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Abstract

This paper presents the new version 2.1 of the Kinetic PreProcessor (KPP). Taking
a set of chemical reactions and their rate coefficients as input, KPP generates For-
tran90, Fortran77, Matlab, or C code for the temporal integration of the kinetic system.
Efficiency is obtained by carefully exploiting the sparsity structures of the Jacobian and5

of the Hessian. A comprehensive suite of stiff numerical integrators is also provided.
Moreover, KPP can be used to generate the tangent linear model, as well as the con-
tinuous and discrete adjoint models of the chemical system.

1. Introduction

Next to laboratory studies and field work, computer modeling is one of the main10

methods to study atmospheric chemistry. The simulation and analysis of com-
prehensive chemical reaction mechanisms, parameter estimation techniques, and
variational chemical data assimilation applications require the development of ef-
ficient tools for the computational simulation of chemical kinetics systems. From
a numerical point of view, atmospheric chemistry is challenging due to the coex-15

istence of very stable (e.g., CH4) and very reactive (e.g., O(1D)) species. Sev-
eral software packages have been developed to integrate these stiff sets of ordi-
nary differential equations (ODEs), e.g., Facsimile (Curtis and Sweetenham, 1987),
AutoChem (http://gest.umbc.edu/AutoChem), Spack (Djouad et al., 2003), Chemkin
(http://www.reactiondesign.com/products/open/chemkin.html), Odepack (http://www.20

llnl.gov/CASC/odepack/), and KPP (Damian et al., 1995, 2002). KPP is currently be-
ing used by many academic, research, and industry groups in several countries (e.g.
von Glasow et al., 2002; von Kuhlmann et al., 2003; Trentmann et al., 2003; Tang
et al., 2003; Sander et al., 2005). The well-established Master Chemical Mechanism
(MCM, http://mcm.leeds.ac.uk/MCM/) has also recently been modified to add the op-25

tion of producing output in KPP syntax. In the present paper we focus on the new
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features introduced in the release 2.1 of KPP. These features allow an efficient sim-
ulation of chemical kinetic systems in Fortran90 and Matlab. Fortran90 is the pro-
gramming language of choice for the vast majority of scientific applications. Matlab
(http://www.mathworks.com/products/matlab/) provides a high-level programming en-
vironment for algorithm development, numerical computations, and data analysis and5

visualization. The Matlab code produced by KPP allows a rapid implementation and
analysis of a specific chemical mechanism. KPP-2.1 is distributed under the provisions
of the GNU public license (http://www.gnu.org/copyleft/gpl.html) and can be obtained
on the web at http://people.cs.vt.edu/∼asandu/Software/Kpp. It is also available in the
electronic supplement to this paper at http://www.atmos-chem-phys.org/acpd/5/8689/10

acpd-5-8689-sp.zip.
The paper is organized as follows. Section 2 describes the input information nec-

essary for a simulation, and Sect. 3 presents the output produced by KPP. Aspects of
the simulation code generated in Fortran90, Fortran77, C, and Matlab are discussed in
Sect. 4. Several applications are presented in Sect. 5. The presentation focuses on the15

main aspects of modeling but, in the interest of space, omits a number of important (but
previously described) features. For a full description of KPP, inculding the installation
procedure, the reader should consult the user manual in the electronic supplement.

2. Input for KPP

To create a chemistry model, KPP needs as input a chemical mechanism, a numerical20

integrator, and a driver. Each of these components can either be chosen from the
KPP library or provided by the user. The KPP input files (with suffix .kpp) specify the
model, the target language, the precision, the integrator and the driver, etc. The file
name (without the suffix .kpp) serves as the default root name for the simulation. In this
paper we will refer to this name as “ROOT”. To specify a KPP model, write a ROOT.kpp25

file with the following lines:
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#MODEL small_strato
#LANGUAGE Fortran90
#DOUBLE ON
#INTEGRATOR rosenbrock
#DRIVER general
#JACOBIAN SPARSE_LU_ROW5

#HESSIAN ON
#STOICMAT ON

We now explain these elements with the help of an example.

2.1. The chemical mechanism

The KPP software is general and can be applied to any kinetic mechanism. Here, we
revisit the Chapman-like stratospheric chemistry mechanism from Sandu et al. (2003)
to illustrate the KPP capabilities.

O2
hν→ 2O (R1)

O + O2 → O3 (R2)

O3
hν→ O + O2 (R3)

O + O3 → 2O2 (R4)

O3
hν→ O(1D) + O2 (R5)

O(1D) + M → O + M (R6)

O(1D) + O3 → 2O2 (R7)

NO + O3 → NO2 + O2 (R8)

NO2 + O → NO + O2 (R9)

NO2
hν→ NO + O (R10)
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The #MODELcommand selects a kinetic mechanism which consists of a species file
(with suffix .spc) and an equation file (with suffix .eqn). The species file lists all the
species in the model. Some of them are variable (defined with #DEFVAR), meaning
that their concentrations change according to the law of mass action kinetics. Others
are fixed (defined with #DEFFIX), with the concentrations determined by physical and5

not chemical factors. For each species its atomic composition is given (unless the user
chooses to explicitly ignore it).
#INCLUDE atoms
#DEFVAR

O = O;10

O1D = O;
O3 = O + O + O;
NO = N + O;
NO2 = N + O + O;

#DEFFIX15

M = ignore;
O2 = O + O;

The chemical kinetic mechanism is specified in the KPP language in the equation
file:

#EQUATIONS { Stratospheric Mechanism }
<R1> O2 + hv = 2O : 2.6e-10*SUN;20

<R2> O + O2 = O3 : 8.0e-17;
<R3> O3 + hv = O + O2 : 6.1e-04*SUN;
<R4> O + O3 = 2O2 : 1.5e-15;
<R5> O3 + hv = O1D + O2 : 1.0e-03*SUN;
<R6> O1D + M = O + M : 7.1e-11;25

<R7> O1D + O3 = 2O2 : 1.2e-10;
<R8> NO + O3 = NO2 + O2 : 6.0e-15;
<R9> NO2 + O = NO + O2 : 1.0e-11;
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<R10> NO2 + hv = NO + O : 1.2e-02*SUN;

Here, each line starts with an (optional) equation tag in angle brackets. Reactions
are described as “the sum of reactants equals the sum of products” and are followed
by their rate coefficients. SUN is the normalized sunlight intensity, equal to one at noon
and zero at night.5

2.2. The target language and data types

The target language Fortran90 (i.e. the language of the code generated by KPP) is
selected with the command:

#LANGUAGE Fortran90

Other options are Fortran77 , C, and Matlab . The capability to generate Fortran9010

and Matlab code are new features of KPP-2.1, and this is what we focus on in the
current paper.

The data type of the generated model is set to double precision with the command:

#DOUBLE ON

2.3. The numerical integrator15

The #INTEGRATORcommand specifies a numerical solver from the templates provided
by KPP or implemented by the user. More exactly, it points to an integrator definition
file. This file is written in the KPP language and contains a reference to the integrator
source code file, together with specific options required by the selected integrator.

Each integrator may require specific KPP-generated functions (e.g., the produc-20

tion/destruction function in aggregate or in split form, and the Jacobian in full or in
sparse format, etc.) These options are selected through appropriate parameters given
in the integrator definition file. Integrator-specific parameters that can be fine tuned for
better performance are also included in the integrator definition file.
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KPP implements several Rosenbrock methods: Ros-1 and Ros-2 (Verwer et al.,
1999), Ros-3 (Sandu et al., 1997), Rodas-3 (Sandu et al., 1997), Ros-4 (Hairer and
Wanner, 1991), and Rodas-4 (Hairer and Wanner, 1991). For details on Rosenbrock
methods and their implementation, consult section IV.7 of Hairer and Wanner (1991).

The KPP numerical library also contains implementations of several off-the-shelf,5

highly popular stiff numerical solvers:

– Radau5:
This Runge Kutta method of order 5 based on Radau-IIA quadrature (Hairer and
Wanner, 1991) is stiffly accurate. The KPP implementation follows the original
implementation of Hairer and Wanner (1991), and the original Fortran 77 imple-10

mentation has been translated to Fortran 90 for incorporation into the KPP library.
While Radau5 is relatively expensive (when compared to the Rosenbrock meth-
ods), it is more robust and is useful to obtain accurate reference solutions.

– SDIRK4:
This is an L-stable, singly-diagonally-implicit Runge Kutta method of order 4.15

SDIRK4 originates from Hairer and Wanner (1991), and the original Fortran 77
implementation has been translated to Fortran 90 for incorporation into the KPP
library.

– SEULEX:
This variable order stiff extrapolation code is able to produce highly accurate so-20

lutions. The KPP implementation follows the one in Hairer and Wanner (1991),
and the original Fortran 77 implementation has been translated to Fortran 90 for
incorporation into the KPP library.

– LSODE, LSODES:
The Livermore ODE solver (Radhakrishnan and Hindmarsh, 1993) implements25

backward differentiation formula (BDF) methods for stiff problems. LSODE has
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been translated from Fortran 77 to Fortran 90 for incorporation into the KPP li-
brary. LSODES (Radhakrishnan and Hindmarsh, 1993), the sparse version of
the Livermore ODE solver LSODE, is modified to interface directly with the KPP
generated code.

– VODE:5

This solver (Brown et al., 1989) uses a different formulation of backward differen-
tiation formulas. The version of VODE present in the KPP library uses directly the
KPP sparse linear algebra routines.

– ODESSA:
The BDF-based direct-decoupled sensitivity integrator ODESSA (Leis and10

Kramer, 1986) has been modified to use the KPP sparse linear algebra routines.

All methods in the KPP library have excellent stability properties for stiff systems.
The implementations use the KPP sparse linear algebra routines by default. How-

ever, full linear algebra (using LAPACK routines) is also implemented. To switch from
sparse to full linear algebra the user only needs to define the preprocessor variable15

(-DFULL ALGEBRA=1) during compilation.

2.4. The driver

The so-called driver is the main program. It is responsible for calling the integrator rou-
tine, reading the data from files and writing the results. Existing drivers differ from one
another by their input and output data file format, and by the auxiliary files created for20

interfacing with visualization tools. For large 3D atmospheric chemistry simulations, the
3-D code will replace the default drivers and call the KPP-generated routines directly.

2.5. The substitution preprocessor

Templates are inserted into the simulation code after being run by the substitution
preprocessor. This preprocessor replaces placeholders in the template files with their25
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particular values in the model at hand. For example, KPP ROOTis replaced by the
model (ROOT) name, KPP REAL by the selected real data type, and KPP NSPECand
KPP NREACTby the numbers of species and reactions, respectively.

2.6. The inlined code

In order to offer maximum flexibility, KPP allows the user to include pieces of code in5

the kinetic description file. Inlined code begins on a new line with #INLINE and the
inline type. Next, one or more lines of code follow, written in Fortran90, Fortran77, C, or
Matlab, as specified by the inline type. The inlined code ends with #ENDINLINE . The
code is inserted into the KPP output at a position which is also determined by inline
type.10

3. Output of KPP

KPP generates code for the temporal integration of chemical systems. This code con-
sists of a set of global variables, plus several functions and subroutines. The code
distinguishes between variable and fixed species. The ordinary differential equations
are produced for the time evolution of the variable species. Fixed species enter the15

chemical reactions, but their concentrations are not modified. For example, the atmo-
spheric oxygen O2 is reactive, however its concentration is in practice not influenced
by chemical reactions.

3.1. Parameters

KPP defines a complete set of simulation parameters which are global and can be20

accessed by all functions. Important simulation parameters are the total number
of species (NSPEC=7 for our example), the number of variable (NVAR=5) and fixed
(NFIX=2) species, the number of chemical reactions (NREACT=10), the number of
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nonzero entries in the sparse Jacobian (LU NONZERO=19) and in the sparse Hessian
(NHESS=10), etc.

KPP orders the variable species such that the sparsity pattern of the Jacobian is
maintained after an LU decomposition and defines their indices explicitly. For our ex-
ample:5

ind_O1D=1, ind_O=2, ind_O3=3, ind_NO=4,
ind_NO2=5, ind_M=6, ind_O2=7

3.2. Global data

KPP defines a set of global variables that can be accessed by all routines. This
set includes C(NSPEC), the array of concentrations of all species. C contains vari-10

able (VAR(NVAR)) and fixed (FIX(NFIX) ) species. Rate coefficients are stored in
RCONST(NREACT), the current integration time is TIME, absolute and relative integra-
tion tolerances are ATOL(NSPEC) and RTOL(NSPEC), etc.

3.3. The chemical ODE function

The chemical ODE system has dimension NVAR. The concentrations of fixed species15

are parameters in the derivative function. KPP computes the vector A of reaction rates
and the vector Vdot of variable species time derivatives. The input arguments V and
F are the concentrations of variable and fixed species, respectively. RCTcontains the
rate coefficients. Below is the Fortran90 code generated by KPP for the ODE function
of our example stratospheric system:20

SUBROUTINE Fun (V, F, RCT, Vdot )
USE small_Precision
USE small_Params
REAL(kind=DP) :: V(NVAR), &

F(NFIX), RCT(NREACT), &
Vdot(NVAR), A(NREACT) &25
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! Computation of equation rates
A(1) = RCT(1)*F(2)
A(2) = RCT(2)*V(2)*F(2)
A(3) = RCT(3)*V(3)
A(4) = RCT(4)*V(2)*V(3)5

A(5) = RCT(5)*V(3)
A(6) = RCT(6)*V(1)*F(1)
A(7) = RCT(7)*V(1)*V(3)
A(8) = RCT(8)*V(3)*V(4)
A(9) = RCT(9)*V(2)*V(5)10

A(10) = RCT(10)*V(5)
! Aggregate function

Vdot(1) = A(5)-A(6)-A(7)
Vdot(2) = 2*A(1)-A(2)+A(3) &

-A(4)+A(6)-A(9)+A(10)15

Vdot(3) = A(2)-A(3)-A(4)-A(5) &
-A(7)-A(8)

Vdot(4) = -A(8)+A(9)+A(10)
Vdot(5) = A(8)-A(9)-A(10)

END SUBROUTINE Fun20

3.4. The chemical ODE Jacobian

The command #JACOBIANcontrols the generation of the Jacobian routine. The option
OFF inhibits the construction of the Jacobian. The option FULL generates the subrou-
tine Jac(V,F,RCT,JVS) which produces a square (NVAR×NVAR) Jacobian.

The options SPARSEROW and SPARSELU ROW generate the routine25

Jac SP(V,F,RCT,JVS) which produces the Jacobian in sparse (compressed
on rows) format. With the option SPARSELU ROW, KPP extends the number of
nonzeros to account for the fill-in due to the LU decomposition. The vector JVS
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contains the LU NONZEROelements of the Jacobian in row order. Each row I starts at
position LU CROW(I) , and LU CROW(NVAR+1)=LUNONZERO+1. The location of the
I -th diagonal element is LU DIAG(I) . The sparse element JVS(K) is the Jacobian
entry in row LU IROW(K) and column LU ICOL(K) . The sparsity coordinate vectors
are computed by KPP and initialized statically. These vectors are constant as the5

sparsity pattern of the Hessian does not change during the computation.
The routines Jac SP Vec(JVS,U,V) and JacTR SP Vec(JVS,U,V) perform

sparse multiplication of JVS (or its transpose) with a user-supplied vector U without
any indirect addressing.

3.5. Sparse linear algebra10

To numerically solve for the chemical concentrations one must employ an implicit
timestepping technique, as the system is usually stiff. Implicit integrators solve sys-
tems of the form

Px = (I − hγJ)x = b (1)

where the matrix P=I−hγJ is refered to as the “prediction matrix”. I the identity matrix,15

h the integration time step, γ a scalar parameter depending on the method, and J the
system Jacobian. The vector b is the system right hand side and the solution x typically
represents an increment to update the solution.

The chemical Jacobians are typically sparse, i.e. only a relatively small number of
entries are nonzero. The sparsity structure of P is given by the sparsity structure of the20

Jacobian, and is produced by KPP with account for the fill-in. By carefully exploiting the
sparsity structure, the cost of solving the linear system can be considerably reduced.

KPP orders the variable species such that the sparsity pattern of the Jacobian is
maintained after an LU decomposition. KPP defines a complete set of simulation pa-
rameters, including the numbers of variable and fixed species, the number of chemical25

reactions, the number of nonzero entries in the sparse Jacobian and in the sparse
Hessian, etc.
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KPP generates the routine KppDecomp(P,IER) which performs an in-place, non-
pivoting, sparse LU decomposition of the matrix P. Since the sparsity structure ac-
counts for fill-in, all elements of the full LU decomposition are actually stored. The
output argument IER returns a nonzero value if singularity is detected.

The routines KppSolve(P,b,x) and KppSolveTR(P,b,x) use the LU factoriza-5

tion of P as computed by KppDecomp and perform sparse backward and forward sub-
stitutions to solve the linear systems Px=b and PT

x=b, respectively. The KPP sparse
linear algebra routines are extremely efficient, as shown in Sandu et al. (1996).

3.6. The chemical ODE Hessian

The Hessian contains second order derivatives of the time derivative functions. More10

exactly, the Hessian is a 3-tensor such that

HESSi ,j,k =
∂2(Vdot)i
∂Vj ∂Vk

, 1 ≤ i , j, k ≤ NVAR . (2)

With the command #HESSIAN ON, KPP produces the routine
Hessian(V,F,RCT,HESS) which calculates the Hessian HESS using the vari-
able (V) and fixed (F) concentrations, and the rate coefficients (RCT).15

The Hessian is a very sparse tensor. KPP computes the number of nonzero
Hessian entries (and saves this in the variable NHESS). The Hessian itself is rep-
resented in coordinate sparse format. The real vector HESSholds the values, and
the integer vectors IHESS I , IHESS J , and IHESS K hold the indices of nonzero en-
tries. Since the time derivative function is smooth, these Hessian matrices are sym-20

metric, HESS(I,J,K) =HESS(I,K,J) . KPP generates code only for those entries
HESS(I,J,K) with J≤K.

The sparsity coordinate vectors IHESS I , IHESS J , and IHESS K are computed by
KPP and initialized statically. These vectors are constant as the sparsity pattern of the
Hessian does not change during the simulation.25
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The routines Hess Vec(HESS,U1,U2,HU) and HessTR Vec(HESS,U1,U2,HU)
compute the action of the Hessian (or its transpose) on a pair of user-supplied vectors
U1, U2. Sparse operations are employed to produce the result vector HU.

3.7. The stoichiometric formulation

The command #STOICMAT ONinstructs KPP to generate a stoichiometric description5

of the chemical mechanism, which includes the stoichiometric matrix, the vector of re-
actant products in each reaction, and partial derivatives with respect to concentrations
and to rate coefficients.

The stoichiometric matrix STOICMis constant and sparse. It is represented in sparse,
column-compressed format. The routine ReactantProd computes the reactant prod-10

ucts for each reaction. The ODE function is given by the rate coefficients times the
reactant products. The routine JacReactantProd computes the Jacobian of reactant
products vector in row compressed sparse format.

3.8. The derivatives with respect to reaction coefficients

The stoichiometric formulation allows a direct computation of the derivatives with re-15

spect to rate coefficients. The routine dFun dRcoeff computes the partial derivative
of the ODE function with respect to a subset of the reaction coefficients. Similarly
one can obtain the partial derivative of the Jacobian with respect to a subset of the
rate coefficients. More exactly, with the subroutine dJac dRcoeff KPP generates the
product of this partial derivative with a user-supplied vector.20

3.9. Utility routines

In addition to the chemical system description routines discussed above, KPP gener-
ates several utility routines.

Probably the most often used subroutines are Initialize which sets the initial val-
ues and Update RCONSTwhich updates the rate coefficients, e.g. according to current25
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temperature, pressure, and solar zenith angle.
Reaction rates are calculated for all reactions of the chemical mechanism. This

information is available to the user and could be used, for example, to analyze the
chemical mechanism and identify important reaction cycles as shown by Lehmann
(2004).5

It was shown in Sect. 2.1 that each reaction in the #EQUATIONSsection may start
with an equation tag. With the command #EQNTAGS ON, KPP generates code that
converts an equation tag to the internal reaction number assigned by KPP. It is also
possible to obtain a string describing the chemical reaction. Thus the equation tags
can be used to refer to individual reactions.10

Shuffle kpp2user and Shuffle user2kpp convert a vector of concentrations in
KPP ordering to one in user ordering and vice-versa.

3.10. KPP directory structure

The KPP distribution will unfold a directory with the following subdirectories:

– src/ contains the KPP source code.15

– bin/ contains the KPP executable. The path to this directory needs to be added
to the environment $PATH$variable.

– util/ contains different function templates useful for the simulation. Each tem-
plate file has a suffix that matches the appropriate target language (.f90 , .f ,
.c , or .m). KPP will run the template files through the substitution preprocessor.20

Users can define their own auxiliary functions by inserting them into the appropri-
ate files.

– models/ contains the description of the chemical models. Users can define their
own models by placing the model description files in this directory. The KPP
distribution contains several models from atmospheric chemistry which can be25

used as examples for defining other models.
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– drv/ contains driver templates for chemical simulations. Each driver has a suffix
that matches the appropriate target language (.f90 , .f , .c , or .m). KPP will run
the driver through the substitution preprocessor. The driver template general
provided with the distribution works with all examples. Users can define their own
driver templates here.5

– int/ contains numerical time stepping (integrator) routines. KPP searches this
directory for the definition file specified by the command #INTEGRATOR. This
file selects the numerical routine (with the #INTFILE command) and sets the
function type, the Jacobian sparsity type, the target language, etc. Each integrator
template is found in a file that ends with the appropriate suffix (.f90 , .f , .c , or10

.m). The selected template is processed by the substitution preprocessor. Users
can define here their own numerical integration routines.

– examples/ contains several model description examples which can be used as
templates for building simulations with KPP.

– site-lisp/ contains the file kpp.el which provides a KPP mode for emacs15

with color highlighting.

4. Language-specific code generation

The code generated by KPP for the kinetic model description is organized in a set of
separate files. The files associated with the model ROOT are named with the prefix
“ROOT ”. A list of KPP-generated files is shown in Table 1.20

4.1. Fortran90

The generated code is consistent with the Fortran90 standard. It will not exceed the
maximum number of 39 continuation lines. If KPP cannot properly split an expression
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to keep the number of continuation lines below the threshold then it will generate a
warning message pointing to the location of this expression.

The driver file ROOT Main.f90 contains the main Fortran90 program. All other code
is enclosed in Fortran modules. There is exactly one module in each file, and the name
of the module is identical to the file name but without the suffix .f90 .5

Fortran90 code uses parameterized real types. KPP generates the module
ROOT Precision which contains the single and double real kind definitions:

INTEGER, PARAMETER :: &
SP = SELECTED_REAL_KIND(6,30), &
DP = SELECTED_REAL_KIND(12,300)10

Depending on the user choice of the #DOUBLEswitch the real variables are of type
double or single precision. Changing the parameters of the SELECTEDREAL KIND
function in this module will cause a change in the working precision for the whole
model.

The global parameters (Sect. 3.1) are defined and initialized in the module15

ROOT Parameters . The global variables (Sect. 3.2) are declared in the module
ROOT Global . They can be accessed from within each program unit that uses the
global module.

The sparse data structures for the Jacobian (Sect. 3.4) are declared and initialized in
the module ROOT JacobianSP . The sparse data structures for the Hessian (Sect. 3.6)20

are declared and initialized in the module ROOT HessianSP .
The code for the ODE function (Sect. 3.3) is in module ROOT Function . The

code for the ODE Jacobian and sparse multiplications (Sect. 3.4) is in mod-
ule ROOT Jacobian . The Hessian function and associated sparse multiplications
(Sect. 3.6) are in module ROOT Hessian .25

The module ROOT Stoichiom contains the functions for reactant products and its
Jacobian (Sect. 3.7), and derivatives with respect to rate coefficients (Sect. 3.8). The
declaration and initialization of the stoichiometric matrix and the associated sparse
data structures (Sect. 3.7) is done in the module ROOT StoichiomSP .

8705

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/8689/acpd-5-8689_p.pdf
http://www.atmos-chem-phys.org/acpd/5/8689/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 8689–8714, 2005

The Kinetic
PreProcessor

KPP-2.1

A. Sandu and R. Sander

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Sparse linear algebra routines (Sect. 3.5) are in the module ROOT LinearAlgebra .
The code to update the rate constants and the user defined rate law functions are
in module ROOT Rates . The utility and input/output functions (Sect. 3.9) are in
ROOT Util and ROOT Monitor .

Matlab-mex gateway routines for the ODE function, Jacobian, and Hessian are dis-5

cussed in Sect. 4.5.

4.2. Matlab

Matlab code allows for rapid prototyping of chemical kinetic schemes, and for a con-
venient analysis and visualization of the results. Differences between different kinetic
mechanisms can be easily understood. The Matlab code can be used to derive refer-10

ence numerical solutions, which are then compared against the results obtained with
user-supplied numerical techniques. Last but not least Matlab is an excellent environ-
ment for educational purposes. KPP/Matlab can be used to teach students fundamen-
tals of chemical kinetics and chemical numerical simulations.

Each Matlab function has to reside in a separate m-file. Function calls use the m-15

function-file names to reference the function. Consequently, KPP generates one m-
function-file for each of the functions discussed in Sects. 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,
and 3.9. The names of the m-function-files are the same as the names of the functions
(prefixed by the model name ROOT).

The global parameters (Sect. 3.1) are defined as Matlab global variables and ini-20

tialized in the file ROOT parameter defs.m . The global variables (Sect. 3.2) are
declared as Matlab global variables in the file ROOT Global defs.m . They can
be accessed from within each Matlab function by using global declarations of the
variables of interest.

The sparse data structures for the Jacobian (Sect. 3.4), the Hessian (Sect. 3.6),25

the stoichiometric matrix and the Jacobian of reaction products (Sect. 3.7) are de-
clared as Matlab global variables in the file ROOT Sparse defs.m . They are ini-
tialized in separate m-files, namely ROOT JacobianSP.m ROOT HessianSP.m , and
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ROOT StoichiomSP.m respectively.
Two wrappers (ROOT Fun Chem.mand ROOT Jac SP Chem.m) are provided for in-

terfacing the ODE function and the sparse ODE Jacobian with Matlab’s suite of ODE
integrators. Specifically, the syntax of the wrapper calls matches the syntax required by
Matlab’s integrators like ode15s. Moreover, the Jacobian wrapper converts the sparse5

KPP format into a Matlab sparse matrix.

4.3. C

The driver file ROOT Main.c contains the main driver and numerical integrator func-
tions, as well as declarations and initializations of global variables (Sect. 3.2).

The generated C code includes three header files which are #include -d in10

other files as appropriate. The global parameters (Sect. 3.1) are #define -d in
the header file ROOT Parameters.h . The global variables (Sect. 3.2) are extern-
declared in ROOT Global.h , and declared in the driver file ROOT.c . The header file
ROOT Sparse.h contains extern declarations of sparse data structures for the Jaco-
bian (Sect. 3.4), Hessian (Sect. 3.6), stoichiometric matrix and the Jacobian of reaction15

products (Sect. 3.7). The actual declarations of each data structures is done in the cor-
responding files.

The code for each of the model functions, integration routine, etc. is located in the
corresponding file (with extension .c ) as shown in the Table 1.

Finally, Matlab mex gateway routines that allow the C implementation of the ODE20

function, Jacobian, and Hessian to be called directly from Matlab (Sect. 4.5) are also
generated.

4.4. Fortran77

The general layout of the Fortran77 code is similar to the layout of the C code. The
driver file ROOT Main.f contains the main program and the initialization of global vari-25

ables.
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The generated Fortran77 code includes three header files. The global pa-
rameters (Sect. 3.1) are defined as parameters and initialized in the header
file ROOT Parameters.h . The global variables (Sect. 3.2) are declared in
ROOT Global.h as common block variables. There are global common blocks for
real (GDATA), integer (INTGDATA), and character (CHARGDATA) global data. They can5

be accessed from within each program unit that includes the global header file.
The header file ROOT Sparse.h contains common block declarations of sparse data

structures for the Jacobian (Sect. 3.4), Hessian (Sect. 3.6), stoichiometric matrix and
the Jacobian of reaction products (Sect. 3.7). These sparse data structures are initial-
ized in four named “block data” statements.10

The code for each of the model functions, integration routine, etc. is located in the
corresponding file (with extension .f ) as shown in the Table 1.

Matlab-mex gateway routines for the ODE function, Jacobian, and Hessian are dis-
cussed in Sect. 4.5.

4.5. Mex interfaces15

KPP generates mex gateway routines for the ODE function (ROOT mex Fun), Jacobian
(ROOT mex Jac SP), and Hessian (ROOT mex Hessian ), for the target languages C,
Fortran77, and Fortran90.

After compilation (using Matlab’s mex compiler) the mex functions can be called
instead of the corresponding Matlab m-functions. Since the calling syntaxes are identi-20

cal, the user only has to insert the “mex” string within the corresponding function name.
Replacing m-functions by mex-functions gives the same numerical results, but the com-
putational time could be considerably shorter, especially for large kinetic mechanisms.

If possible we recommend to build mex files using the C language, as Matlab offers
most mex interface options for the C language. Moreover, Matlab distributions come25

with a native C compiler (lcc) for building executable functions from mex files. For-
tran77 mex files work well on most platforms without additional efforts. The mex files
built using Fortran90 may require further platform-specific tuning of the mex compiler
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options.

5. Applications

In this section we illustrate several applications using KPP.

5.1. Benchmark tests

We performed some model runs to test the stability and efficiency of the KPP inte-5

grators. First, we used the very simple Chapman-like stratospheric mechanism. Sim-
ulations of one month were made using the 10 different integrators ros2, ros3, ros4,
rodas3, rodas4, ros2 manual, kpp radau5, kpp sdirk, kpp seulex, and kpp lsode. The
CPU times used for the runs are shown in Table 2. Radau5, the most accurate inte-
grator, is also the slowest. Since the overhead for the automatic time step control is10

relatively large in this small mechanism, the integrator ros2 manual with manual time
step control is by far the fastest here. However, it is also the least precise integrator,
when compared to Radau5 as reference.

As a second example, we have performed runs with the complex chemistry model
MECCA (Sander et al., 2005) simulating gas and aerosol chemistry in the marine15

boundary layer. We have selected a subset of the MECCA mechanism with 212
species, 106 gas-phase reactions, 266 aqueous-phase reactions, 154 heterogeneous
reactions, 37 photolyses, and 48 aqueous-phase equilibria. The CPU times for 8-day
simulations with different integrators are shown in Table 2. Again, Radau5 is the slow-
est integrator. The Rosenbrock integrators with automatic time step control and LSODE20

are much faster. The integrator ros2 manual with manual time step control was unable
to solve this very stiff system of differential equations.
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5.2. Direct and adjoined sensitivity studies

KPP has recently been extended with the capability to generate code for direct and
adjoint sensitivity analysis. This was described in detail by Sandu et al. (2003) and
Daescu et al. (2003). Here, we only briefly summarize these features. The direct de-
coupled method, build using backward difference formulas (BDF), has been the method5

of choice for direct sensitivity studies. The direct decoupled approach was extended
to Rosenbrock stiff integration methods. The need for Jacobian derivatives prevented
Rosenbrock methods to be used extensively in direct sensitivity calculations. However,
the new automatic differentiation and symbolic differentiation technologies make the
computation of these derivatives feasible. The adjoint modeling is an efficient tool to10

evaluate the sensitivity of a scalar response function with respect to the initial con-
ditions and model parameters. In addition, sensitivity with respect to time dependent
model parameters may be obtained through a single backward integration of the adjoint
model. KPP software may be used to completely generate the continuous and discrete
adjoint models taking full advantage of the sparsity of the chemical mechanism. Flex-15

ible direct-decoupled and adjoint sensitivity code implementations are achieved with
minimal user intervention.

6. Conclusions

The widely-used software environment KPP for the simulation of chemical kinetics was
added the capabilities to generate simulation code in Fortran90 and Matlab. An up-20

date of the Fortran77 and C generated code was also performed. The new capabilities
will allow researchers to include KPP generated modules in state-of-the-art large scale
models, for example in the field of air quality studies. Many of these models are im-
plemented in Fortran90. The Matlab capabilities will allow for a rapid prototyping of
chemical kinetic systems, and for the visualization of the results. Matlab also offers an25

ideal educational environment and KPP can be used in this context to teach introduc-
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tory chemistry or modeling classes.
The KPP-2.1 source code is distributed under the provisions of the GNU public li-

cense (http://www.gnu.org/copyleft/gpl.html) and is available in the electronic supple-
ment to this paper at http://www.atmos-chem-phys.org/acpd/5/8689/acpd-5-8689-sp.
zip. The source code and the documentation can also be obtained from http://people.5

cs.vt.edu/∼asandu/Software/Kpp.

Acknowledgements. The work of A. Sandu was supported by the awards NSF-CAREER ACI
0413872 and NSF-ITR AP&IM 0205198.
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Table 1. List of KPP-generated files (for Fortran90).

File Description

ROOT Main.f90 Driver

ROOT Precision.f90 Parameterized types
ROOT Parameters.f90 Model parameters
ROOT Global.f90 Global data headers
ROOT Monitor.f90 Equation info
ROOT Initialize.f90 Initialization
ROOT Model.f90 Summary of modules

ROOT Function.f90 ODE function

ROOT Jacobian.f90 ODE Jacobian
ROOT JacobianSP.f90 Jacobian sparsity

ROOT Hessian.f90 ODE Hessian
ROOT HessianSP.f90 Sparse Hessian data

ROOT LinearAlgebra.f90 Sparse linear algebra
ROOT Integrator.f90 Numerical integration

ROOT Stoichiom.f90 Stoichiometric model
ROOT StoichiomSP.f90 Stoichiometric matrix

ROOT Rates.f90 User-defined rate laws
ROOT Util.f90 Utility input-output
ROOT Stochastic.f90 Stochastic functions

Makefile ROOT Makefile

ROOT.map Human-readable info
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Table 2. Benchmark tests with the small stratospheric mechanism and with MECCA performed
on on a Linux PC with a 2 GHz CPU.

Integrator stratospheric MECCA
mechanism

CPU time [s] CPU time [s]

rodas3 0.42 38.71
kpp lsode 0.32 39.79
ros3 0.38 41.33
rodas4 0.46 49.92
ros4 0.43 51.09
kpp seulex 0.50 55.31
kpp sdirk 0.86 63.24
ros2 0.39 69.43
kpp radau5 0.49 103.33
ros2 manual 0.08 —
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