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Abstract. Using Monte Carlo simulations of the pro-
cess of breaking in arrays of elements with load-transfer
rules, we have obtained the size-frequency relation of the
avalanches occurring in 1- and 2-dimensional stochastic
fracture models. The resulting power-law behaviour re-
sembles the Gutenberg-Richter law for the relation be-
tween the size (liberated energy) of earthquakes and
their number frequency. The value of the power law
exponent is calculated as a function of the degree of
stress dissipation present in the model. The degree of
dissipation is implemented in a straightforward and sim-
ple way by assuming that only a fraction of the stress
is transferred in each breaking evenl. The models are
robust with respect to the degree of dissipation and we
observe a consistent power-law behaviour for a broad
range of dissipation values, both in 1D and 2D. The
value of the power-law exponent is similar to the phe-
nomenclogical b-value (0.8 < b < 1.1) for intermediate
magnitude earthquakes.

1 Introduction

The load-transfer stochastic models of fracture were ini-
tially conceived lo describe Lhe sirength of fibre bun-
dles and extended later to many other fracture systems
(Smalley et al., 1985; Turcotte et al., 1985; Sornette,
1989; Lomnitz-Adler et al., 1992; Gdémez et al., 1993a,
b). In these models, we deal with loaded sets of strong
clements within which a process of correlated breaking
takes place. 1t is assumed that the probability of failure
of any element of the set, supporting a weight o, is given
by a Weibull distribution function

ps =1 — e (7/70)" (1)
where oy 18 a reference strength and p is an integer called
the Weibull index (Weibull, 1939). The elements are po-

sitioned, say, on the sites of a lattice and the correlatian
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among the clements 1s implemented by admitting that
if an element fails, the load it supports is transferred,
according to fixed rules, to other elements of the set,
provoking new failuves; the succession of induced fail-
ures ends either with a total or a partial collapse of the
whole system.

A paradigmatic modality of the load-transfor rules is
the equal load-sharing (ELS) madel (Daniels, 1945; Mc-
Cartney and Smith, 1983; Smith, 1980, 1981; Smith and
Phoenix, 1981; Sornette, 1989), where the non-failed ele-
ments share the load equally and all the lailed elements
carry no load. Another case is that of the local load-
sharing (L.LS) model (Scop and Argon, 1969; Gotlib et
al., 1973; Harlow and Phoemx, 1978a, 1978hb, 1981a,
1983 b; Phoenix and Smith, 1983; Gomez et al., 1993c¢),
where the load of failed elements is given only to the
nearest unbroken neighbours. Obviously, any interme-
diate (or hierarchical) option can be adopted according
to the nature of the system to be modelled (Smalley et
al., 1685; Turcotte et al., 1985; Gdmez et al., 1993a).

Smalley et al. (1985), with the aim of accounting for
the stick-slip behaviour of faults, used this type of static
probabilistic models, assuming that the rule of stress
transler had a hierarchical (fractal) architecture. Later,
we also explored these 1deas emphasising the good prop-
erties ol Lthe simplest ELS models (Gémez et al., 1893a).
As a qualitative progress within the group of LLS mod-
els, we should mention our recent proposal of a ‘chiral’
simplification of the 1-dimensional model (Gémez et al,,
1993¢), whose strength can then be obtained through a
simple iterative method.

In the applications mentioned so far, the total load ap-
plied to the sct 1s supposed to be constant. This seems
reasonable when dealing, for example, with a loaded ca-
ble in a lab experiment, but not when one is trying to
model the behaviour of an asperity set in a fault seg-
ment. In this case, it is reasonable to accept the exis-
tence of stress losses when breaking occur, so that only
a part of the stress 1s redistributed among the surviv-
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ing asperities. In this sense we have recently modelled
(Gémez et al., 1994), in the mosl simple way, this con-
cept of stress dissipation through a constant factor, «.
We assume that in each event of stress transfer, only a
fixed [raction « (0 < a < 1) of the load supported by
a failing clement 18 actnally transferred. The rest, 1.c.
the fraction (1 — «), is lost. 'I'hus, & acts as a sort of
correlalion parameler because in the limil o« = 0 the
elements break independently and their assigned load is
dissipated.

The 1nclusion of the stress dissipation factor does not
scem to be required only by the very nature of the geo-
physical systems to which we want to apply these mod-
cls; indeed, when one analyses the effeet of including an
& # 1, one ohserves that sets with local load-transfer
rules acquire an approximalely N-independent strenglh
in the manner of the ELS sets, N being the number of
elements composing the set.

One of the properties most intensively studied in these
models 1s the set strength, 1.e. the average value of stress
level at which a set, with NV fixed, fails (e.g., McCart-
ney and Smith, 1983; Phoenix and Smith, 1983; New-
man and Gabrielov, 1991). Another inleresling prop-
erty is the size-frequency relation (8FR) of the breaking
bursts occurring during the process of loading { Hemmer
and Hansen, 1992; Christensen and Olami, 1992; Ding
and Yu, 1993). This paper refers to the Monte Carlo
computation of this relation, for several load-iransler
rules and devoting special emphasis to 2-dimensional lo-
cal load-transfer systems, which are the most interesting
to model real earthquakes. Our interest in this compu-
tation was basically triggered by the work of Hemmer
and Hansen (1992), who obtained a universal power-law
dependence for the SFR in ELS models. The structure
of this paper is the following. In Sect. 2, we explain
the Monte Carlo simulations for the various modalities
of load-transfer, and in Sect. 3, the resulls for the SFR
and our conclusions are presented.

2 Size-frequency relations

As explained in Sect. 1, we start with an array lormed
by N intact clements with a stochastic strength distri-
bution, obeying Eq. 1. {Let us suppose, for definiteness
that the set obeys LLS rules). Now we proceed Lo slowly
increase the stress acting on the elements until reaching
the level of failure of the weakest element in the setl.
We will denote this first stress increase as Ay, After
this increase, that element fails and its load is trans-
ferred to its nearest neighbours. As a consequence, new
breakings can occur and let us denote by n; the num-
ber of elements broken in this first burst, carthquake or
avalanche (we will use thereafter the three words as syn-
onymous). After this, the stress distribution in the set
will be non-homogenecns, and every element will have a.
strength higher than the local stress acting on it. Now

we praceed to increase homogencously again the stress
on the whole system until reaching the strength of the
new weakest element. This increase will be denoted by
Agq, and a second avalanche will come about, composed
by ns elements. This process is iterated and a sequence
of stress increascs Aoy, Ao, Acos, ..., and avalanche
sizes nq, Na, na, ... will generated up to the concluding
evenl in which a final avalanche destroys the remain-
der of the set. Then a new cycle can be initiated along
sirmilar lines.

We suppose that the process of stress increase pro-
ceeds at a constant rate and therefore the magnitude of
any of the steps Ag;, is proportional to the time interval
involved in that step. Accordingly 3 o; is a measure of
the total time taken by thal cycle. On the other hand,
the number n; of clements broken in burst #4 measures
the area broken in that avalanche, and will be called the
size of the burst. (In scismology, the arca broken in a
fanlt during an earthquake, is proportional to the en-
ergy release in that event, e.g. Scholz, 1990). Thus, in
cach cycle we will have a distribution of burst sizes, or in
other words, a size-frequency relation, which will depend
on the assumed details of the model (as load-transfer
rules, degree of stress dissipation, and, of course, the
spatial dimensionality of the model).

The calculation of the SFR for the usual —dissipat-
ionless—- ELS model was fiest done by Hemmer and
Hansen (1992) who found a quite interesting resull, nam-
ely: in thal case the ST'R has a power-law relation with
an exponcnt, £ = 5/2, independent of the distribution
of breaking strength of the individual elements (in the
case of assuming a Weibull distribution function, Fq. 1,
for the strength of the elements this means that the ex-
ponent £ is g-independent). Expressing the SFR as the
number of bursts, f, with a sizc bigger than a given one,
n, they found that

fon? 6=15. (2)

(Notc that if onc considers instcad the number of bursts
of size n vs. n, lhe resulling relation is also of power
law type but with an cxponent cqual to £ = b4 1. In
this case £ = 2.5. Figures 1 and 2 are expressed in this
way).

The power law form for the SFI% has a close analogy
with the empirical law found by Gutenberg and Richter
{1954) in seismology:

log far = const — bM (3)

where fjr is the number of earthquakes occurring in a
given region, for a definite time interval, with a magni-
tude bigger than M. As it is known that the earthquake
magnitude is related to the area broken in the event by
M =logn + const, we have that (3) implies

log [, = const — blogn, (4)
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Fig. 1. I'rcquency vs. size For avalanches, in a characleristic case
of the 1-D local model.

which coincides with the form of Eq. 2. Note that the
value of the slope 6, defined in Eq. 2 corresponds to the
Gutenberg-Richter slope, which phenomenologically is
0.8 < b < 1.1. Under this optics, the theoretical result
obtained from the conservative ELS model is a bit too
hig.

Our task in the next Section will be to find out if
this power-law bchaviour holds aor not, in the various
modalities of load transfer models,

3 Resulis and Conclusions

The type of SFR. obtained through Monte Carle simula-
tions for load transfer models is illustrated in Figs. 1 and
2. Figure 1 corresponds to the results emerging from a
LLS model in 1D, in which the transfer occurs in both
directions in the chain. For this figure a Weibuil index
p = 2 and a dissipation factor o = (0.2 were assumed.
As indicated above, [ vs. n are both plotted in loga-
rithinic scales. The slope of the least square fit is —2.7,
and the corresponding b-value 1.7. Thus the power law
dependence is well manifested, excepl in the region of
very big avalanches where it shows a characteristic scat-
ter. Note that for big sizes although it seems, there is
no multivalueness in the frequency. In this graph, the
size of the set used was 4100 elements and a statistics
of 100 cycles of total breaking were performed.

Figure 2 shows the resulls obtained for 2D rectangu-
lar arrays of 100 x 50 elements, with LLS rules of trans-
fer. The paramecters chosen were p = 2, o = 0.7. The
number of cycles analysed was 20. Agaln, a power-law
dependence is well apparent, with a slope of —2.17 and
a b-value of 1.17.

These two figures illustrate the behaviour observed in
many cases, which proves the importani result that this
family of models has SFR of the type of Eq. 2 for a
broad range of a-values.
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Fig. 2. Frequency vs. size for avalanches, in a characleristic case
of the 2-D local model. The axis scaling is the same as in Fig. 1
in order to easily compare the slopes.

In Fig. 3, the b-value (i.e. the modulus of the power-
faw exponent and the slope of the best curve fit) ob-
tained for the different models is shown as a function
of the degree of stress dissipalion, o. Note first that
for & = 1, Le. in the non dissipation limit, in the ELS
model, b = 1.5 which perfectly agrees with the Hemmer
and Hansen (1992} prediction. And what is remarkable,
the b-value is practically independent of the value of «.
This type of universality observed in the ELS case, i.e. b
does not depend either on p or on @, will not hold in the
LLS models. For this group of models, in 1 dimension,
we show in Fig, 3 the value of b for p = 2 and p = 5.
We observe a rather sirong dependence on o, reaching
a minimum value of b ~ 1.4 at & =~ 0.2 for p = 5, and
b= 1.5 al o~ 0.4for p=2. In 2D, again b varies with
@, but we observe that there exists a comfortable range,
say between 0.5 and 0.9 (see Fig. 3) where b is within
the phenomenological range.

Christensen and Olami (1992) proposed a 2D cellular
automala model equivalent to a block-spring model and
studied its scaling behaviour as a function of a conserva-
tion parameter in the frame of sclf-organized criticality
(SOC). The level of conservation in their model depends
on the elastic constant of the ‘springs’ connccting the
blocks, and in the isotropic case we have oy — ,llag,
where «gp, is the parameter used by Christensen and
Olami (1992) and «g is the parameter used in this pa-
per. With this scale change we can compare our Fig. 3
with their Fig. 7, noting that the averall behaviour of
the b-value is similar in both models for levels of con-
servation between 0.3 and 0.8. In the range 0.8-1.0 the
model of Christensen and Olami (1992) predits a mono-
tonically decreasing value for the b-value to almost zero,
whereas our model for the 2D case has a b-value mini-
mum at a > 0.7 followed by a steady increase to b ~ 2.5
at a = 1.0 (cf. Fig. 3).
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The discrepancy arises becausc Christensen and Ola-
mi’s model is a continuously driven system where a
sliped element can slip again many times during a sin-
gle simulation. In our model once a site is broken 1t
remains so {or the rest of the simulation. We average
the results over many simulations instead of runing Lhe
samec simulation for longer periods of time. The SFR
emerging from our model reflects the cummulative ef-
fect of fluctuations, fluctuations which diverge in size
when the final instability (total collapse of the system) is
approached. In that sense, the ‘sweeping of an instabil-
ity’ theory (Sornetle, 1994) could be a better theoretical
framework than SOC to interprel our results.

Thus the matn conclusions that can be drawn from
these results are: 1) load-transfer models of breaking
fulfil the Gutenberg-Richter relation for the spectrum
of their avalanches for a broad range of a-valucs. And
i) the value of the power-law exponent, &, is a function
of the degree of siress dissipation one is assuming, when
local load-transfer rules are used. Tor this modality of
transfer, in two spatial dimensions, the b-value is of the
order of that observed in real earthquakes. This stimu-
lates positively the use of thése models in seismology.
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