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Abstract. A model for rapid simulation of earthquake
sequences is introduced which incorporates long-range elastic
interactions among fault elements and time-dependent
earthquake nucleation inferred from experimentally derived
rate- and state-dependent fault constitutive properties. The
model consists of a planar two-dimensional fault surface
which is periodic in both the x- and y-directions. Elastic
interactions among fault elements are represented by an array
of elastic dislocations. Approximate solutions for earthquake
nucleation and dynamics of earthquake slip are introduced
which permit computations to proceed in steps that are
determined by the transitions from one sliding state to the
next. The transition-driven time stepping and avoidance of
systems of simultaneous equations permit rapid simulation
of large sequences of earthquake events on computers of
modest capacity, while preserving characteristics of the
nucleation and rupture propagation processes evident in more
detailed models. Earthquakes simulated with this model
reproduce many of the observed spatial and temporal
characteristics of clustering phenomena including foreshock
and aftershock sequences, Clustering arises because the time
dependence of the nucleation process is highly sensitive to
stress perturbations caused by nearby earthquakes. Rate of
earthquake activity following a prior earthquake decays
according to Omori’s aftershock decay law and falls off with
distance.

1 Introduction

Simplified earthquake -models, exemplified by the spring and
slider array intreduced by Burridge and Knopoff (1967) and
the cellular automata of Bak and Tang (1987), offer several
advantages for study of earthquake processes. Benefits
include rapid simulation of earthquake sequences over a large
range of magnitudes, minimization of model complexity that
might otherwise obscure fundamental interactions and
applicability to other non-linear systems. Analyses of the
models have provided useful insights pertaining to the

earthquake generation process, notably the origins of
frequency-magnitude distributions of earthquakes (e.g.
Brown ez. al, 1991; Carlson et. al, 1991).

However, existing models have not been successful in
reproducing the other conspicuous feature of earthquake
occurrence - namely, the strong clustering of earthquakes in
the form of foreshock and aftershock sequences. Indeed,
earthquakes clusters characterized by the Omori aftershock
decay law can comprise fifty percent, or more, of the events
in an earthquake catalog (Reasenberg, 1985). This paper
describes a model which simulates earthquake sequences with
clustering of the type that follows the Omori decay law.
This includes foreshocks, aftershocks and clustering of event
pairs as described by Kagan and Jackson (1991).

Generally, models capable of simulating large numbers of
earthquake events have employed instantaneous onset of slip
at a stress threshold and instantaneous recovery of strength
following termination of slip. In detail, Teal materials
display time-dependent onset of unstable slip over a range of
stresses and time-dependent recovery of fault strength
(healing) following rapid slip. Rate- and state-dependent
constitutive laws for fault slip embody these characteristics
and are supported by abundant experimental data {e.g.
Dieterich, 1981; Ruina, 1883; Tullis and Weeks, 1986;
Blanpied ef al, 1992; Diecterich and Kilgore, 1994).
Recently, it has been shown that various features of
earthquake clustering, including foreshocks and aftershocks,
can be ascribed to rate-and state-dependence of fault properties
in conjunction with long-range elastic interactions
(Dieterich, 1994). That study did not produce simulated
earthquake catalogs, but was based on analytic formulations
for time-dependent rate of earthquake activity following a
stress perturbation caused by a previous earthquake event.

The study described here represents an initial atternpt to
develop a numerical approach for simulating earthquake
sequences which incorporates time-dependent failure criteria
and long-range elastic interactions. Although several
approximations are utilized, the numerical model preserves
characteristics of the nucleation and rupture propagation
processes evident in more detailed models and allows the



110

computations to proceed in steps that are determined by the
transitions from one sliding state to the next without
calculation of intermediate steps. This transition-driven time
stepping and avoidance of the need to solve systems of
simultaneous equations permits rapid simulation of large
sequences of earthquake events on computers of modest
capacity.

2 Model of Earthquake Faulting

The computational model is based on approximations to the
unabridged model that is described in this section, The
model incorporates long range elastic interactions among
fault elements. For this initial investigation a simplified
fault geometry was adopted which consists of a planar fault
surface embedded in an elastic medium. The fault surface
lies in the xy plane. Periodic boundary conditions in both
the x- and y-directions are employed to minimize
geometric complexity (Fig. 1).

The stresses acting on fault elements arise from tectonic
displacement at rate V, acting through the elastic medium,
and from slip of all other fault elements. The component of
shear stress at the center of element { acting in the direction
slip is represented by

T; =Kjj 5j +Kr (Ve - &), i j=12,..n, (1)

where §; is the slip within cell j and summation over the
repeating subscript is implied. The total number of cells is
rn and ¢t is elapsed time. Stiffness matrix Ky gives elastic
interactions among fault cells and is is described below.
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Fig. 1. Numerical mode} for simulation of earthquake sequences. The
fault surface lies in the xy plane and is periodic in both the x- and y-
directions, The simulations reported here employ a fault, as illustrated,
consisting of an array of 30x30 elastic dislocation elements with
dimensions of 1km on a side.

Because the fault surface is initially planar, cell normal
stress @; remains constant during slip and is specified along
with other model parameters. The stiffness term for tectonic
loading of the fault, K7, is identical for all fault elements

Kr=GIW, @

where G is the shear modulus and W is the effective width
for application of the tectonic drive.

Diagonal components of Kj; are obtained from the solution
for stress change on a uniform elastic dislocation embedded
in an infinite elastic medium with Poisson’s ratio of 0.5
{Chinnery, 1969)

Ky=- 323G )
L

where G is the elastic shear modulus and 2L is the length

of the sides of a square fanlt element. For the present

implementation a simplified approximate representation of

the elastic dislocation solutions is used to obtain the off-

diagonal elements

D98G

Kij=
L{(ri)-1)?

S L#E 4

where r is the distance from the center of element { to the
center of element j. Equation (4) retains the characteristic
1/r3 decay of stresses from an elastic dislocation, but does
not represent the azimuthal dependencies. The constant .098
and was evaluated numerically to satisfy the condition of no
stress change among elements for the case of uniform slip
and K7 = 0. Hence, for finite positive K7, fault slip results
in decrease of the net stress acting on the fault surface. The
simulations described below use a narrow tectonic loading
width W to suppress the tendency for global slip events
which can arise from the periodic boundary conditions.
Instead of Eq.(4) the complete solution for stresses around an
elastic dislocation (e.g. Chinnery, 1963) could be employed
to obtain the stiffness coefficients. However, the full
solution is rather cumbersome to implement and the
marginal refinement obtained its use was judged unnecessary
for this initial exploration.

Stress and displacement criteria for fault elements are based
on rate- and state-dependent fault constitutive properties.
This formulation has been applied to various aspects of fault
and earthquake processes (T'se and Rice, 1986; Stuart, 1988;
Okubo, 1989; Marone et al., 1991; Dieterich, 1992; Rice,
1993) and as noted above it is supported by extensive
laboratory data. At the center of element i the shear stress
during slip obeys the constitutive law

=0 [#0+A In(&; /6*)4B In(6; 16 %) |, (5)

where the quantities with * are normalizing constants, & is
slip speed, 8; is the state variable and o, is effective normal
stress acting on the fault element. For the present



application constitutive parameters pg, A and B are
identical on all fault elements. State evolves with slip and
time according to the evolution law

doi _ ¢ _ 66 )
dt Dy;

where D is the characteristic slip for evolution of state and
is assumed to be identical for all elements. See Linker and
Dieterich (1992} and Dieterich and Kilgore (1994) for
discussions of D, related formulations and physical
interpretations of parameters. In the laboratory D,.=1-100
um and A and B typically have values of in the range
0.005 to 0.015. u, is the nominal coefficient of friction
and generally has values in the range 0.5 - 0.8.

Equation (6) has the property that 8 evolves with slip
over the sliding distance D}, and seeks the current steady
state which is set by the sliding speed, (i.e. €= D./& *).
Slip at speeds below steady state increases € which
increases fault strength (fault healing) for the usual case of
positive B. For stationary faults & =0, d8/dt=1 resulting
in increase of fault strength by the logarithm of elapsed
time. Slip at speeds above steady state results in decreasing
6 and fault weakening. From Eq.(6) the steady state friction
is

& = o [,u oHA -B ) In(3; 15 *)]
= 0:[o+(B-A ) In(6" /6 )], @

where @ *= D,/ 5%,

A necessary condition for initiation a of slip instability is
that stiffness of the slipping region be less than a critical
value which is set by sliding conditions and parameters A,
B, D¢ and ¢ (Dieterich, 1981; Ruina, 1983; Rice and
Ruina, 1983; Dieterich and Linker, 1992). For slip on a
fault patch the minimum stiffness criteria yields a minimum
fault segment half-length L. for unstable slip

L= GnbDe ) ' (8)

o

(Dieterich, 1992) where & depends upon constitutive
parameters and loading conditions. For steady state sliding
at constant normal stress & =(B-A)>0 (Ruina, 1983; Rice
and Ruina, 1983). n is a constant derived from elastic
dislocation solutions which depends on the geometry of the
sliding fault segment and has values of about 1.

The high slip speeds that prevail during an earthquake
decrease 6*% and cause rapid loss of strength, provided
B>A. Following an earthquake, slip speeds are again very
low, or zero, and not at steady state. This leads to
strengthening of the fault as @ increases. Eventually, as
stress increases, the threshold for steady state slip is exceeded
and 6 begins to decrease again as slip speed accelerates prior
to the next earthquake.

Because the fault stresses are derived from interacting
dislocation sources, this model is amenable to generalization
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to multiple faults and complex geometries. However, such
applications would generally require consideration of slip
crileria with varying normal stress (Linker and Dieterich,
1992) and use of additional stiffness coefficients to determine
the effect of interactions between slip and o.

3 Computational Strategy

Repeated solutions of the system of Eqgs.(1} subject to the
sliding and stress conditions of Eqs.(5) and (6) may be
obtained to directly follow the progression of slip along the
fault surface including the occurrence of unstable earthquake
slip events. Quasi-static calculations of this type have been
carried out to examine the nucleation process for onset of
earthquake slip (Dieterich, 1992) and for simulation of
limited numbers of large earthquake events (Tse and Rice,
1986; Stuart, 1988; Rice, 1993). Okubo (1989) has
incorporated elastodynamics to simulate dynamically
propagating earthquake ruptures. However, simulations of
long sequences of earthquakes with a large range of
magnitudes are computationally intensive and presently
impractical. This is because the characteristic sliding
distance D requires a minimum grid spacing (generally
L<.2L.) (Rice, 1993) which results in a high density of
grid points and large systems of equations. In addition, the
computational problem is aggravated by the non-linear
characteristics of Eqs.(5) and (6) and the necessity to proceed
in small displacement steps (generally A§< .05D. to
represent the frictional evolution process.

As a consequence of these considerations, several
simplifying approximations have been introduced to
circumvent the computational requirements for repeated
solution of large systems of simultaneous equations and use
of small time steps. In formulating the approximations the
goal was to preserve important characteristics of the more
detailed model. In the simplified model, the cycle of stress
accumulation and earthquake slip at every fault element is
separated into three distinct phases, designated as clement
sliding states 0, 1 and 2.

An element is defined to be at State O if it is not currently
slipping in an earthquake and the stress is less than the
steady state friction, Eq.(7). Hence, slip speed is less than
the steady-state slip speed (§ <D./8). This condition exists
for much of the loading cycle between earthquakes and from
Eq.(6) it is seen to be the period when a fault segment
strengthens through increase of 6. Except for a relatively
short interval following an earthquake in which some
afterslip is possible, detailed simulations show that
8 <<Vr during this phase (e.g., Tse and Rice, 1986).
This condition is approximated as a fully locked fanlt
element, =0 . This assumption simplifies Eq.(6) to an
increase of 8 with elapsed time an element is at state O
(i.e. G=6yt+Ar).

An element is detined to be at State 1 if it is not slipping
in an earthquake and the stress exceeds the steady state
friction. Hence, slip speed is greater than the steady-state
slip speed (§ >D./@) and @ decreases with time, This
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condition arises toward the end of the loading cycle and
always precedes the onset of earthquake slip. Elements at
State 1 undergo a breakdown of fault strength because of
decreasing 8. This breakdown may occur very slowly as an
earthquake instability nucleates or extremely rapidly in the
form of a damage zone ahead of a propagating earthquake
rupture. The solution of Dieterich (1992) for slip on a fault
segment having the effective stiffness K, is employed to
follow the acceleration of slip which necessarily
accompanies the breakdown process,

-1

s=|Ll+Ha [exp(—'f””-@ , T 20, ©9)
5? Ti Ao; T

where

H=§-%, (10)

and &7 is slip speed at r=0 and 7; is a constant rate of shear
stress increase during a time step. A interesting property of
the constitutive formulation is that once the stress threshold
for steady state is exceeded, the acceleration of slip speed can
continue without additional stress increments (7;=0),
provided L>L,.. The time-dependent breakdown of 6
results in time-dependent earthquake nucleation over a range
of stresses.

Detailed simulations of the nucleation process (Dieterich,
1992) reveal that the region of accelerating slip constricts to
a zone of characteristic length L.. For the present model,
grid dimensions are set such that L>L ., which results in
nucleation of earthquakes entirely within an element. Hence,
the grid is much coarser than that employed for continuum-
limited simulations and corresponds to the oversized grid
condition investigated by Ben-Zion and Rice (1994). In this
circumstance, Ben-Zion and Rice show that simulations
acquire characteristics of inherently discrete models (D =0)
and argue that that the resulting strong barriers to rupture
propagation at cell boundaries may imitate barriers at fault
segment boundaries. In the present model, the use of Eq.(9)
to follow the acceleration of slip within the nucleation sub-
region of a cell preserves the time- and stress-dependence of
the rupture nucleation process observed in detailed
simulations and in laboratory experiments (Dieterich and
Kilgore, 1995). o

The stiffness term appearing in Eq.(9) is evaluated to be
the stress change resulting from slip of the element divided
by slip and is K=-K;+Ky. It may be seen from Eq.(9)
that slip rates remain rather small up to a short interval prior
to onset of unstable slip and net displacement during
nucleation is usually in the range 530D, to 20D .. In the
simulations presented below D, =.01mm and earthquakes
slip varies from cm to meters. Because, the displacements
that occur while at State | are small compared to earthquake
slip and are contained entirely within a subregion of an
element, those displacements are assumed to have little effect
on the stresses acting on other elements. In computation of

element interaction stresses, Eq.(l), the State |
displacements are ignored, but nucleation zone slip speed
from Eq.(9) is followed from step to step to obtain the
expected time of transition from State 1 to state 2.

An element is defined to be at State 2 when it is
undergoing earthquake slip. The transition from State 1 to 2
occurs when the slip speed reaches an assumed dynamically
limited earthquake slip speed SEQ which remains constant
during an earthquake. The assumption of constant
earthquake slip speed is justified by the relationship for shear
impedance of an elastic medium which fixes the particle
speed on a surface subjected to the sudden application of a
shear stress

Seg=2E. G"“ , an

where f is the shear wave speed and A7 may be interpreted
to be the difference between stress at the initiation of rupture
and the sliding friction during rupture (e.g. Brune, 1970).
An element stops sliding in an earthquake and reverts to
State 0 when the stress decreases to the steady-state friction
at the earthquake slip speed SEQ.

As a consequence of these approximations the slip speeds
in Eq.(1) are either zero (for elements at State O or 1) or SEQ
=constant (for elements at State 2). Hence, element
stressing rates change only when an element starts or stops
earthquake slip. During the intervals between transitions,
element stressing rates are constant. The change of stressing
rates at element / caused by the transition of element j to
or from State 2 is simply

At = K (i SEQ). (12)

The use of these sliding state approximations and the
resultant constant stressing rates between changes of sliding
state permit a simple computational procedure in which time
steps are set by the time to the next element transition (from
States Oto 1, 1 to 2 or 2 to 0). The procedure consists of
first finding the transition times for all elements at the
current stressing rates and then using the smallest transition
time as the time step to update element conditions. Because
the transition times depend only upon initial conditions and
constant element stressing rate between transitions, the
necessity of computationally intensive solution of systems
of simultaneous equations is completely avoided.

A simulation begins with all elements at State 0 and a
randomly prescribed value of 8. At the termination of
earthquake slip, @ is set to steady state for slip at the
earthquake slip speed (e.g. 6=D, /SEQ). The transition
time Az for an element to go from State 0 to State 1 is
found by equating fault strength at steady state Eq.(7) with
clement stress at the end of the step,

P+ 7, At = o {,uo+(A -B) In[(Ai +6;)/8 *]} , (13)

where 7 and 6; are the stress and state variable respectively



at the beginning of the time step and ; is the constant
stressing rate during the step. This uses the result that 6,
increases by elapsed time if slip speed is zero. Equation (13)
is solved numerically for Ar. Once the minimum time step
Atmin for the entire model is determined the conditions on
elements remaining at State 0 are updated (i.e.
Ti= TP + Tx Atmin , 6= B: + Atmin ).

The time for slip to accelerate to the earthquake slip speed
defines the transition time for an element to go from State 1
to State 2. Substituting &g into Eq.(9) gives the transition
time

4r=A% | L L HO ) A0y | 1 G Ho) gy
T & T Ti b T

where 5 is the slip speed at the beginning of the time step.

At the 0 to 1 transition §; is set at steady state (§; = D 16}

For subsequent steps Eq.(9} is used to update slip speed from
the element stress.

Figure 2 illustrates the time to failure from Eq.(14). In
Fig. 2, the slip speed appearing in Eq.(14) is converted to
stress using Eq.(5) and an assumed 8. The nucleation time
is highly stress sensitive in the region where the logarithm
of the time to instability varies with stress. This arises
from the dependence of the nucleation time to slip speed
given in Eq.(14) and the sensitivity of slip speed to 7 (at
constant 8) of Eq.(5). A modest jump in stress, as might
be induced by a nearby earthquake, greatly increases the slip
speed on a nucleation cell (State 1) and alters the time to
nucleate by an ameunt that is proportional to exp(-ATAG).
The clustering of earthquake events in the present model
arises from this sensitivity of nucleation times to stress.
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Fig. 2. Effect of initial stress and stressing rate on the time to instability for
state | slip from Eq.(14). The curve T =0.5MPa/s illustrates conditions
near a earthquake source during earthquake slip. A loading rate T
=0.05MPa/year is equivalent to tectonic deformation of lcm/year. The
effect of an earthquake loading step on time to instability is illustrated by a
fault segment which is initially about 1 year from instability at T
=0.05MPa/year (point a). A one second stress application at T =.5MPa/s
followed by a return to 7 =0.05MPa/year reduces the time instability to
about 4 minutes (from a" to b to b*). A two second application of stress at
T =5MPa/s reduces the time to 0.01s (point ¢) which corresponds to
failure during the earthquake. Model conditions are &=15MPa,
D=.00001m, A=0.003, B=0.015 and 6=10%.
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Finally, the transition from State 2 to State 0 occurs when
the stress drops to the steady state sliding friction at the
earthquake slip speed. This is obtained from Eq.(7) using
8”=D./5zg.

In tests of this model, it was found that the frequency-
magnitude statistics of the simulated earthquakes tended not
to be stable through time. Simulations that began with a
prescribed heterogeneity of initial 7 generated a mix of
carthquake sizes. However, the frequency distribution of
event magnitudes always showed a drift toward either single
element earthquake events or global slip events that involved
the entire fault. The problem arose from the use of over-
sized fault elements that poorly represent the peak stress at
the edges of the rupture. In particular, the amplitude of the
stress concentration is severely under represented and
increases as the slip area grows. Consequently, growth of
earthquake events becomes easier as rupture size increases
and intermediate-scale events are not favored. In contrast, the
peak stress at a rupture front in the continuum-limited
computations is, to a first approximation, independent of
rupture size.

The problem of nonstable frequency-magnitude statistics
was alleviated by imposing a scale-independence of the peak
stress at the edges of the slipping region to make the rupture
propagation process more closely resemble the continuum
limit case. A multiplying factor was applied to the stressing
rate seen by elements adjacent to sliding elements, where the
factor depends on the corrent size of the rupture,

C=1 +[%]'” , (15)

where m is the total number of elements that have slipped
to the current time step. This scaling C was obtained from
calculations for the size dependence of peak stress at the
edges of a square region of uniform slip which was
proportional to the rupture length. As a region of constant
slip grows, peak stress multiplied by C remains
approximately constant. When an earthquake event is
complete, the final element stresses at the edges of the slip
region are recomputed with C = 1 and element sliding states
are reevaluated based on those stresses.

4 Results

The results presented here employ a fault with 900 elements
in a 30x30 array with the elements scaled to be one
kilometer on a side. It was found that >600 earthquakes per
hour could be simulated with this model on a desk-top
computer of rather modest speed (Apple Macintosh IIfx).
With the exception of calculations for rupture propagation
across a uniform fault, all models described below began
with the initial 7 and @ randomly assigned to the elements
(uniform trequency distributions). Simulations were carried
out with element normal stresses that were either the same
everywhere on the sliding surface or randomly specified
(uniform frequency distribution). The non-uniform ¢ may
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simulate the effect of interference between opposite walls of
a fault due to geometric irregularities or perhaps pore-fluid
pressure variability, In simulating earthquake sequences an
initial model run-in phase of 2000 events was employed to
reduce the effects of assigned initial conditions. This was
followed by stmulation of 6000 events which were then
analysed. In all models the shear modulus G = 104°MPa,
W =6000m , D, =0.00001m, B=0.015 and long term slip
rate V = 0.0lm/yr. To minimize model variations all
simulations reported here employ SEQ=1mls. Constitutive
parameter A, which controls the time-dependent nucleation
process was varied to examine its effect on the simulations,
Figure 3 illustrates rupture propagation over a region of a
fault surface with uniform properties and initial conditions
except at the initiating element, which was assigned a
slightly higher initial stress to force the event to start at the
center of the fault. For this calculation, the fault is non-
periodic and slip is restricted to an 11x11 element region.
The slip instability exhibits features observed in more
precisely constructed dynamic fault models (e.g. Okubo,
1989). When the stress concentration factor of Eq.(15) is
used, the rupture speed is insensitive to the size of the
rupture area. Figure 3 clearly illustrates the ‘damage zone’
of State 2 slip that develops ahead of the rupture front and
precedes the onset of slip. Within the damage zone fault
strength breaks down in response to the increasing stress
advancing ahead of the slip region. Rupture growth is halted

by no-slip boundaries. The process by which slip stops is
somewhat more complicated than the initiation process and
is characterized by occasional reactivation of slip in various
regions. For example, 3.83s after the start of the event
illustrated in Fig. 3, several elements that previously
stopped sliding become reactivated and undergo earthquake
slip between the 3.83s and the 4.91s frames. In otherwise
identical models, very different patterns for termination and
reactivation of slip are seen with 11x11, 15x15 19x19 and
23x23 element arrays, indicating a dependence of the results
division of the fault into discrete elements.

Final stress state and slip for events on uniform faults
resemble solutions for cracks in an elastic medium, Fig. 4.
In detail the final stresses in the slipped region are somewhat
irregular and the irregularities depend on the stopping
process, which is scale dependent,

The principal effect of altering SEQ is to change the rupture
propagation speed. This is understandable, because the
sliding speed governs the rate of stress increase in elements
adjacent to the rupture. In all simulations with a uniform
sliding surface, propagation speeds were proportional to 3EQ.
The average stress drop and slip show a weak dependence on
the logarithm of $EQ which arises because the dynamic
steady state friction depends on the the logarithm of 8 as
given by Eq.(7).

Earthquake events arising as part of a sequence must
propagate across surfaces with non-uniform conditions

0.03s 033s 063s 0.96s 117 s
COROS
ng $ g
G SRR L8880
’ s seae
1.31s 162s 3.15s 3.83s 491 8

5635 6.09s

611s
0O State0
¢ State 1
* State 2
@ Slip region

Fig. 3. Development of a slip instability over an initially uniform surface. Only a portion of the the sliding
surface is illustrated. Model conditions are o=15MPa, D=.00001m, A=0.003, B=0.015 and 553 =Im/s.
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Fig. 4. Final shear stress and slip for the event on a fault with uniform
properties shown in Figure 3. The profile is through the center of the slip
region. Model conditions are g=15MPa, D_.=.0000lm, A=0.003,
B=0.015 and 5gp =1m/s.

inherited from the previous slip events. Figure 5 illustrates
the development of a typical medium-scale slip event from
one such simulation. Compared to the uniform rupture,
these events are characterized by slower average rupture
speeds, longer event duration for comparable magnitudes,
smaller earthquake stress drop and considerable event
complexity. Rarely, if ever, is the total area that slips in an
event active at the same moment. Instead, scattered regions
of active slip move across the rupture surface and often
regions are repeatedly activated in an event,
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The effects of varying the assigned model parameters on
earthquake sequences have been partially explored.
Frequency-magnitude statistics for several simulations are
shown in Fig 6. Over the limited range of magnitudes that
can be represented with the 30x30 fault element array, the
frequency of events by magnitude roughly conforms to the
usual Gutenberg-Richter relationship
M=a-blogN , (16)
where N is cumulative number of events to magnitude M.
Moment magnitudes are employed

M= logipM o -9

. 17
1.5 4

(Hanks and Kanamori, 1979) where M, is seismic moment
(Newton-meters) of a simulated event. Seismic moment of
an events is

Mo=G Y4L%5, (18)
where 4L2 is the area of a fault element and summation is
over the elements that slipped in the event. The data of
Fig. 6 show a correlation between the slope & and
constitutive parameter A. This effect is ascribed to

increased difficulty for rupture propagation as A increases.
The State 2 stress interval that must be overcome for a

0.00s 189s 297s 3.47s 397s
4535 5581s 508s 6.57 s

7.03s 748s 8.02s

B.50s
O State0
¢ State 1
® State 2
# Slip region

Fig. 5. Development of a slip instability on a fault with heterogeneous conditions inherited from previous
events. Only a portion of the model is illustrated. Model conditions are ¢=20-80MPa, D.=.00001m,

A=0.001 and éEQ =1m/s-
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Fig. 6. Effects of constitutive parameter A on event magnitude

distributions. Data for simulations with uniform and heterogeneous normal
stresses are given in Fig. 6a and Fig. 6b, respectively. All models have
£,=.00001m, B=0.015 and fep =1m/s.

rupture to propagate represents a barrier for instantaneous
rupture propagation, but not for delayed instability. As A
increases, that resistance to propagation also increases and
favors small events, i.e. larger /. Models with uniform
normal stress (Fig. 6a) and with heterogeneous normal stress
(Fig. 6b) yield similar results.

The rapid roll-off of M>6 events in all simulations arises
from the use of a narrow tectonic width, W=6km, in these
simulations. This narrow width was employed to limit the
dimensions of the maximum event size in the simulations.
Because of the built-in model periodicity, large events begin
to sense the equivalent events in adjoining regions and in
response tend to expand to global events which have infinite
fault length and indeterminate magnitude.

The principal new result obtained with this model is
strong spatial and temporal event clustering having several
of the characteristics of earthquake clustering in nature (Fig.
7). In particular, large events (mainshocks) are often
preceded by one or more foreshocks in the days to seconds
before the mainshock and are followed by aftershock
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Fig. 7. An cxample of a mainshock event with foreshock and aftershock
sequences. Fig. 7a gives earthquake magnitude against time relative to the
mainshock. The mainshock consisted of two discrete subevents that were
separated by an interval of 0.5 seconds in which no slip occurred (Fig.
7b). Slip in the mainshock subevent 1 covered a portion of the foreshock
region (dotted lines) and subevent 2 extended over a portion of the
subevent 1 slip region.  Model conditions are g=20-80MPa,
D.=.00001m, A=0.001 and 5gp =1mys,

sequences that may last for a year or more. In addition the
larger events, in particular, often consist of a cluster of
subevents that are separated by short intervals in which no
slip occurs. The computer code treats events separated one
second or less as a single event, since such occurrences in
nature would generally be recorded and treated as a single
complex earthquake. Most simulated aftershocks occur
cutside the perimeter of the mainshock, but some
aftershocks originate within the region of mainshock slip.
Similarly, mainshocks tend to nucleate outside of the slip
region of foreshocks. However, mainshock slip often
propagates to include all or part of the foreshock source.
Often, foreshocks have their own aftershock sequence as
shown by the example of Fig. 7a.



Because the range of possible magnitudes is rather small
in the present model, there are relatively few foreshocks and
aftershocks associated with any single mainshock. The
small numbers result in considerable variability in the details
of foreshock and aftershock sequences. To describe the
temporal characteristics of clustering, composite histories of
activity were constructed by stacking seismic activity prior
to and following several mainshocks relative to the
mainshock occurrence time. The catalogs of simulated
events were scanned for events M>M,,;, subject to the
added condition that no other mainshocks events occurred
within the aftershock time interval + ¢,

=40 a9
T

obtained previously (Dieterich, 1994} from analytic solution
for rate of earthquake production following a stress step. For
this group of ‘mainshocks’ the numbers of earthquakes for
time bins relative to the times of the mainshocks were
counted, independent of distance to the mainshock. The
stacked sequences of Fig. 8 employ a minimum mainshock
magnitude of M5.7 which is one magnitude unit larger than
the lower magnitude cutoff in the simulations. The plots
give the number of events less the expected number (in the
absence of clustering) in a time interval normalized by the
number of mainshocks (e.g. (Nevenss-Nexpect) Nmain)- In
this case Nexpect is the observed background rate divided by
the time interval. The creation of composite sequences is
not satisfactory for simulations with A>0.005 because the
magnitude vs frequency distributions for those simulations
provide too few large events for stacking,

By varying degrees of development, foreshock and
aftershock sequences are apparent in all simulations
(A=.00001 to A=.003). Comparable results were obtained
with uniform and heterogeneous o. For very small values
of A (Fig. 8a) clustering all but disappears and is of very
short short duration. With increasing A (Figs. 8b, 8c, 8d)
the numbers of foreshocks and aftershocks increase as do the
durations of the clusters about the mainshock. Aftershock
duration and its dependence on A are in general agreement
with the relation of Eq.(19).

Figure 9 gives the rate of seismic activity following any
prior earthquakes by cumulative elapsed time and distance
interval from the prior earthquake. The rate data are
normalized by the rate in the absence of clustering. Hence,
if there is no clustering, all ddta will have a normalized rate
of 1. The distance intervals are normalized by the radius of
the first event of each pair, obtained assuming a circular slip
area equal to the observed area. Each data set shows
significant clustering of earthquakes characterized by an
interval in which rate decays by the Omori aftershock decay
law

R (L)ﬂ.
t

The simulations show a tendency for p to decrease slightly

as A increases with p~1.0, p<£9, and p~<8 for A =

{20
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Fig. 8. Composite plots of earthquake clustering formed by stacking the
records of seismic activity relative to mainshock times. The plots show
events in excess of the background rate, normalized by the number of
mainshocks, Mainshock magnitudes are =57 which is one magnitude unit
larger than thc minimum magnitude in the simulations. These simulations
employed heterogeneous ¢ randomly assigned to fault cells from a
uniform distribution in the range 20 to 80MPa. Simulations with uniform
© give similar results. Because aftershock duration t, depends on A,
different time scales are employed for 9a, 9b, 9¢ and 9d which have A=
.00001, .0001, .001 and .003, respectively. Also note the use of different
vertical scale for Fig. 9d.

0.0001, .001 and .007, respectively. The characteristic
times for rates to return to the background rate also agree
with ¢, of Eq.(19). Fall-off of the clustering statistic with
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separation distance is particularly strong in simulations with
larger values of A (Fig. 9¢).
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5 Discussion and Conclusions

A model capable of rapid deterministic simulation of
earthquakes which reproduces the statistical characteristics of
earthquake catalogs, including earthquake clustering, would
provide a useful tool for investigating the processes
controlling earthquake occurrence. Applications might
include simulations of specific fault systems, tests of
physical models, interpretation of catalogs statistics in terms
of physical parameters and investigation of the time-
dependent component of earthquake probabilities. The model
presented here appears to have made some progress toward
this goal and is amenable to generalization to multiple
interacting faults with complex geometry.

The model incorporates constitutive properties of faults
from laboratory experiments and long-range elastic
interactions among fault elements. Though based on highly
idealized representations of faulting processes, it preserves
characteristics of models that are vastly more
computationally intensive. These include time-dependent
nucleation of unstable slip and self-similar, crack-like
growth of slip instabilities on surfaces with uniform initial
properties. The time- and stress-dependent break-down of
fault strength prior to instability results in a zone of State 1
slip ahead of the propagating earthguake rupture (for
example, Fig. 3). This feature of the simulations is the
frictional counterpart of the damage zone that moves ahead of
fractures in brittle materials (Lawn and Whilshire, 1975). In
addition, the model generates a mix of event magnitudes that
appears to be analogous to the characteristic frequency-
magnitude distributions in nature. However, the limited
magnitude range of the simulations and the inhibition of
large magnitudes resulting from the use of K restricts
detailed investigation of magnitude statistics.

The rupture process on faults with heterogeneous
conditions, inherited from prior slip events are more
complex than events on uniform faults. The appearance of
restricted regions of slip resembles, in some ways, the
narrow zones of short duration slip inferred by Heaton
(1990). However, the width of the slip zones scales by cell
size. Use of a smaller grid spacing simply reduces the
dimensions of the zones of active slip. Multiple-event
mainshocks are frequently seen in the simulations and appear
to have counterparts in complex large earthquakes. In
addition, Vidale et. al (1994) present evidence for time-
dependence of the healing process and smaller discrete
subevents in small earthquakes. The formation of narrow
zones of slip and the phenomena of multiple subevents
carthquakes originate from the introduction of the time-
dependent State 1 slip. Both effects become more prominent
as the controlling constitutive parameter A increases.

The most noteworthy new feature of earthquake sequences
simulated with this model is the strong clustering of events
obeying the Omori decay law (Eq. 20). The simulated
sequences include foreshocks, aftershocks and earthquakes
consisting of multiple subevents. Clustering in the model
arises from the vse of State 1 slip to describe time-dependent
earthquake nucleation. The stress change caused by an



earthquake perturbs the rate of earthquake activity for
subsequent events over the characteristic time f,. The
independence of ¢, on earthquake magnitude and its inverse
dependence on stressing rate, Eq.(19) are both supported by
aftershock data (Dieterich, 1994). This is in contrast to
alternate mechanisms for aftershocks and clustering based on
viscoelastic stress transfer or diffusion processes that alter
fault strength or stress. The characteristic times for
aftershock duration of the alternative models are insensitive
to stressing rates, but dependent on a characteristic
dimension which would scale with earthquake magnitude
(such as rupture length).

The controlling constitutive parameter for time-dependent
nucleation is A, the coefficient to the direct slip speed
dependence of fault slip of Eq.(5). As A approaches zero
the stress interval for self-driven time dependent nucleation
decreases (Fig. 2) and approaches instantaneous onset of
instability at a stress threshold. In this case the stress
threshold is the steady-state friction. Similarly, clustering
duration and of numbers of clustered events have been shown
to depend on A (Fig. 8 and Fig. 9) and approach zero as A
becomes very small (Fig, 8).

Generally, simulations that most nearly resemble
earthquakes in nature were obtained with rather small values
of A. The slope of the frequency distribution of event
magnitudes (Fig. 6) from simulations with A<0.001 is
comparable to the usual earthquake result of b~1.
Similarly, the ratios of the numbers of foreshock and
aftershocks to the number of mainshocks in simulations
with A= 0.001 (Fig. 8) are roughly comparable to
earthquakes in nature. The data of Fig. 8c, with A=0.001,
yield 1.6 aftershocks per mainshock, for the case where the
minimum mainshock magnitude is at least one magnitude
unit larger than the minimum earthquake aftershock
magnitude. The comparable aftershock count for earthquakes
in California is 1.2 aftershocks per mainshock (Reasenberg
and Jones, 1989; Reasenberg, 1985). The same model
(A=.001, Fig. 8¢) yields 0.26 foreshocks per mainshock.
This appears to be roughly consistent with the results of
Jones, 1984) and Savage and Depolo (1993) who find that 35
percent to 70 percent of earthquakes in California and Nevada
are preceded by foreshocks. However, caution should be
exercised in comparing these observations to the model
because the model count of foreshocks per mainshock is not
directly equivalent to the foreshock statistic. Models that
employ A>0.003 result in greatly intensified clustering that
appears to be well in excess of observations.

The plots of clustering by time and distance (Fig. 9),
particularly for simuiations with A=.001-.007 (Fig. 9b,
9c.), are very similar to-the results obtained by Kagan and
Jackson (1991) from analysis of several regional and
worldwide earthquake catalogs. The spatial effect arises from
the characteristic fall-off of stresses around an earthquake
source and the stress sensitivity of nucleation times.
Simulations with small A (Fig. 9a) appear not to show the
spatial dependence. This may be related to the increasing
sensitivity of nucleation to stress perturbations as A
becomes small.
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Laboratory measurements of constitutive parameters A
and B generally give values in the range 0.005 to 0.015
with B/A<1.5. By comparison, A~0.001 in the preferred
simulations is unusuvaily low and yields B/A~15 (B is
always fixed at 0.015). This discrepancy is thought to
originate from the coarse division of the fault into discrete
cells which results in under representation of the stress
concentration ahead of the propagating slip region. The
stress interval for State 1 slip which must be overcome to
initiate unstable slip increases with A. With increasing A,
immediate propagation of slip is progressively replaced by
delayed instability in adjacent elements resulting in
increasing clustering and enrichment of small events. Slip
events are usually unable to propagate beyond the initiating
element in models with A20.008. In contrast, detailed
simulations which properly represent the stress concentration
at the edge of the actively slipping region have no difficulty
in representing the growth of slip instabilities on faults with
smaller ratios of B t0 A (Tse and Rice, 1986; Stuart,
1988; Okubo, 1989).

As a consequence of this limitation, the model in its
present form is inappropriate for direct quantitative
estimations of constitutive parameters from earthquake
statistics. However, the model does provides a well
documented and physically motivated foundation for
simulation of earthquake catalogs with clustering. A goal
of future development of the mode! will be to improve the
criteria for expansion of earthquake slip to permit
quantitative investigation of physical parameters from
statistical measures of earthquake occurrence.
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