recently, in an attempt to model the turbu-
lence dynamics in a weak stable layer within a marine stratus
cloud, these equations were expanded to include an arbitrary
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Prandt] number and liquid-water dynamical variables, with the
latter's contribution to latent heat transfer and buoyancy
{Palmer, 1995). We use an analogous set of equaticns for the
temperature and velocity fields here:

H
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where #is time; z is the vertical coordinate; U(f) and ©, (f) are
the vertically averaged horizontal velocity and ice-waler
potential temperature (Deardorff, 1976), respectively; and
w(z,1) and 8, (z,f) are the perturbed values of the vertical
velocity and ice-water potential temperature, respectively.
P is the pressure gradient force and O is the heat source, both
of which are necessary to maintain the initial values of U(z)
and @,(r). Pris the turbulent Prandt! number (henceforth,
Prandtl number will mean turbulent Prandtl number), v is the
eddy heat conductivity, H is the vertical scale of the model, v,
is the moist adiabatic lapse rate, L is the ice latent heat of
evaporation, ¢, is the atmosphere’s specific heat, and g is the
acceleration of gravity. In the buoyancy term, we have
assumed saturation conditions and have approximated the
background and perturbed virtual potential temperatures as
(Palmer, 1995)

<@, >~ <0> 5)

evueL*‘qus/cp’ (6)
where g, is the perturbed component of the suspended ice-

particle mixing ratio defined further below, p is the ambient
atmospheric density, and <> indicates the temporal average.

3 Microphysics

We choose a simple two-component Kessler-type model to
describe the ice-cloud microphysical processes. The two
components are a precipitating component and a suspended
component. A zero-dimensional mode! of this type applied to
water and mixed-phase clouds in the absence of advection was
examined by Wacker (1992). The model was shown to give
rise to both fixed-point and limit-cycle dynamical behavior for
a mixed-phase cloud (Wacker, 1992). Chaotic dynamics
corresponding to the turbulence behavior observed in radar

measurements of clouds cannot be reproduced by this two-
component model since a minimum of three nonlinearly
coupled degrees of freedom are required for a dynamical
system to exhibit chaos.

In order to treat the turbulent microphysics dynamics
observed in the ice-cloud radar reflectivitics, we simply
enlarge the zero-dimensional model used in Wacker (1992)
to a one-dimensional model using the same Burger-type
approximation as used above for the velocity and temperature
fields. With the assumption that only the suspended com-
ponent participates in the vertical transport, the dynamical
equations for the ice-particle mixing ratios become

dQ/dt = &,- bQ.(1) Q)P - Pri Q,(N/H?
H

- 1/H? f w(z, 1) q,(z.0) dz (M
0
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+ Priv d%g (z.0)/9z% - w(z,0) 9q,(z,1)/ 9z (8)
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where Q.(t) and g,(z,f) are the vertically averaged and
perturbed suspended component mixing ratios; Q,{(¢) is the
vertically averaged precipitating component mixing ratio; ¢,
and ¢, are the source rates for the suspended and precipitating
components, respectively; Pri is the turbulent Prandt] number
for ice-particle diffusion (ratic of suspended component
particle diffusion coefficient to thermal diffusion coefficient);
b is the coefficient of accretion; P is the exponent of accretion;
and 4 is the coefficient of sedimentation flux for the
precipitating particles (Wacker, 1992).

The above set of partial differential equations was converted
to ordinary differential equations, using the usual spectral
truncation with Dirichlet boundary conditions:

w(z,) = w () sin(nz/H) (10)
B, (z.1) = 8,(») sin(nz/H) - 0,(1) sin(2nz/H) (11
q,(z.t) = q,(9) sin(nz/H) - q,(#) sin(2wz/H) . (12)

After converting to dimensionless variables, these substitu-
tions result in the following set of ordinary differential
equations for nine spectral modes:
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where the dimensionless velocity and temperature variables
are defined as

x, = UlUy; U,= P HI(Prv) (22)
x, = w, /JP (23)
x,=0,/0,, 6,,=0HN (24)
%, = 0,/[vee P /P)] (25)
x5 = 6,/ [Prvi/(H%p)]. (26)

The over-dot indicates a derivative with respect to the
dimensionless time given by

T= (V/Hz)t 27
and
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where Re and Ri are the Reynolds number and Richardson
number for the model, respectively.

4 Model Comparison with Measurements

The first set of ice-cloud measurements that we use to
compare the model to is the set of radar vertical-velocity
measurements reported in Palmer and Martner (1995). In that
work, the turbulent motions of a winter ice cloud in Colorado
were measured with a 35-GHz Doppler radar. Vertical winds
were obtained in the cloud using a vertically pointing, fixed-
beam operating mode for the radar. The winds were sampled
at midlevel in the cloud once every 3 s during a 9.6-h period.
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This time series showed clear evidence of both turbulent
motions and a longer time-scale gravity wave with a period of
10 min. The turbulent motions were further characterized in
that work by computing the cotrelation dimension for the time
series, using a time-delay embedding method (Grassburger
and Procaccia, 1983). When correctly applied, computation
of the correlation dimension has been shown to be effective in
delineating the dynamics underlying the data (Tsonis et al.,
1994).

The parameters used for the model runs described below are
listed in Table 1. The first thing to notice in comparing the
model with the vertical motions observed by Palmer and
Martner (1995) is that the model will also produce both
gravity-wave motion and turbulent motion (Palmer, 1995;
Zheng and Liu, 1993). However, it is clear from the measure-
ments that the observed gravity-wave and turbulent motions
occur on different vertical scales, and the model has only a
single vertical scale. If the scale heights are disparate enough,
it is reasonable to simply add together two model-generated
time series for the two scale heights, and this was our
procedure in comparing the modeled and observed vertical
velocities. For the Japse rate and horizontal winds measured
in the ice cloud, the model was found to best repreduce the
observed gravity-wave period and velocity amplitude for a
scale height and Prandil number chosen near the values
H~1km and Pr~4. To best reproduce the observed properties
of the turbulent component of the vertical velocity, including
the value for the correlation dimension, a scale height and
Prandtl number of H ~ 30m and Pr~ 10 were needed.

Table 1. Parameter values used in model.

Parameter Values Used
U, 20 m s’
Yoi Ye 0.008°C m-1; 0.01°C m*
8, l 30°C
H 30m, 1km
Pr B j 10 (H=30m), 4 (H =1 k)
Pri ) Pr
v h 10m?s! (H=30m), 100 m?s* (H=1%m)
R1 ) 035 (H=30m), 0.5(H=1km)
b 1081 s (Wacker, 1992}
B 1.4 (W.;;ker, 1992)
d 13 1072 g1 (Wacker, 1992)
&, ' 1% 10% s
¢, - 1x10%—1x 108!
‘ 515 5, 0.3 mm; 1.5 mm -
B C Smm*m’ g l
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The autocovariance of the superposed modeled gravity-wave
and turbulent vertical-velocity time series is shown in Fig. 1.
This autocovariance looks qualitatively similar to the
autocovariance reported in Palmer and Martner (1995), which
is shown in the inset of Fig. 1. The principal differences can
be accounted for by nonstationary trends in the data, which we
do not attempt to model. The correlation dimension was also
computed for the modeled velocity time series using the same
time-delay embedding method as was used for the radar
measurements (Grassburger and Procaccia, 1983). Among the
criteria required for the correlation to be a reasonable estimate
of the dynamical attractor dimension is that a large number of
uncorrelated samples be used. In our computation of the
correlation dimension, we used 1000 points at a sampling
interval of 30 s for which the autocorrelation had dropped
below 1/e. The correlation dimensions for the model and for
the measurements are compared in Table 2,
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Fig. 1. Autocovariance of model-generated vertical velocity for a 1-km-scale
gravity-wave time series added to a model-generated 30-m-scale turbulence
time series. Inset shows the measured velocity autocovariance for an ice cloud
reported in Palmer and Martner (19953).

The autocovariance and correlation dimension of the radar
reflectivity time series for the ice cloud was also reported in
Palmer and Martner (1995). Within the context of the two-
component ice-particle model described above, the radar
reflectivity can be assumed to be proportional to a weighted
sum of the concentration of the two components, with the
largest weighting applied to the precipitating component. The
weighting factors were chosen to be proportional to the sixth
power of the size distribution weighting factors, 5, and s, used
below in order to correspond with the dependence of the
radar-scattering cross section on the sixth power of the
particle diameter in the Rayleigh scattering regime.

Table 2. Correlation dimensions for measured and modeled time series.

Measurements Model
Vertical velocity 32 318
Radar reflectivity 23 29

A time series for the modeled radar reflectivity was
generated by running the model under the same conditions
used to generate the turbulent vertical-velocity time series
discussed above. Unlike the measured velocity autocovari-
ance, the reflectivity autocovariance reported in Palmer and
Martner (1995) is not useful for model comparisons because
it is dominated by nonstationary time behavior, which is
beyond the scope of the model. However, the correlation
dimension computed for the measured-reflectivity time series
can be used for model comparison. The correlation
dimensions computed for the measured- and modeled-
reflectivity time series are compared in Table 2. The lower
correlation dimension for both the measured- and modeled-
reflectivity time series compared with that for the velocity
time series is explainable as a result of the relatively weak
coupling of the ice-particle concentrations with the velocity
dynamics (Palmer, 1995). This is an example of the
explanation put forward by Lorenz (1991) for the occurrence
of low-dimensional attractors found in some weather and
climate time series, wherein a fixed precision evaluation of the
correlation dimension will be lower for the more weakly
coupled variables. The fact that the correlation dimensions
for the measured time series are lower than those for the
corresponding modeled time series can probably be accounted
for by nonstationary trends in the measured data.

The final ice-cloud observational dataset that we use to
compare to the mode! is a plot of ice-cloud mean particle size
vs. ice-water content reported in Heymsfield (1977) for many
different ice-cloud systemns. This particle size distribution is
an important property of ice clouds in relation to their
radiative effects on climate. In particular, Stephens et al.
(1990} have shown that the particle size distribution in ice
clouds is important in determining not only their contribution
to the radiative balance of the atmosphere, but also their
feedback response to an increase of CO, concentration in the
atmosphere.

To compute the mean particle size and ice-water content
from the above model, we define these quantities as time-
averaged weighted sums of the two particle components:

size

(5,0, * 90+ 5,0,) /(Q.* 4,7 C,) (34)

(s, a)+530,)/c, (35

iwe



where 5, and s, are the weighting factors, and C is a
normalization factor. To generate a particle size distribution,
several time scries were generated for a range of values for the
small particle source rate, §,. The weighting factors, chosen
to achieve a best fit with the observation data, are listed in
Table 1. Figure 2 compares the computed mean particle size
as a function of mean ice-water concentration with
representative measurements taken from Heymsfield (1977).
The agreement with the measurements is reasonable
considering the restriction of the model to just two size
components.
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Fig. 2. Modeled mean particle size vs. ice-water content for various flow
regimes compared to representative measurements from Heymsfield (1977).
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5 Medel Predictions

If the validations presented above are accepted as evidence
that the model captures some of the basic dynamical behavior
of ice-cloud microphysics, then questions regarding the
dynamical interactions between the vertical motions and
accretion processes in the cloud can be addressed by the
model.  As an example, we may ask whether, within the
context of this simple model, changes in the vertical motion
regimes, e.g., turbulent (chaotic), gravity-wave (limit cycle),
or laminar flow (fixed point), will cause significant changes in
either the dynamical or time-averaged microphysical
properties of the ice cloud.

An example of an interesting dynamical interaction of this
type was found by examining the time behavior of the two
mixing ratios in a limit-cycle regime inherent in the zero-
dimensional model already discovered in Wacker (1992). In
this regime, a sensitivity to near-synchronous periodic forcing
by gravity-wave-induced transport might be expected. An
example of this behavior is presented in Fig. 3, which shows
Poincare sections of the dynamical attractor with the two
mixing ratios as coordinates. We see that the gravity-wave
transport of the suspended component has forced the limit-
cycle dynamics onto a chaotic attractor. This phenomenon is
analogous to the known transition to chaos that can occur in
periodic forced nonlinear oscillators (Tomila and Kai, 1978).

While the model shows that significant flow-induced changes
in the time behavior of the microphysical variables can occur,
such as in the above example, their time-averaged properties
were found not to be significantly altered by the various flow
regimes. As shown in Fig. 2, neither turbulent nor gravity-

Precipitating Mixing Ratio

(b)

1.00E-3

0.00E+0 : i ‘
2.00E-4 4.00E-4 6.00E-4 8.00E-4
Non-Precipitating Mixing ratio

0.C0E+D

Fig. 3. Modeled dynamical attractor Poincare section for ice-particle mixing ratios showing (a) limit-cycle behavior for laminar flow, and (b) chaotic behavior

for gravity-wave flow.
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wave motions cause significant changes in the modeled
mean particle size distribution curves. In generating the
curves in Fig. 2, care was taken to average only over the
structurally stable dynamical attractor, omitting transients.
Also, several vertical scales for the model were examined.
The vertical scale determines the ice-water content regime
where the time scales for the flow dynamics and particle
concentration dynamics are similar, and where one might
expect evidence of coupling to the flow dynamics to
appear. However, no significant dependence on this para-
meter was evident. The sharp upturn of the curve can be
traced to the Hopf bifurcation in the solution to the mixing
ratio equations already noted in Wacker (1992), and the
presence of both turbulence and gravity-wave motion is seen
to just smooth this transition slightly.

6 Conclusions

A simple truncated spectral model for temperature
and velocity fields coupled to a two-component model
for the ice-particle mixing ratios has been shown
to be consistent with ice-cloud observations. The observa-
tions included Doppler radar time-series measurements of
an ice cloud and mean particle size measurements as a
function of ice-water content for a large set of ice clouds.
Fitting of the model to the Doppler vertical-velocity
measurements allowed a prediction to be made of the
vertical scale and turbulent Prandtl number active in the
ice-cloud vertical motions. The model was also used to
explore the question of how turbulence and gravity-wave
motions affect the microphysical properties of an ice cloud.

The model predicts interesting dynamical effects on the
mixing ratios, but no significant effects on the parametric
behavior of time-averaged quantities. Further applications
of the model might include development of ice-cloud
parameterizations useful in climate models,

References

Deardorff, J.W., Usefulness of liquid-water potential temperature in a
shallow-cloud model, J. Appl. Meteor., 15, 98-102, 1976.

Grassburger, P. and Procaccia, 1., Characteristics of strange attractors, Phys.
Rev. Lent., 50, 346349, 1983.

Heymsfield, AJ., Precipitation development in stratiform ice clouds: A
microphysical and dynarmical study, J. Atmos. Sci., 34, 367-381, 1977.

Kessler, E., On the distribution and continuity of water substance in
atmospheric circulations, Meteor. Monogr., 10, 84-103, 1969,

Lorenz, E.N., Dimension of weather and climate attractors, Nature, 353,
241-244, 1991,

Palmer, A.J., Nonlinear dynamical analysis of turbulence in a stable cloud
layer, Chaos, 5, 311-316, 1995,

Palmer, A.J. and Martner, B.E., Radar measurements of turbulent dynamics
in an ice cloud, Proceedings, 27th Conf on Radar Meteoralogy,
9-13 Qctober 1993, Vail, Colorado, pp. 586-588, 1995.

Stephens, G.L., Tsay, B.E., Stackhouse, P.W_, Jr,, and Flatau, P.J., The
relevance of the microphysical and radiative properties of cirmus clouds
climate and climate feedback, J. Atmos. Sci., 47, 1742-1752, 1990.

Tomita, K. and Kai, T., Stroboscopic phase portrait and strange attractors,
Phys. Len., 66A, 91-93, 1978,

Tsonis, A.A., Triantafyllou, G.N., Elsner, J.B., Holdzkom, 1J., II, and
Kirwan, A.D., Ir., An investigation of the ability of nonlinear methods fo
infer dynamics from observables, Bull. Amer. Meteor. Soc., 75, 16231633,
1994,

Wacker, U., Structural stability in cloud physics using parameterized
microphysics, Beitr. Phys. Atmos., 65, 231-242, 1992.

Zheng, Z. and Liu, S., A nonlinear dynamical model for atmospheric
boundary layer turbulence, Chaos, 3, 303-312, 1993,



