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Abstract. The transfer of a passive tracer in inhomogeneous
turbulent flow is investigated. Starling from Lumley’s
constitutive equation, we derived an expression for the ratio
between the effective eddy diffusivity £ and eddy diffusivity
K as a function of three length scales characterizing the local
turbulence structure, flux variations and turbulence
inhomogeneities. The theoretical predictions for the
one-dimensional case of inhomogeneous symmetric
turbulence were validated through a comparison with the
numerical results of a Lagrangian particle model simulating
a wind tunnel experiment of dispersion in the lee of an
idealized two-dimensional hill. A qualitative agreement is
reached between the theoretical evaluation of K and the value
obtained from the numerical simulation.

1 Introduction

The determination of tracer fluxes in turbulent flows is a key
task in many applications, ranging from geophysical flows to
engincering processes.

The transfer of a tracer in a turbulent flow is known 1o be a
function of the characteristics of the flow itself, the location
of the source in the flow and the travel time of the tracer from
the source to the receptor. In  homogeneous turbulence,
dispersion is therefore dependent only on the source-receptor
distance (Taylor, 1921), whereas in general the existence of
inhomogeneities leads to the need for considering the ratio

- between the scale of the inhomogeneity itself and the scales
characterizing the dispersion (for instance, the plume cross
section, in the case of dispersion from an elevated point
source). By way of example, broad plumes (of lateral scale
greater than the typical scale of the inhomogeneity) released
from a point source are found to behave differently from
narrow piumes, becanse the former experience different
turbulent intensities on opposite sides (see Hunt, 1985).

Correspondence to: E Tampieri

Inhomogeneitics are  frequently  encountered  in
environmental and engineering turbulent flows, where
homogencous conditions are really the exception. It is
common in Eulerian schemes for computation of dispersion
in turbulent flows to model the urbulent flux of a passive
scalar cu; as proportional to the negative of the gradicnt of
the mean concendration:

— 5 dC
cu; =—-K ja—xJ (1)
where u; is the velocity fluctuation around the mean U, along
direction x{i =1,2,3), ¢ is the concentration fluctuation
around its mean C, and K ;; 15 the so called effective eddy
diffusivity. (In higher order closures, this hypothesis is usually
applied to the highest order moments described: see, for
instance, Sykes et al., 1984). This requires the specification a
priori of the effective eddy diffusivity, which usually has to
be done on empirical grounds.

The general relation between flux and gradient of the mean
concentration of a passive scalar in a turbulent flow has been
exploited by Lumley (1975) for the one-dimensional case.
Recently Wyngaard and Weil (1991) (hereinafter WW) have
applied it to a convective boundary layer (assumed to be
homogencous along the vertical), in order to investigate the
counter-gradient transport and its relation with the skewness
of the vertical velocity.

This paper examines the approach of Lumley (1975) and
WW inorder to apply it to a one-dimensional inhomogeneous
situation. We obtain an expression for the ratio between the
effective eddy diffusivity of a passive tracer and the eddy
diffusivity K =T (where T is the Lagrangian integral time
scale of the flow), as a function of the three length scales
characterizing the local turbulence structure (the integral
scale}, the flux variations and the turbulence inhomogeneities.

The theoretical results are then compared with numetical
simulations of tracer dispersion in a boundary layer perturbed
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by the presence of a hill. The simulations are made by means
of a Lagrangian random flight model (Tinarelli et al., 1994),
which allows the direct determination of the tracer flux . The
resulting effective eddy diffusivity is characterized by the
same features that are predicted by the theory; the local details,
however, are affected by the complexities of the simulated
flow.

2 The flux-gradient relationship in one dimensional
complex flows

Let us summarize the main steps in the derivation of the
flux-gradicent relationship in a complex turbylent flow. Under
conditions of stationary turbulence, we wilk consider transport
-in the x direction only, across the plane x =0, The tracer
concenfrationattimer is C(x, t); we assume that the Reynolds
number of the flow is infinity, so molecular viscosity is
neglected and the concentration of a fluid particle maintains
its value constant in time. We note that, while the assumption
of an infinite Reynolds number is a valid approximation for
calculating mean concentrations and fluxes, it would not be
valid for calculating higher order moments of ¢.

The net integrated flux at time ¢ is given by the number of
fluid particles that have reached at time ¢ the points in the
range (x,x +dx) on the right of the point x, = 0, starting at
time ¢ = ¢, from any point X atthe left of the origin, weighed
withits concentration (X, #), minus the particles that crossed
the point x, = 0 in the opposite direction. Let P(x,f{ X, ) dx
be the probability that particles leaving X at t=f, arrive al
time ¢ in the interval (x, x+dx). The net integrated flux

F=J{CUd' = cuds’+[; CTdt’ is given by:

0 o
F=f dxf dr CX, 1) P(x, 11X, 1)
—oa ]

—f‘mdx fodx COL ) Pt X, 1) @)
0 e

For the sake of simplicity, we consider the case U =0 ; thus,
Eq. (2) also defines the turbulent integrated flux.

In order to make explicit the dependence of the flux on the
inhomogeneities of the turbulent field (and of the concen-
tration field) we follow the Lumley {1975) derivation,

We define the source-receptor distance { = x — X, substitute
it to x (at fixed X) and integrate first on X (i.e. on all the
receptors lying within a distance { from the point x, = 0) and
subsequently over all the values of {. Eq. (2) then becomes:

+oo 0
F:_L dcf_chC(X,fu)p(XJrg,,,X,,o) 3

Let us assume that the integrand, as a function of X, may be
developed as a series about the origin

CX.tyPX+Ct1X,t)

BX "

E [CHHPE+LIX L (@)

so that Eg. (3) becomes

= (-1)y &
F= X niax CEH
<[ TrrPace g X ag,, )

Because C(X,#) does notappear in the integral, the integral

itself muost be considered as the (r+ 1)th moment of the
distances { over all the possible rcalizations of flow
trajectories leaving the origin at time £, These moments are
computed over all the realizations of the trajectories (not
conditioned by the source distribution) and this factis relevant
for the developments below; it can be used as long as Eq. (4)
is valid (and formally within distances defined by its
convergence radius).

The instantaneous flux at time ¢ is given by the time
derivative of Eq. (5). After substituting C(0,#) with its
ensemble mean value C and setting its coefficient to zero
(because turbulent flux does not depend on the absolute value
of the concentration), the following expression resulgs:

Gio§ & nt dC
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Hereinafter, the spatial derivatives of C and of 9("/dt are
assumed to be evaluated in the origin.
In homogeneous turbulence, Eq. (6) reduces to:

aW d2n -+ 1?
S @2n+2)l 9 gxE e
(where odd moments of the displacement { have been
neglected due to symmetry constraints) and can be compared
with the traditional assumption (Monin and Yaglom, 1971,
Eqgs. (10.48) and (10.53)):

- 19%dC
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The cxpression for the effective eddy diffusivity of 2 tracer
is:
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Equation (9) helps in understanding the structure of the
effective eddy diffusivity. In fact, if we consider the four terms
of the RHS, we find that: the first term reduces to the eddy
diffusivity X in homogeneous, Gaussian turbulence; the
second accounts for the effect of the high order moments of
the velocity (we shall show that 9{"/ot is proportional to the
n-th moment of the velocity), coupled with the high order
derivatives of the mean concentration profile and is also
presentin homogeneous conditions (note that in homogeneous
turbulence, the odd moments of the velocity may be con-
sidered negligible, but not the even ones); the third depends
only on the inhomogeneities of the probability density
function of the velocity, and is thus characteristic of the
presence of spatial variations of the structure of the flow; the
fourth represents the coupling between inhomogeneity and
high order derivatives of the concentration.

As noted by WW, it is difficult in general to truncate Eq.
(9) on a rational basis, whereas in some cases the dynamical
constraints allow the specification of the shape of the flux
profile. The observations, on the other hand, often suggest
possible simple shapes. In such conditions, the truncation is
possible and the effective eddy diffusivity turns out to be
expressedin terms of a series containing the spatial derivatives
of the flux. To this end, it is necessary to write down an
equation for dC/dX . This can be done by repeated differ-
entiation of Eq. (6), by truncating differentiation of the
concentration gradient to a given order and then solving the
algebraic system, where the known terms are the derivatives
of the flux. To account for the { moments up to the fourth
order, we choose n <3 in Eq.(6). The resulting expression,
truncated to the second order derivatives of the flux, is:

E[ oY — 0, %05, Biva—Bsv J
dx oY oY B — Byv
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Equation (10} is a generalization of Eq. (33) by WW.

From Eq. (10) one can obtain an expression for the effective
eddy diffusivity in the most general case, as a function of the
turbulence features and the shape of the flux profile. Since our
interest here is in the structure of the flux-gradient rela-
tionship, and not in the details of its spatial dependence, we
chose to express the relationship in terms of some relevant
scales of the problem. If we assume that the flux is linear,
either becanse of the symmetry of the problem or as an ap-
proximation of observed flux profiles, a length scale of the
flux gradient may be defined:

__(deu Y!
LF =CH (d—X)
which may become both positive and negative. Morcover, we
define the length scale of the turbulence inhomogeneity:

—s(du )’
L = u2 —_—
dX
and the Lagrangian integral length scale of turbulence itself:

“eRl2

i=u*T

The ratio between the effective eddy diffusivity and the eddy
diffusivity may be expressed in terms of these scales. Instead
of writing the general expression, it seems more useful to
investigate two typical situations: the case of homogeneous,
skewed turbulence (the model of the atmospheric convective
boundary layer already considered by WW) and the case of
inhomogeneous, symmetric (non skewed) turbulence (a
model for the neutrally stratified boundary layer, of interest
in cases of intense wind over gently sloping terrain).

To apply the previous equations we need to evaluate the term
", which refers to Lagrangian quantities. We observe that {
represents the displacement from the origin x, = 0 in the time
interval ¢ —1,.

For the homogeneous case and under the assumption of linear
conceniration flux, the effect of L disappears; so we must
estimate only the terms (/3¢ and (/3¢ in Eg. (10).
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Following WW we write:

aa_E:22%=2f,;u(r')u—”<r>dr'=zﬁ
and

BC3_3C28C_3J j w( Dl u(de’dt” = Au u’T

— 3,32
where A, is an O(1) constant. By defining § =u’/u®", we
obtain:

K 11

7= [ EL_FS ] (11)
which is basically the same as Eq. (37) by WW.

For the inhomogeneous, symmetric case, we have to evaluate
the moments '6‘_@’8: (n even).

For the sake of simplicity, we consider the second moment
first. Let us split { into aterm {, due toa mean drift and a
fluctuation ¢’. In general, the drift term is a function of the
position of the particle, i.e. of the time, but we assume that it
is possible (o defing a representative value, under the
hypotheses that: 1) L is representative of the inhomogeneity
of the turbulence of the entire domain, 2) the inhomogeneity
i not too large. The latter hypothesis reguires:

l?.
A=E« 1

Thus, we have:

3 ac”?

ST TP+
where u, is a mean drift velocity and 9ot = AT (see
Appendix). The unknown coefficient A, accounts for the
inhomogeneity of the turbulence and of the position x, (in
homogeneous turbulence A,=2). The expression becomes:

a§2

3
—C"2ud(t ARG (12)

This eguation shows that aE’*‘xa: (and K, from Eq.(9) }is not
steady. We shall apply Eq.(12) for 7 —¢, of order 7. By writing

o’
—T
ox
we obtain:

uy =

Under the assumption that the inhomogeneity is not too large,
1t results that:

Yo

%EAzu(ta)zT (13)

From Eqs. (8) and (13), noting that in homogeneous
turbulence A, =2, we recognize the standard expression for
the turbulent transport of a tracer, with eddy diffusivity
K =uT.

The higher order moments can be written, in a similar way
as for the second one:

- —5nr2
£ =A, uZ Tt

Asin the case of the second moment, the unknown coefficient
A, accounts for the inhomogeneity of the turbulence (al-
though, when dealing with weak inhomogeneity, it can be
assumed to be of the same order as the homogeneons case
coefficient).

We note that with this approximation the flux ¢ may be
evaluated from Eq.(6) using Eulerian properties of the flow
ficld. The flux cu turns out to be a function of time (1 —1;).
This result is consistent with the choice made in Eq.(2) to
evaluate the flux using a fixed initial profile of concentration
C({X,t). To evaluale the flux using the present approx-
imations, we need to limit (¢ —¢,) to values of the order T,
S0 as to eliminate the drift terms. .
Finally, the ratio between the effective eddy diffusivity and
the eddy diffusivity for the case of inhomogeneous, symmetric
turbulence, is:

K_ 3+9G+18G°+20G° (14
K 348G +2()GZ—2LL—FG(1'+5G)

with G = g A, where g = A,w¥w? isameasure of the kurtosis
(thus normally greater than 3).

The resulting values of the ratio K/K are reported in Figs. 1
and 2 for the two cases above, Some general observations may
be appropriate. In both the cascs, K may be smaller or larger
than K ,itmay diverge and show negative values (the socalled
counter-gradient effect). Notice that when the integral length
scale goes to zero (i.e. T =0) the effective eddy diffusivity
becomes equal to the eddy diffusivity, independent of any
other effect (pure diffusive process, without memory effects).
Figure 1 clearly shows the importance of L, in determining
K <0 forthe homogeneous case. Counter gradient flux occurs
for strongly skewed flow coupled with Lp<0 (Le.
concentration flux pointing against its gradient). Analogously,
Fig. 2 shows that inhomogeneity coupled with L/L; >0 can
produce negative values of € (playing the same qualitative
role as skewness in the homogencdus case). To generate
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counter gradient flow, the following conditions are necessary:
i) turbulence must be inhomogeneous encugh (in fact A — 0
implies K/K - 1) and ii) the concentration flux scale L; must
be shorter than turbulence inhomogeneity scale L.

33

These results confirm that no simple flux gradient
relationship may be strictly assumed (o hold, even in quite
idealized cases. In particular, Eqs. (11) and (14) show that the
same qualitative behaviour occurs when taking into account
skewness in an homogencous flow and inhomogeneity in a
non-skewed flow,

3 The Lagrangian random flight model

The previous discussion has highlighted some general features
of the effective eddy diffusivity, worthy of investigation in
realistic situations, in order to test the relevance of the results
for practical applications.

As far the convective boundary layer is concerned, there is
no doubt as to its relevance (see, for example, WW). We now
aim to explore the case of a nentral boundary layer perturbed
by the presence of topography: i.e., the complex terrain case.
For this purpose, we perform some numerical experiments
with a Lagrangian particle model (Tinarelli et al., 1994), in
order to evaluate the effective eddy diffusivity £ in the wake
of an obstacle where large vertical inhomogeneities of
turbulence occur.

The model is based on the following equations:

VLD + V(1 + A

X(t+An=X[1) +If At

At At Y! Ar Y!
2T]{1+fJ +U.[1+f] (16}

where V; is the i-th component of the particle velocity, T, is

i

i=123) (15)

V{t+AD = V() [1

the Lagrangian time scale for the i-th velocity component and
i 1s the i-th component of a random forcing vector, picked
from a generic joint probability density function (p.d.f.)
P(U,, s 14e) - Equations (16} are a discretized form of the
Langevin equation (De Baas etal., 1986; Gardiner, 1990). In
these equations, random terms come from a generic 3-D
distribution that is not necessarily Gaussian. This allows us
to take into account: i} the cross-correlation terms between
different components of wind fluctuations; ii) the skewness
of the wind distribution in certain directions; iii) the spatial
variations of the twrbulence ficlds, both vertical and
horizontal.

The values of the distribution moments .y, are calculated
according to a numerical scheme developed, in the 3-D case,
by our team, starting from Thomson (1984) (Tampieri etal.,
1992; Tinarelli et al., 1994), Thomson’s model has been
criticized by many authors (Thomson, 1987; Sawford and
Guest, 1987), but the related problems have been discussed
by Tampieri et al. (1992), Two main objections have been
raised to this approach. Firstly, it was observed that a
non-Gaussian random forcing in the Langevin equation leads
to particle velocities which are discontinuous functions of
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dotted line indicates the source height.

time. It turns ont that if the random forcing is non-Gaussian,
the random process is no Ionger a continuous Markov process
(Gardiner, 1990, p. 46 and 81). This is of course quite
disappointing if the model aims to describe "real” fluid
particles. However, our purpose is to produce a concentration
fieldin a steady situation with no claim to making any realistic
simulation of the single realizations of the trajectories.
Secondly, Thomson (1987} also observed that the model may
be internally inconsistent. For example, even in homogencous
Gaussian turbulence we found that, if we truncate the model
at ((Ar) in order to reduce the complexity of the model itself,
the fourth moment of the random forcing |I* is zero instead of
3@2. For practical purposes, this problem can be by-passed
simply by ensuring the consistency of the moments taken into
account (here, e.g., t;, i, W, where i, j=1,2,3).

In this scheme the moments of the p.d.f. depend on the
measured moments of the wind and on the Lagrangian time

scales calculated following standard parameterization formu-
las (see Anfossi et al., 1992). Each particle velocity com-
ponent is split into a mean value and a fluctuation. Equations
" (16) are then transformed into new equations describing the
time evolution of the fluctuation terms (Anfossi etal., 1992),
The velocity moments and the Lagrangian time scales are
supposed to be known as a function of position in space and
time on a three-dimensional Eulerian grid as a result of
measurements orof a mathematical model, The grid is defined
in a system of terrain following coordinates. To obtain the
values of the velocity moments ata particle position, the model
atfirst translates the particle coordinaltes into this system and
then makes a linear interpolation using the values at the eight
corners of the grid cell to which the particle belongs.
As emphasised above, our interest was to study the case of a
perturbed boundary layer. To do this, the flow data collected
in dispersion experiments over a 2-D schematic hill carried
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Fig. 4. As in Fig. 3 but for the flat terrain case.

out in the EPA wind tunnel (Khurshudyan et al., 1981) were
used as input of the model and the resulting mean
concentration data proved to fit the measured ones quite well,
giving us some confidence in the skill of the model (Anfossi
etal., 1992; Tinarelli et al., 1994). In detail, we consider here
dispersion from clevated point sources placed at the
downwind base of this non-separating hill ( H/a = 1/8, where
H is the hill height and « its half length), because a large
wake develops in the lee region and noticeable variations of
the turbulence can be observed (the turbulence p.d.f. was
assumed to be Gaussian, as only the first and the second
moments were measured), Two dispersion simulations with
source height h,=H =0.117 m and h, =H/4 respectively,
were performed. By way of comparison we also carried out
twoexperiments with the same source heights in the flat terrain
case. The number of particles used in the simulations is
approximately 10°,

The computational domain was divided into 3-D boxes
(sizing 0.050x2x0.025 m* ) and the concentration profiles
were evaluated assigning at each box centre the number of
particles contained in the box itself. The vertical concentration
gradients were obtained from the smoothed vertical
concentration profiles,

The turbulent concentration flux cu, is defined asan Eulerian
quantity, whereas the particle trajectories in the model are
given by calculating the Lagrangian velocities of the particles
at each position of the domain. Van Dop et al. (1985) stated
the following relationship with the mean concentration C and
the ensemble averaged Lagrangian velocities <V, >

CU+cm=C<V,>
from which we can calculate the turbulent concentration flux
(notice that T, is the Eulerian velocity (model input} and V,
the Lagrangian velocity (model output)).
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4 Results of the numerical simulations and discussion

Some sample results of the numerical simulations are reported
in Figs. 3 to 6, illustrating the behaviour of low and high
sources, with and without the topography. Each figure shows
the wvertical profile of the normalized concentration
determined by the model (both the measured cell
concentrations and the smooth fitting line used in the
determination of the gradient), the vertical concentration
gradient and the turbulent flux as function of height,
Moreover, the turbulent flux is plotted against the
concentration gradient (as suggested by Sreenivasan et al.
(1982). It should be noted that alf the concentration data have
been normalized by C,, which is the maximum mean
concentration at the considered downstream position from the
source ( x; ) and labelled with an asterix: i.e. C*=C/C,, .

As a rule, we notice that if the gradient and the flux change
their sign at different heights, thcn the effective eddy
diffusivity diverges. This does not seem (0 occur
systematically in our experiments. In the turbulent
flux-concentration gradient plot, the experimental points in
the second and fourth quadrant evidence the fact that the
effective eddy diffusivity ( K5 in this case) is positive;
otherwise, negative K,, occur. The plot would display a
straight line through the originif K ;, were aconstant; instead,
an e shape (with inclined major axis) with the central double
point in the origin means that K, is a multi-valued function.
In the presented cascs, K, generally behaves as a
multi-valued, positive function; evidence of negative values
occurs essentially in the case of Fig. 3 (the case of Fig. 6 seems
due to numerical approximations). It can be remarked that
with increasing distance from the source, the plot becomes
more and more similar to aline, within the experimental errors.
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Fig. 6. As in Fig. 5 but for the flat terrain case.

Summarizing the results, it appears that the most evident
effects of the presence of the topography occur for the lower
source. In the other cases too, the eflects of the vettical
inhomogeneity of turbulence give rise to eddy transport
features dependent on the'source height.

The effective eddy diffusivity for our simulations may be
evaluated nsing the computed concentration gradients and
eddy fluxes described in the previous paragraph. The resulting
values for the same four cases as above are reported in Fig. 7.
It should be underlined that the resulting K .(z) are quite
irregulaz, due to numerical problems (we would expect
improvements if the number of particles was increased, but

this would give rise 1o prohibitive computer times).

In each panel of the Figure three quantities are plotted: the

effective eddy diffusivity K ,,, the eddy diffusivity K, =_u;2T3

as suggested by Khurshudyan et al. (1981) in their Eulerian

* dispersion model (and used to evalnate the 7', as input to our

model), and the eddy viscosity K, = —u,u4;/(dU,/0z) measured
in the wind tunnel. We observe that for the lower source inflat
terrain K,, matches K, reasonably well, whereas the
presence of the hill produces a considerable increase in K,
abovc the source height, with a possible divergence point just
below. For the higher source in both cases K, is almost
constant with height, and markedly less than X, Moreover,
in the proximity of the source height K., and K,; have quite
similar values, independent of the presence of the obstacle; in
fact, the release point and the range where the vertical profiles
of K, and K, are evaluated, are located in a region
characterized by a similar turbulent structure (sec Fig. 4d in
Tinarelli et al., £994), Note that in the same region K, has a
different behaviour , due to the large differences occurring in
the mean horizontal wind shear (strongly influenced by the
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Fig. 7. Vertical profiles of K, ( A-A), Ky (— ) and measared K, (o) for the four cases under examination: a) and b)
hill cases; ¢) and d) flat terrain cases. The dotted line indicates the source hei ght.

presence of the obstacle). In general, the eddy diffusivity used
in the Eulerian model does not fit our K ,. The eddy viscosity
for momentum fits X,; in the flat terrain cases, whereas it is
lower in the hill cases. Broadly speaking, all these quantitics
are in agreement only if the plume has reached the ground and
an equilibrium surface layer has developed.

Figure 8 shows, for the casc of the lower source in the
presence of a hill, a comparison between the ratio K,/K.,
determined from the numerical experiments and the one
obtained from Eq. (14) (which accounts only for the
inhomogeneities along the vertical) with T, < (r —#,) < 375
The choice of the time interval in the application of the Eq.
(14) is due to the fact that in the numerical experiment we
average the concentration profile and the flux on cells which
are crossed from a fluid particle in time between T, and 37,

The comparison suggests that the broad features, as well as
the order of magnitude, of the ratio are captured by the simple
approximation of the one-dimensional approach,

5 Conclusions

Qur investigation has outlined many complexities in the
flux-gradient relationship in the presence of inhomogeneous
turbulent flows. The theoretical predictions for the
on¢-dimensional case of inhomogeneous symmetric
turbulence are fairly consistent with the more detailed results
derived from a Lagrangian particle dispersion model, applied
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in order to simulate a wind tunnel experiment of dispersion
in the lec of a model hill.

A comment on the applicability of Egs. (11) and (14} is
worthwhile. The theoretical results are approximate in that
they use a formulation strictly valid for long diffusion times
( £ »T ). In practicc, the evaluations of the momenls are
qualitatively correct for ¢ =7, as can be verified by direct
computation. Thus, we have applied our formulation in a
diffusion range consistent with this Iast approximation. On
the other hand, this region is probably the most interesting in
that the tracer plume has grown sufficiently and at the same
time the concentration gradients are still large. For instance,
for the lower source, we investigated the range where
maximum surface concentration occurs, which is the position
of large applicative interest.

Consistent with the results of other authors {Sawford and
Guest, 1987; Wilson et al., 1993), the Lagrangian particle
model is able to describe dispersion in complex flow, where
the effective eddy diffusivity may become negative. Of
course, this fact mainty depends on the non-local character of
turbulent transport, which cannot be accounted for simply by
using a local flux-gradient relationship.

In applications, the effect of turbulent transport over hilly
terrain may be of relevance to many modelling projects and
this stresses the need for an accurate knowledge of the spatial
distribution of the turbulence probability density function.
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Appendix A

In homogeneous turbulence (see, for example, Monin and
Yaglom, 1971, p. 615), for t =T, we can write the pd.f.
P(L,r10,0)of { as:

PL10.0)=—exp| -5
T (AnDiy? 4Dt

where D = u°T.
The n-th moment is, by definition:

&= [vrgnooa

—sni2
ZAR u2 Tnf2 tnrﬁ

where A, =2"%(n—1)(n—3)...[n—(n—1)] for n evenand
A,=0 for n odd.
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