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Abstract

A new data assimilation algorithm is applied to MIPAS and SBUV measurements of
stratospheric ozone. The results are validated against HALOE, POAM III, SAGE II and
III, OSIRIS and ozonesonde data. The new assimilation algorithm has the accuracy of
the Kalman smoother but is, for the systems studied here with up to 200 000 variables5

per time step and 61 million control variables in total, many orders of magnitude less
computationally expensive. The analysis produced minimises a single penalty function
evaluated over an analysis window of over one month. The cost of the analysis is
found to increase nearly linearly with the number of control variables. Compared with
850 profiles from Electrochemical Concentration Cell sondes at 29 sites the analysis10

is found to be merely 0.1% high at 420 K, rising to 0.4% at 650 K (813 sonde profiles).
Comparison against the other satellites imply that the bias remains small up to 1250 K
(38 km) and then increases to around −10% at 1650 K (44 km). Between 20 and 35 km
the root-mean-square difference relative to HALOE, SAGE II and III, and POAM is in
the 5 to 10% range, with larger discrepancies relative to other instruments. Outside15

this height range rms differences are generally larger, though agreement with HALOE
remains good up to 50 km.

1. Introduction

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument
on the ENVISAT satellite measured ozone profiles with near global coverage from July20

2002 to March 2004. Compared with the operational SBUV instruments, MIPAS has
improvements both in vertical resolution and in its ability to make both night and day
measurements. This paper assesses the quality of the MIPAS ozone observations, and
some global gridded fields derived from them, by comparison with independent obser-
vations from ozonesondes, SAGE II and III, POAM III, HALOE, OSIRIS and SBUV.25

The global gridded fields are generated by a new algorithm to solve the variational
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formulation of the problem. The new algorithm exploits all the information available in
a retrospective analysis. Many analyses are constructed using data assimilation sys-
tems which have been developed in an operational context (e.g. Bloom et al., 1996;
Lorenc, 1996; Courtier, 1997; Talagrand, 1997; Courtier et al., 1998; Rabier et al.,
1998; Jeuken et al., 1999; Khattatov et al., 2000; Chipperfield et al., 2002; Struthers5

et al., 2002; Serafy and Kelder, 2003; Eskes et al., 2003) designed to produce real-time
analyses. In this situation the information content in the analysis comes predominantly
from observation prior to the analysis time. The system used here, in contrast, makes
full use of observations after the analysis time, providing a significantly increased in-
formation input. Cohn et al. (1994) have discussed the advantages of making use of10

additional data, but found marginal benefit in their sub-optimal implementation.
The Generalised Inversion Method (GIM, e.g. Bennett et al., 1998) is closer to the

approach described below, in that it fits an extended series of observations without
heavy reliance on a background field. For linear systems the Generalised Inversion
Method gives the same solution as the Kalman Smoother, but it uses substantially less15

computational resources that the latter when dealing with systems with large numbers
of points in the spatial domain. The cost of GIM scales as the product of the num-
ber of observations times the number of control variables. This is much more efficient
than the Kalman Smoother for systems with large numbers of variables, and makes it
usable for interesting physical applications Bennett et al. (1998), but it is still (in its cur-20

rent formulation) substantially more expensive that currently implemented operational
systems.

Lyster et al. (1997) implemented a full Kalman filter with the same modelling con-
straint, isentropic advection, as used here. The cost of the Kalman filter method scales
with the square of the number of spatial mesh points. As with GIM, this makes the25

Kalman filter impractical for very large problems. Compared with this study, Lyster
et al. (1997) used lower resolution and their algorithm could not propagate information
back in time.

The large cost of optimal algorithms has led many authors to investigate sub-optimal
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systems, e.g. reverse domain filling trajectories (Dragani et al., 2002) or low order
modelling of the background error covariance (e.g. Riishøjgaard, 1998, 2000, 2001).

The method used is ‘direct’ in the sense that it uses neither a background field to
convey information between analysis segments, as used in the above cited works on
3 and 4D-VAR, nor representers to derive the impact of individual observations, as in5

GIM. The new method preserves the quasi-elliptic nature of the problem which follows
naturally from its specification in terms of a minimisation.

2. Methodology and data

2.1. Background

Figure 1 shows results of an assimilation run at approximately 1/2 degree resolution10

(768 points around the equator). The positions of MIPAS measurements occurring
with 2 h of the time shown are marked as coloured crosses, and those occurring within
2 to 6 h are shown as black crosses. There is clearly more information in the field
than could be obtained from simple interpolation of the observations. It will be shown
below that observations from several days either side of the displayed field contribute15

information. This is possible through use of physical knowledge in the form of the
advection equation which describes the evolution of ozone on these timescales, at this
height, to good approximation.

This section describes the mathematical and computational formulation that created
this analysis, and then the following section will describe its validation against indepen-20

dent observations.

2.2. The weak physical constraint

The observations are constrained by assuming they satisfy, within error bars, an isen-
tropic advection equation (that is, quasi-horizontal advection on surfaces of constant
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potential temperature):

M [χ ] ≡ χt + u · ∇χ = ε, (1)

where χ is the ozone mixing ratio, ε is a random process with spatial and temporal
correlation scales smaller than the numerical discretization, and u is the horizontal
wind taken from the ECMWF operational analyses (see Table 3 in Appendix A for full5

reference). That is:

E
[
ε(λ,φ, t)ε(λ0, φ0, t0)

]
= σ2

apfap(λ,φ, t; λ0, φ0, t0) (2)

where the structure function fap is normalised so that∫ ∫ ∫
fap(λ,φ, t; λ0, φ0, t0) cos(φ)dφdλdt = 1, (3)

and assumed to be localised:10

fap(λ,φ, t; λ0, φ0, t0) � 1 (4)

if |t − t0| > τap

or (φ −φ0)2 + cos(φ)2(λ − λ0)2 > lap,

for constants τap and lap.
Note that the definition of M here includes the time derivative and acts on the full15

field of χ (λ,φ, t) values for the whole time window of the analysis. M in Eq. (1) will be
referred to as the “process model”, to distinguish it from error and observing models.

Equation (1) should contain both vertical advection and chemical sources and sinks,
but here these are considered as unknowns and modeled with the random term, ε.
In most treatments in the meteorological literature some conceptual simplification is20

gained by discretising the problem at this stage and representing M by a matrix. How-
ever, keeping the analytic form allows the structure which emerges below to be ex-
ploited in the choice of discretization.
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If ε is a random process and if the errors in the observations can also be represented
by random terms, the Bayesian formulation can be used to construct a joint likelihood
density function (LDF) for the structure of the fields given the observations. The LDF
can be expressed as the exponential of minus a penalty function so that the minimum
of the penalty function corresponds to the maximum of the likelihood density. Appendix5

B shows how the inverse of the noise auto-correlation function can be constructed for a
representative class of such functions, and shows that the inverse can be approximated
by a constant if the length scale of the analysis field is large compared to the auto-
correlation length scale of ε. This will be assumed to be the case here.

Here the penalty function implied by the observations and Eq. (1) is augmented by10

smoothing terms:

J =
∑
i

σ−2
obs:i

[
χobs:i − χ (λobs:i , φobs:i , tobs:i )

]2

+
∫ ∫ {

wap [χt + u · ∇χ ]2

+ wnum

∣∣∣∣∣
(
c1
∂
∂t
,∇
)(

c2
1

∂2χ

∂t2
+ ∇2χ

)∣∣∣∣∣
2 }

dAdt (5)

The smoothing term, prefixed by wnum, imposes regularity near observations. c1 is a15

constant determining the ratio between spatial and temporal smoothing. Here c1=0.5
days per radian is used. The scalar weighting coefficient wap would ideally be derived
from the covariance of a random process model error. As the latter is generally not
random, value of wap will be determined empirically.

Applying the calculus of variations to the penalty function in Eq. (5) shows that it20

is minimised with respect to χ (θ,φ, t) when that field satisfies the following analysis
equation:

A [χ ] ≡ Aobs +Aap +Anum = S (6)
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where

Aobs =
∑
i

χ (λobs:i , φobs:i , tobs:i )

σ2
obs:i

×

δ(t − tobs:i )δ(λ − λobs:i )δ(φ −φobs:i ), (7a)

Aap = wap

(
−D

2χ

Dt2

)
, (7b)

Anum = −wnum

(
c2

1

∂2

∂t2
+ ∇2

)3

χ, (7c)
5

S =
∑
i

χi
σ2

obs:i

δ(t − ti )δ(λ − λi )δ(φ −φi ).

The boundary conditions at the start and end times (tstart and tend, respectively) are:

Dχ
Dt
,
∂
∂t

(
c2

1

∂2

∂t2
+ ∇2

)n

χ ≡ 0, (8)

for t = tstart, tend, and n = 1,2.

Equations (6) and (7) can also be derived by forming the Euler-Lagrange equations10

from (1) (e.g. Bennett, 1992) and then eliminating the Lagrange multiplier. The relax-
ation algorithm described below cannot be applied to the Euler-Lagrange equations
themselves because of the intrinsic non-localness in those equations. A small forc-
ing applied to either equation will generally produce a global response because the
equations are hyperbolic in nature.15

From Eqs. (6–8) it follows, by integrating over the globe and over the analysis time
window, that∑
i

χi − χ (λobs:i , φobs:i , tobs:i )

σ2
obs:i

= 0, (9)
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that is, the analysis is unbiased with respect to the observations. This also means that
any bias in the observations is present, without modification, in the analysis. Equa-
tion (9) gives a simple relation between the analysis averaged over the observation
points and the observations. Unfortunately, there is no simple expression relating the
observations to the global mean of the analysis: the latter will also depend on the5

distribution of observations in a non-trivial way.
In this formulation the satellite observations are treated as point measurements, as

is standard practice. If the spatial averaging kernel of the instrument were taken into
account the observation term would contain a convolution with this averaging kernel
rather than the delta functions in Eq. (7). If the averaging kernel is smaller than the grid10

size, the two approaches become identical after discretization. At the highest resolution
described below the analysis should be capable of partially resolving the line of sight
averaging of the limb viewing instruments. This issue is not addressed here as the
focus will be on dealing with the constraint provided by the process model (Eq. 1).

Since Eqs. (6) and (7) describes an optimal solution for given error statistics, it follows15

that the solution is equal to the solution of the Kalman smoother (e.g. Rodgers, 2000),
apart from differences in the discretization which may be appropriate for the predictive
equations used in the standard Kalman Smoother algorithm as opposed to the quasi-
elliptic equation solved here.

2.3. Discretisation20

The spatial mesh used is a latitude-longitude grid which thins towards the pole so
that the longitudinal spacing does not decrease too drastically. It is described in more
detail in Appendix C. This grid preserves some of the simplicity of the latitude-longitude
grid but avoids the convergence of points at the poles which can create numerical
conditioning problems (e.g. Thuburn and Li, 2000, and references therein). In the25

calculations described below the longitudinal spacing at the equator is equal to the
latitudinal spacing. Five different resolutions will be employed having 12×2Ngrid points
around the equator for Ngrid=3 to 7. More details are listed in Table 1 below.
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The solution method is a a multi-grid relaxation algorithm described in Appendices D
and E. This is an iterative method, and the cost of each iteration is proportional to the
number of control variables. The number of iterations appears to be independent of
the resolution, so that the net cost of the solution algorithm increases only linearly with
the problem size.5

The second order time derivative is discretised using the standard 3-point formula.
The algorithm does not require the integration of any first order time derivatives, so
the usual problems of numerical stability found with forecast and adjoint models do not
arise here.

The Lagrangian derivative is evaluated using a semi-Lagrangian scheme with an10

implicit definition of the parcel displacements:

D2χ

Dt2
def
=
χ (xm, tm) − 2χ (x, t) + χ (xp, tp)

∆t2
(10)

x − xm =
∆t
2

[u(x, t) + u(xm, tm)] (11)

xp − x =
∆t
2

[
u(xp, tp) + u(x, t)

]
, (12)

where tp=t+∆t, tm=t−∆t, and xp and xm are the estimated positions at times tp and15

tm, respectively, of a parcel which is at position x at time t. The wind fields are taken
from the ECMWF operational analyses. The assimilation time step used here is 4 h,
using winds interpolated linearly between the 6 hourly ECMWF analyses. Reducing
the assimilation time step was not found to have any significant effect, but the effect
of wind variability not resolved in the operational analyses could not be tested. The20

spatial interpolation required in Eqs. (10–12) is done with cubic splines for χ and linear
interpolation for u.
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2.4. The smoothing term

The smoothing term ensures that the problem has a unique solution. The dynamical
penalty will be zero for any field satisfying Dχ/Dt=0. Since there are an uncountable
infinity of such fields and only a finite number of observations, it is clear that the we
will in general have an infinite number of solutions which fit all the observations and5

have zero dynamical penalty. These solutions are such that the value on any trajec-
tory intersecting an observations is given by that observation. In the absence of any
additional information the value on trajectories which do not intersect observations is
undetermined.

The form of the smoothing term used is constrained by consideration of the structure10

of the solution near the observations. This structure is determined by a balance be-
tween the δ-function forcing and the highest derivatives in the equation (because the
δ-function forcing generates small scales, and with small scales the higher derivatives
have the largest magnitude). The highest derivatives here are, by construction, homo-
geneous in space and time when time is scaled by c1. Let r2=∆φ2+cosφ2δλ2+c−2

1 ∆t215

be the space-time distance from an observation. The solution near the observation is
then

r3

4π
[χ (λi , φi , ti ) − χi ] + a1r

2 + a2

where a1 and a2 are constants determined by the larger scale solution. If the smooth-
ing term in the analysis equation were 4th order, then the leading order term near the20

observations would be proportional to r . This would imply a singularity in the gradi-
ent at each observation. Having a 6th order term guarantees a sufficient degree of
smoothness of the solution in the vicinity of the observations so that all the derivatives
in the physically motivated a priori constraint can be accurately evaluated.

The solution method described in Appendices D and E requires increasing numbers25

of ancillary variables as the order of the equation is increased. In order to keep the
computational cost down it is desirable to use the smallest suitable value, which is 6th
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order.

2.5. Experimental setup

The main results will be presented at a resolution of 1.875o. The dynamical and nu-
merical weighting will be non-dimensionalised by a rate constants c2=0.4 ppmv/day
and c3=0.2 ppmv/radian, respectively, with5

wap = w∗
apc

−2
2 (13)

wnum = w∗
numc

−6
3 (14)

The results discussed below use w∗
ap=8 and w∗

num=0.1×2−6Ngrid unless otherwise
stated, where Ngrid is the number of levels in the multigrid hierarchy (Ngrid=5 for the
resolution of 1.875◦).10

Convergence is expressed in terms of a tolerance, Tconv = 0.005 unless otherwise
stated. The iteration is stopped when: (i) the mean square residual in the assimilation
equation is less then Tconv times the mean square solution, (ii) the fractional changes,
over 3 iterations, in the a priori, numerical and observational components of the cost
function are less than 2, 5 and 2 times Tconv, respectively.15

2.6. Analysis time windows

The 6 month period discussed here is broken up into 6 overlapping segments, and
a separate minimisation carried out for each segment. The six time periods: (1) 25
January to 12 March, (2) 25 February to 12 April, (3) 25 March to 12 May, (4) 25 April
to 20 June, (5) 25 May to 12 July and (6) 25 June to 12 August, all in 2003. At points20

well away from the ends of the time windows the analysis benefits from information
of both future and past observations. Near the ends of the time windows this is no
longer the case and we can expect some loss of accuracy as a result. The differences
between the analyses in the overlap period will be used below to assess the amplitude
of the random error in the analysis.25
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The loss of accuracy at the ends of the time segment could be avoided by using a
more sophisticated boundary condition at the end point, but this would require handling
a large error covariance matrix. Here the period near the end of the assimilation is used
only for quality control. In the forecast situation neither of these latter two options is
available: we must simply accept that the error in a real-time assimilation will be larger5

than in a retrospective one.

3. Results

3.1. Hemispheric fields

The MIPAS and SBUV datasets provide near global coverage (the MIPAS dataset has
a number of gaps in it and SBUV only measures in the daylight hemisphere), so both10

can be used to generate global analyses.
Figure 2 shows fields for 00:00 GMT, 10 July 2003, for analyses of MIPAS and SBUV

data. This is a period when a wave-breaking event is pulling a streamer of polar vortex
air into mid-latitudes. These plots are taken from assimilations at 1.875◦ resolution.
The MIPAS analysis shows greater detail: the streamer stretching over Australia, for15

instance, is not a coherent structure in the SBUV analysis.
Another interesting feature seen in the MIPAS analysis is the ring of low ozone value

immediately inside the vortex edge. The physical interpretation of this feature will be
discussed elsewhere using a longer study period to cover at least a full annual cycle.

Comparing Fig. 1 with Fig. 2a, it appears that the fourfold increase in spatial reso-20

lution used in Fig. 1 has not had a major impact, though there are some small scale
features in Fig. 1 which are not resolved in Fig. 2. This point is reinforced below with a
quantitative evaluation against independent measurements.
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3.2. Random error

We expect there to be a loss of accuracy near the end of the analysis time windows.
This can be assessed by looking at the the difference between two overlapping assimi-
lations. Figure 3 shows the logarithm of the RMS difference between the June and July
segments:5

E (t) =

√
1

4π

∫ (
χ (5) − χ (6)

)2 dA, (15)

where the superscripts (5) and (6) refer to the analysis time segment listed in Sect. 2.6.
In the central region the difference levels out at around 0.05 ppmv. This level appears
to be related to the convergence criteria used to determine when to stop the iteration
towards a solution of Eqs. (6) and (7).10

The dashed lines in Fig. 3 show results from experiments using different values of
wap. A larger weighting causes information to persist in the assimilation for longer, and
hence the loss of accuracy at the ends of the assimilation window persist for longer.

At the ends of the overlap period we see a near exponential increase in E. The
differences at the ends of the analysis windows (around 0.22 ppmv and 0.14 ppmv on15

25 June and 12 July respectively) reflect the difference in accuracy between the Kalman
Filter and the Kalman Smoother. The e-folding timescale for information persistence
is shown by Fig. 2 to be around 2 to 3 days, depending on the magnitude of wap.
This means that the information input to an analysis at any time, t0 say, comes from a
period of 4 to 6 days, and the impact of observations within the same time step as t020

is relatively small. Consequently, the information content of the Kalman Smoother will
be close to twice that of the Kalman Filter. In other words, the error variance at the end
of the assimilation window will be twice that in the centre. This allows us to make a
heuristic estimate of the random error in the assimilation: Let KF , KS and BF be the
solutions of the Kalman Filter, Kalman Smoother and Backward (or reverse) Kalman25

Filter respectively. If the impact of observations shared by the forward and backward
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filters is neglected:

(KF − KS)2 =
[

1
2

(BF − KF )
]2

(16)

=
1
2
σ2
KF = σ2

KS , (17)

where σ2 is the random error variance and the overbar denotes a global mean. This
suggests that the random error of the assimilation, away from the ends of the assimila-5

tion window, is around 0.23 ppmv. This value is consistent with the differences between
the analyses and independent observations evaluated below. Figure 3 does not give
any indication of possible systematic errors: a bias in the MIPAS measurements, for
instance, would lead to a common error in the two assimilation segments which would
have no impact on the difference shown in Fig. 3. Independent observations will be10

used below to assess the systematic errors and give a second estimate of the random
errors.

3.3. Numerical cost of the method

Solving the Laplace equation with a multigrid relaxation algorithm is known to have a
numerical cost that scales with N, where N is the number of variables in the solution.15

Table 1 shows how the numerical cost of solving the analysis Eq. (7d) varies with
resolution using the current algorithm. The computations have been carried out on
a single 2 GHz processor. To provide a means of comparing with results on different
platforms, the cost is also presented in terms of the number of CPU cycles per control
variable. The software is still at an early stage of development with many optimisation20

issues yet to be explored, so there is potential for improvement on the absolute values
of these costs. The most important result at this stage is the ability of the algorithm to
deliver near linear dependence of cost on problem size, hence making it a promising
candidate for significantly larger data assimilation problems.
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3.4. Validation against ozonesondes

Table 2 lists the biasses and variances of the differences between the different types of
sondes and the MIPAS assimilation:

Binst = N
−1
inst

∑
(χinst − χ ) , (18a)

Vinst =
{
N−1

inst

∑
(χinst − χ − Binst)

2
}1/2

, (18b)5

where the subscript “inst” refers to the instrument used, the sum is taken over all ob-
servations at each level, Ninst is the number of observations in the sum. All the sonde
data is taken from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC)
website (see Appendix A for details), the complete list of the 37 stations used is in
Appendix B.10

Smit and Kley (1998) describe an extensive intercomparison between different types
of sondes. They conclude that the ECC sonde is the most precise. The table shows
systematic differences between the analysis and this sonde well below 1% between
420 K and 650 K, averaged over a total of over 800 sonde profiles.

The Indian sondes give anomalously large differences, reading less than half the15

mixing ratio of the MIPAS analysis at 420 K. In the following diagrams, measurements
from these sondes have been omitted.

The comparison with ozonesondes is in line with the results of Migliorini et al. (2004),
who found negligible biases in a sample of 30 near coincident measurements, and
a difference variance of around 0.35 ppmv. Here, the rms difference from the ECC20

sondes, averaged over the 3 lowest levels, is 0.3 ppmv. The differences are greater at
850 K, but the comparison with other satellite instruments (below) suggests that this is
due to loss of accuracy in the sondes rather than in the analysis.

Figure 5 below also shows comparisons against ozone sonde profiles which have
been vertically smoothed over 2 km. This does not affect the bias, but it can be seen25

that it makes a significant reduction in the variance, implying that some of the disagree-
ment between sondes and analysis is due to the lower vertical resolution in the latter.
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A more accurate method of dealing with this problem is described in Migliorini et al.
(2004).

3.5. Validation against other satellite measurements

The scope of stratospheric observations is steadily increasing. This paper analyses
ozone measurements from 7 satellite instruments: MIPAS (Tsidu et al., 2003), SBUV5

(Planet et al., 2001) SAGE II and III (Thomason and Taha, 2003), POAM III (Lumpe
et al., 2003; Pierce et al., 2003), OSIRIS (von Savigny et al., 2003), and HALOE (Brühl
et al., 1996). The use of a wide range of instruments provides insight, in some in-
stances, into the source of discrepancies when a single instrument departs from the
majority. Brief details of the instruments are given in Appendix A.10

Figure 4 shows a sample comparison for July 2003, at 500 K and 850 K. For SBUV
and OSIRIS the observations, measurement minus MIPAS analysis, evaluated at each
profile location are averaged in 5◦ latitudinal bins and plotted as a solid purple and
green lines, respectively, with dashed lines showing plus and minus one standard devi-
ation. For the other measurements a symbol is plotted, as detailed in the figure caption,15

for each measurement. There is little systematic variation of the residuals with latitude.
The SBUV measurements show a low bias at 850 K and a high bias at 500 K.

Figure 5 shows the the means and variance of the residuals averaged over the 6
month assimilation period, February–July, 2003. Below 35 km the assimilation has
little bias relative to the ozonesondes (up to 30 km), HALOE, POAM III, or SAGE II.20

SAGE III measures slightly higher than the assimilation, SBUV is substantially higher,
especially in the mid to upper stratosphere. The OSIRIS measurements show a large
height dependent bias.

The bias in the SBUV measurements may be due to low vertical resolution: as the
ozone number density has a concave profile in the mid and upper stratosphere a pos-25

itive bias would be an expected consequence of vertical averaging associated with
broad weighting functions.

Between 35 km and 50 km it appears that MIPAS is measuring low relative to all the
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other instruments. In this region the difference between HALOE and MIPAS is sub-
stantially smaller than the difference with respect to other instruments. As HALOE
and MIPAS both rely on infra-red measurements, while SAGE, POAM and SBUV ex-
ploit ultra-violet radiation, this may point to a problem with the underlying spectroscopy.
These results do not, however, give any indication as to whether the UV or IR instru-5

ments are more reliable.
Figures 6 and 7 show some analogous plots created without any data assimilation.

Instead, differences between nearby measurements have been evaluated. Pairs of
measurements are included in the comparison if they fall within 6 h and 2.5 great circle
degrees of each other. This constraint means that there are far fewer data points, but10

still enough. The same pattern of differences emerges, showing that the systematic
differences seen in Fig. 5 are not generated by the assimilation system. The differences
are generally larger in the “nearest neighbour” plots, showing that the gridded fields
bring significant added value.

Two factors could account for this: firstly, the assimilation accounts for the spatial15

and temporal variation of the ozone field. This should improve the intercomparison,
provided that the variations are represented with sufficient accuracy. Secondly, the
value of the assimilation at any point is a weighted average of many MIPAS observa-
tions. This could lead to a reduction in the random error.

Figure 4a also gives an indication of the biases between the other instruments.20

These results are in line with Danilin et al. (2002), who show HALOE ozone mea-
surements to be around 4% systematically lower than SAGE II.

At 30 km there is a cluster of instruments with Vinst≈0.35 ppmv. If this difference is
equally partitioned between the assimilation and the verifying instruments, and if these
differences are assumed to be indpendent, this implies a random error in the analysis,25

at this height, of 0.25 ppmv, which is very close to the estimate (0.23 ppmv) derived in
Sect. 2 from overlapping analyses.
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3.6. Dependence on resolution

Comparison of Figs. 1 and 2a suggest that there is little change in the analysis when
the resolution is changed from 0.47◦ resolution to 1.875◦. The higher resolution does
capture some extra small scale features, such as small filaments coming off the vortex
at around 10E and 50E and a thin strip of intermediate valued ozone between the5

vortex edge and the extended filament which is “reconnecting” with the vortex at 130E.
A quantitative evaluation is shown in Fig. 8, with resolutions varying from 7.5◦ down

to 0.47◦. The root-mean-square departure from observations is plotted, using the 850 K
analyses and the entire 6 month study period.

There is a clear improvement betweenNeq=48 and 96, and a small but still significant10

improvement when the resolution is increased again to 192. After that point, however,
there is no significant gain in accuracy as measured by the Vinst validation statistic.

This invariance to changes in resolution also shows that the smoothing term is not
having a major influence on the solution for Neq≥192. The coefficient of the smoothing
term varies as the 6th power of the resolution, so there is a reduction by a factor of15

46=4096 in the amplitude of this term between the Neq=192 and the Neq=768 analy-
ses.

3.7. Dependence on weighting of the process model

Figure 9 shows how Vinst varies as the weighting of the process model, wap is varied.
There is remarkably little sensitivity over a wide range of values.20

It may be tempting to think of the process model term in the cost function as be-
ing “like” the background term in the widely used strong constraint version of 4D-VAR
formulated by Talagrand (1997). In the latter, the cost function consists of two terms,
the non-observation term being a background term. Thus, in so far as it is a non-
observation term, the process model term here is “like” the background term. How-25

ever, unlike the background term used in 4D-VAR, the process model term here does
not involve any empirical correlation structures. A further important point, which may
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explain the insensitivity of the results to wap, is that the process model term has a large
null space: that is, there is a large family of solutions of Dχ/Dt=0 for which Aap≡0.
Increasing wap will move the analysis closer to the null space of Aap. However, this
might not be a very large change in absolute terms if the distance between χ and that
null space is already small. With the standard form of 4D-VAR the background term5

has no null space – it can specify the solution completely. If the weighting of this term
is increased the contribution of the observations will eventually become insignificant.
This cannot happen here, there will always be a significant input of information from
the observations, no matter how large wap is made. It is, however, found that, with the
present iteration algorithm, increasing wap slows the convergence.10

4. Conclusions

The direct inversion method for data assimilation, which applies the evolution equa-
tions as a weak constraint, has been demonstrated to work for isentropic analyses of
stratospheric tracers. In the context of global geophysical data sets, this is a moder-
ate sized system: much smaller than operational meteorological analysis systems but15

large enough for some of the problems of associated with large systems to be relevant.
For the Kalman filter, for example, the cost scales with the square of the number of
control variables held at each time level. With the present method the cost is nearer to
being linearly dependent on the number of control variables.

The efficiency of the algorithm makes it possible to increase the spatial resolution to20

the point were the solution becomes essentially independent of the resolution.
The resulting analyses have been compared with radiosondes and a wide range of

other satellite instruments. The bias relative to the ECC sonde data is extremely small,
less than 0.5% below 650 K. Agreement with HALOE, SAGE II, POAM III and SAGE III
lunar occultation retrievals is good up to around 40 km. Above that height the MIPAS25

analysis develops a significant negative bias. SAGE III measures high relative to the
analysis throughout the stratosphere, as does SBUV above 25 km.
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The random error estimates of 0.23 ppmv (about 4%) at 850 K derived from com-
parison of overlapping analysis periods in Sect. 3.2 are consistent with the variance of
differences from other instruments. This is closer than agreement found by analysing
close-located profiles from other instruments, demonstrating the added value gained
by imposing the isentropic advection constraint on the observations to construct the5

analysis.
The typical e-folding time for the decay of influence of an observation in the analysis

is found to be 2.5 days. This time-scale depends on the assumed skill of the model, as
reflected in the weighting given to the model constraint in the analysis.

The gridded ozone fields produced in this study are available from http://home.badc.10

rl.ac.uk/mjuckes/mista/ as Netcdf files (CF compliant).

Appendix A: the instruments

There are three main classes of instruments in this study. Four occultation instru-
ments (HALOE, POAM III, SAGE II and III) measure the absorption of solar radiation
by viewing the sun through the atmospheric limb as the satellite moves into and out15

of darkness. This gives good vertical resolution and accurate results, but is restricted
to around 28 profiles per day. This is not enough to represent the spatial structure in
the fields. Two instruments measure scattered solar radiation. SBUV is nadir viewing,
measuring backscattered UV. This provides good spatial coverage in the sunlit hemi-
sphere, but the vertical resolution is poor. Osiris measures limb scattered UV, giving20

better vertical resolution, but the precision is poor. Lastly, MIPAS measures the emitted
infrared spectrum with limb viewing geometry. This provides global coverage, day and
night. The vertical resolution is moderate, better than the nadir viewing instruments but
not as good as that achieved by the occultation instruments

SAGE III data were obtained from the NASA Langley Research Center EOSDIS25

Distributed Active Archive Center. A few details of the instruments are listed in Table 3,
together with the websites which contain further information and access to the data.
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The ozonesonde data used comprises profiles from 37 stations. WOUDC is one of
five World Data Centres which are part of the Global Atmosphere Watch programme of
the World Meteorological Organization. The WOUDC is operated by the Experimental
Studies Division of the Meteorological Service of Canada.

Appendix B: Noise correlation structure functions and their inverses5

This appendix derives the form of the process model error covariance used in the
analysis equation. If the problem is discretised, the steps below would be essentially
trivial, amounting to no more than assuming that the process model error covariance
is diagonal under the assumed discretization. In the present work it is advantageous
to delay the discretization of the problem, so the equivalent steps must be worked10

through in the continuous form of the problem. This does not produce any surprises,
but it helps to clarify the relation between the continuous noise process in Eq. (1) and
the discretised form.

The correlation structure is first approximated by a simple analytic form which can
be inverted, in the sense described below. The inverse can then be used to construct15

the Bayesian likelihood distribution function.
The Bayesian expression for the joint likelihood function is made up of terms contain-

ing the inverses of error covariances. Here, the error covariance has been expressed
as a continuous function, fap, rather than as a matrix. The inverse of the function may
then be expressed as a differential operator with the property that:20

L
[
fap
]
= cos−1(φ)δ(t − t0)δ(λ − λ0)δ(φ −φ0).

As the spherical geometry introduces some algebraic complexity which is not rele-
vant here, the rest of this appendix will deal with Cartesian geometry. Let

τ = c1t

8899

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/8879/acpd-5-8879_p.pdf
http://www.atmos-chem-phys.org/acpd/5/8879/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 8879–8923, 2005

Direct inversion

M. N. Juckes

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

and suppose that the covariance structure function depends only on the space-time
distance between two points given by:

r2 = (x − x0)2 + (y − y0)2 + (τ − τ0)2.

The Bayesian formulation requires the inverse of the error covariance. In the contin-
uous representation the inverse should be interpreted as an operator which produces5

a delta function when applied to the covariance function. The following three equations
present families of operators and associated functions with this property.

F1 =
1

4πrl2ap

exp

(
−r
lap

)
;
(

1 − l2ap∇2
∗

)
F1 = δ∗, (B1a)

F2 =
1

8πl3ap

exp

(
−r
lap

)
;
(

1 − l2ap∇2
∗

)2
F2 = δ∗, (B1b)

F3 =
lap + r

32πl4ap

exp

(
−r
lap

)
;
(

1 − l2ap∇2
∗

)3
F3 = δ∗, (B1c)

10

where

∇2
∗ =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂τ2

δ∗ = δ(x − x0)δ(y − y0)δ(τ − τ0),

and lap is a correlation length scale. In Eq. (B1a) the differential operator is a Laplacian,
but the corresponding structure function is unbounded as r→0. Equation (B1b) uses15

a higher order Laplacian and the corresponding structure function is finite at the r→0,
but has a discontinuity in the gradient. Higher order operators can be used (Eq. B1c)
to generate functions with more smoothness: here a continuous gradient at r=0.
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If

fap = σ2
apF2,

then the inverse error covariance has the form:

C−1
ap = σ−2

ap

(
−l2ap∇2

3 + 1
)2
.

In order to arrive at the analysis equation which will be solved it is now assumed that5

lap � lfd,

where lfd is the minimum spacing of the discretization grid. With this assumption the
inverse error covariance can be approximated:

C−1
ap ≈ σ−2

ap .

Note that the variance of the model error is fap(0)=σ2
ap/(8πl3ap). The above calculation10

shows that, under the assumption that lap is small compared to the grid spacing, the

value of the variance needed in the discretised equations is σ2
ap. This is equal to the

volume integral of the error covariance structure function.

Appendix C: The binary-thinned latitude-longitude spherical grid

The spherical grid used here is a compromise between the convenience of a simple15

latitude longitude grid and the efficiency of grids with near uniform node distributions.
The nodes lie on a set of equidistant latitudes, including both poles and the equator.
The grid is defined by five parameters listed in Table 5.

The number of latitudes, including both poles, is (Nlat0 − 1)×2Ngrid−1 + 1, and they
are equi-spaced. The number of grid points around the equator is Neq=Neq0×2Ngrid−1.20

Moving polewards from the equator, the number of nodes around a latitude circle is
halved every time the node spacing falls below γref times the node spacing at the
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equator. The thinning stops before the number of points falls below Nlon min. It can be
shown that each finer grid includes all the points of the coarser grids in the hierarchy.

Grid sophistication can be measured by the ratio of the maximum to minimum node
spacing, γmesh. Thuburn and Li (2000) and references therein achieve a value of near
the optimal value of unity. A simple latitude/longitude grid, on the other hand, has5

γmesh≈Nlat, which grows as the resolution increases. The present method has γmesh=2.
The European Centre uses a thinning algorithm which keeps the longitudinal grid spac-
ing as close as possible to the equatorial value. This gives γmesh≈1, but nodes do not
line up meridionally, so that the grid is not suitable for finite difference applications. Hav-
ing a high value of γmesh is inefficient, because accuracy is limited by the largest grid10

spacing and having more densely packed nodes at the poles adds to computational
cost without contributing to improved accuracy. The indirect effects of the inhomoge-
neous grid spacing are generally more significant than the direct effects of having more
nodes than necessary. With γmesh=2 the inhomogeneity introduced by the mesh is less
than the inhomogeneity in typical satellite observations, where the ratio of along track15

to across track observational spacing may be a factor of 20. This suggests that the
mesh defined above will be sufficiently homogeneous for present purposes.

A key factor in the implementation of the multigrid algorithm is the consistency of the
transformation between mesh refinements with the discretization of the Laplacian. It
is easily shown that

∫
∇2ψdA=0, for any field ψ , where the integral is taken over the20

surface of the sphere. Once a finite difference representation of ∇2 has been chosen,
the representation of integrals should be chosen to respect the above constraint. This
constrains the choice of weights given to each node. This may imply, for instance,
using cos(θ − dθ/2) − cos(θ + dθ/2) instead of dθ sinθ. The two expressions give
the same formal accuracy, but the first also satisfies the integral condition exactly. It25

has been found that using such weights in the mesh refinement process leads to an
efficient multigrid algorithm, whereas using weights with the same formal accuracy but
not satisfying the integral condition slows convergence substantially.
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Appendix D: The relaxation algorithm

The relaxation algorithm is a standard iterative solution method for second order ellip-
tical partial differential equations. In its simplest form, if A is the discretization of the
analysis equation and S the source term, the iteration is defined by:

Au(k) − S = r (k), (D1)5

u(k+1) = u(k) − A−1
diagr

(k), (D2)

where Adiag is the diagonal matrix obtained by setting the off-diagonal components
of A to zero. The (k) superscript here denotes the kth approximation in an iterative
approach to the solution. If A is diagonally dominant (that is, if every diagonal term is
greater than the sum of absolute values of off diagonal terms in the corresponding row)10

it can be shown that |r (k)|→0 as k increases. Unfortunately, this condition cannot be
fulfilled by any discretization of the high order smoothing term in the analysis equations
being solved here.

To overcome this problem the differential equation is split into a multi-component
system. Auxiliary variables u(m:k)

a , m=0,1,2, are introduced such that15 ρ + wapAap 0 −wnum∇
2

−∇2 1 0
0 −∇2 1

u(0:k)
a

u(1:k)
a

u(2:k)
a

 =

 r (0:k) + src
r (1:k)

r (2:k)

 , (D3)

where r (m:k) is an analysis residual and the superscript now includes both the index of
the auxilliary variables and of the iteration number. u(0:k)

a ≡u(k). The source term is

src =
∑
i

uobs:iδ(x − x(obs)
i )δ(y − y (obs)

i ).

and the observation density is ρ=wobs
∑
i δ(x − x(obs)

i )δ(y − y (obs)
i ).20
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The aim is to construct an iteration such that r (.:k)→0 as k→∞ and hence u(0:k)
a →ua

and u(1:k)
a →∇2ua. This is done by defining an adjustment a(m:k) by solving an approx-

imate form of Eq. (D3) obtained by neglecting all non-local coefficients. This leaves a
3×3 matrix equation at each mesh node. Let

Ablock−diag ≡

ρ0 + wapγap 0 −wnumγ
γ 1 0
0 γ 1

 ,
5

where ρ0 is the discretised observation density and γ= 2
c2

1dt
2
+ 2
dx2 +

2
dy2 for a Cartesian

grid with spacing dx and dy in the x and y directions respectively. This 3×3 matrix can
easily be inverted, and the solution estimate is then updated as follows:

u(m:k+1)
a = u(m:k)

a −
∑
n=0,2

(
A−1

block−diag

)
mn
r (n:k). (D4)

Appendix E: Multigridding10

A multigridding algorithm has been employed to speed up the relaxation algorithm.
This involves a hierarchy of grids with successively reduced resolution. This approach
is motivated by the fact that the relaxation algorithm can handle small scale structures
very efficiently but is slow to adjust large scale structures. The lower resolution grids
provide information about the large scale structures which can be used to speed up15

convergence towards a solution on the finest grid. Let

u(.:k:g)
a ≡ (u(0:k:g)

a , u(1:k:g)
a , u(2:k:g)

a )

be an approximation to ua and associated ancillary variables, where k is an iteration
number and g is a grid number, with g=0 corresponding to the highest resolution grid.

The analysis operator must then be available in a form which can be applied to any of20

the grids. If this operator is defined in differential form this does not pose any problems.
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We define an analysis residual on the analysis grid:

r (·:k:0)
a = A

[
u(·:k:0)

a

]
and introduce a smoothing operator to transfer the residual fields onto the coarser
grids:

r (·:k:g)
a = S

[
r (·:k:g−1)
a

]
, g = 1, ...gmax.5

The relaxation algorithm can now be applied to generate an adjustment on the coars-
est grid:

a(·:k:gmax) = A−1
block−diag

[
r (·:k:gmax)

]
.

We then introduce an interpolation operator U which moves fields from coarse to finer
grids and define a preliminary adjustment:10

a(m:k:g)
∗ = U

[
a(m:k:g+1)

]
,

The adjustment on finer grids is then defined by

a(m:k:g) = R
[
r (m:k:g) −A

[
a(m:k:g)
∗

]]
+ a(m:k:g)

∗ .
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Table 1. Variation of the cost of the numerical algorithm with problem size, for a 50 day analysis,
on one isentropic level. The columns show: the number of grid refinements used in the multigrid
method (Ngrid); the CPU time required (T ) [seconds]; the number of spatial mesh points (Nmesh);
the number of control variables – the number of mesh points times the number of time levels
(Ncv); the number of CPU cycles per control variable (cycles/cv); and the number of iterations
on the finest grid (Nit).

Ngrid T Nmesh Ncv cycles/cv Nit

3 62 890 257 210 4.9 × 105 33
4 236 3482 1 006 298 4.7 × 105 45
5 961 13 658 3 947 162 4.9 × 105 42
6 4672 53 594 15 488 666 6.0 × 105 56
7 26 051 213 338 61 654 682 8.5 × 105 74
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Table 2. Comparison of ozonesondes with the MIPAS assimilation, by level and sonde type.
For details of the Electrochemical Concentration Cell (ECC) and other sondes, see Smit and
Kley (1998). Each entry shows the mean value of the ozonesonde measurements minus the
Mipas assimilation, the variance in brackets and the number of profiles used in the compari-
son in square brackets. The mean and variance are expressed as percentages of the MIPAS
assimilation values averaged over the measurement locations.

Level ECC Indian-sonde Carbon-Iodine Brewer-Mast

420 K −0.1% (23.8%) [850] −57.2% (29.1%) [32] −12.7% (32%) [170] 2.8% (21.1%) [82]
500 K −0.2% (10.1%) [843] −40.0% (33.1%) [33] −4.5% (20%) [170] −0.7% (8.8%) [84]
650 K −0.4% (8.3%) [813] −28.5% (20.5%) [30] 2.5% (8.2%) [162] −2.4% (5.4%) [81]
850 K −1.0% (10.6%) [697] −21.7% (22.5%) [9] 7.4% (8.9%) [117] −9.6% (6.8%) [61]
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Table 3. Full names of instruments which have provided data for this study and web sites where
further information can be obtained.

Acronym Full name Web site Satellite Launch

HALOE Halogen Occultation Experiment http://haloedata.larc.nasa.gov/ UARS 1991
MIPAS Michelson Interferometer for

Passive Atmospheric Sounding
http://www.wdc.dlr.de/sensors/
mipas

ENVISAT 2002

POAM III Polar Ozone and Aerosol
Measurement

http://wvms.nrl.navy.mil/POAM/ SPOT-4 1998

SAGE II Stratospheric Aerosol and Gas
Experiment II

http://www-sage3.larc.nasa.gov/ ERBS 1984

SAGE III Stratospheric Aerosol and Gas
Experiment III

http://www-sage2.larc.nasa.gov/ Meteor-3M 2001

SBUV II Solar Backscatter Ultraviolet http://orbit-net.nesdis.noaa.gov/
crad/sit/ozone/

NOAA TIROS series

OSIRIS Optical Spectrograph and In-
frared Imaging System

http://www.osiris.yorku.ca ODIN 2001

WOUDC World Ozone and Ultraviolet Ra-
diation Data Centre

http://www.woudc.org na na

Winds:
ECMWF European Centre for Medium-

Range Weather Forecasts
http://www.ecmwf.int
(distributed by
http://badc.nerc.ac.uk)

na na
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Table 4. Name, position, country and instrument type of sondes used in this study. The total
number of ascents in the 6 month period presented here is 860.

Number Name # Profiles Latitude Longitude Country Type

191 Samoa 12 −14.22 −170.55 American Samoa ECC
323 Neumayer 40 −70.64 −8.25 Antarctica ECC
450 Davis 10 −68.57 77.97 ECC

328 Ascension Island 19 −7.97 −14.41 Ascension Island ECC

29 Macquarie Island 28 −54.49 158.95 Australia ECC
394 Broadmeadows 21 −37.67 144.95 ECC

18 Alert 31 82.5 −62.32 Canada ECC
21 Stony Plain 24 53.55 −114.1 ECC
24 Resolute 15 74.71 −94.96 ECC
76 Goose Bay 25 53.31 −60.35 ECC
77 Churchill 16 58.74 −94.06 ECC

315 Eureka 28 79.99 −85.93 ECC

242 Praha 37 50.02 14.45 Czech Republic ECC

434 San Cristobal 18 −0.91 -89.59 Ecuador ECC

438 Suva 14 −18.12 178.4 Fiji ECC

99 Hohenpeissenberg 62 47.8 11.02 Germany Brewer-Mast
174 Lindenberg 27 52.21 14.12 ECC

316 De Bilt 24 52.1 5.18 Holland ECC

10 New Delhi 11 28.65 77.22 India Indian-sonde
187 Poona 7 18.53 73.85 Indian-sonde
205 Thivandrum 8 8.48 76.95 Indian-sonde

437 Watukosek (Java) 26 −7.49 112.6 Indonesia ECC

336 Isfahan 1 32.51 51.7 Iran ECC

318 Valentia Observatory 7 51.93 −10.24 Ireland ECC

7 Kagoshima 22 31.6 130.6 Japan Carbon-Iodine
12 Sapporo 24 43.1 141.3 Carbon-Iodine
14 Tateno (Tsukuba) 22 36.1 140.1 Carbon-Iodine

101 Syowa 37 −68.99 39.6 Carbon-Iodine
190 Naha 21 26.2 127.7 Carbon-Iodine

443 Sepang Airport 12 2.73 101.7 Malaysia ECC

256 Lauder 20 −45.03 169.68 New Zealand ECC

89 Ny-Ålesund 32 78.93 11.95 Norway ECC

221 Legionowo 29 52.4 20.97 Poland ECC

265 Irene 12 −25.89 28.22 South Africa ECC

401 Santa Cruz 17 28.46 −16.25 Spain ECC

435 Paramaribo 25 5.81 −55.2 Suriname ECC

156 Payerne 76 46.49 6.57 Switzerland ECC
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Table 5. Parameters describing the grid used in this study, with variable longitudinal spacing.
See text for details.

Parameter values used description

Ngrid 3, 4, 5, 6, 7 The number of grid refine-
ments

Nlat0 7 The number of latitudes
on the coarsest grid

Neq0 12 The number of nodes
around the equator on the
coarsest grid

γref 0.7 Determines latitudes at
which node spacing is
doubled

Nlon min 12 Minimum number of longi-
tudinal nodes
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(a)

Fig. 2. Southern hemisphere, isentropic fields of ozone, on the 850 K surface, for 10 July 2003.
(a) MIPAS, (b) SBUV.
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(b)

Fig. 2. Continued.
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Fig. 3. Global root-mean-square difference between analyses from time windows 5 and 6, on
the 850 K surface. For wap=8 (solid), 1 (dashed) and 32 (dot-dashed).
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fields.
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(a) (b)

Fig. 5. (a) Mean residual, (b) root-mean-square residuals, February to July 2003. the mean
value of the verifying observation minus the MIPAS assimilation. The shading in the background
shows the 10%, 5% and 1% lines.
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(a) (b)

Fig. 6. As Fig. 5, except using nearly coincident profiles, with co-location criteria of spacing
less than 2.5◦ and 6 h.
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(a) (b)

Fig. 7. As Fig. 6, except with co-location criteria of spacing less than 5◦ and 12 h.
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Fig. 8. Vinst (Eq. 19) for varying resolution, given in terms of the number of mesh points around
the equator. The colouring and line styles for the upper 9 lines are as for Fig. 5, the lower line
shows the fit to the MIPAS observations used to construct the analyses.
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Fig. 9. As for Fig. 8, but varying wap.
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