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Abstract. The measurements of the vertical structure
of hydrological fields and internal waves on the Levan-
tine Sea’s polygon in the Mediterranean, obtained in the
97-th cruise of the RV *Professor Kolesnikov” in 199],
have been used to estimate the kinematic and nonlinear
characteristics of the internal wave field. Statistical and
spatial distributions of the vertical profiles of the Brunt-
Vaisala frequency are described. They have been used
to calculate the coefficients of the Korteweg — de Vries
equation. This equation forms the main model for non-
linear internal! waves and their coefficients determine the
speed of propagation of long waves, dispersive and non-
linear parameters. It is shown that the variations of the
long wave speed propagation and the dispersion parame-
ter are relatively small in comparison with the variation
of the nonlinear parameter. Estimations of the nonlin-
ear properties of the internal waves, being measured,
based on the calculation of the local Ursell parameter
are given. This method can be used for investigation
of the internal wave transformation processes in oceanic
regions with horizontal variability of the hydrophysical
fields (temperature, salinity) and sloped sea floor.

1 Introduction

1t is well known that the charactenstics of the inter-
nal wave field, for example, its spectrum {(the climatic
spectrum, in terms of Garrett — Munk) and dispersion
relation, depend on the vertical structure of the Brunt-
Vaisala frequency. The numerous efforts of classifica-
tion of the Brunt-Vaisala frequency vertical profiles and
study of their geographical distribution have been un-
dertaken to predict internal waves in various regions
of the World Ocean: the North Atlantic (Pereskokov,
Shulepov, 1984), the North-West Pacific (Rostov et.al,
1988), the Black Sea (Blatov et.al, 1988; Ivanov et.al,
1994).

Nonlinear effects are essential to internal waves ow-
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ing to small speed of propagation, and nonlinear inter-
nal waves are observed very often {Ostrovsky, Stepa-
nyants, 1989). The solitary waves in some regions of the
World Ocean: the Middle Atlantic Bight (Zheng et.al,
1993), the Alboran Sea (Pierini, 1989), the Australian
North West Shelf (Holloway, 1887), the Sulu Sea (Apel
et.al, 1985), the Hudson Bay (Gan, Ingram, 1992), the
Okbotsk Sea (Nagovitsyn et.al, 1991) were proven to be
of the soliton nature. According to the theory of non-
linear wave processes, the evolution of arbitrary impulse
disturbances results in solitons, and so they may con-
tain a large part of the energy of internal waves. Thus,
one appears to face the problem of predicting the pos-
sible parameters of the internal wave solitons in differ-
ent regions of the World Ocean. To solve this problem,
one can employ both the available data of hydropbysical
information (temperature and salinity} over the region
and the measured characteristics of the nonlinear inter-
nal waves.

The data of polygon measurements in the Mediter-
ranean Sea (the Levantine Sea’s polygon off the Israel
Coast), obtained in the 27-th cruise of the RV "Profes-
sor Kolesnikov” (July — August, 1991) are used in the
given paper for the estimation of kinematic and nonlin-
ear properties of the internal wave motions. The analy-
sis of hydrological data, measured in the polygon, is de-
scribed in Section 2. These data are used to calculate the
vertical profiles of the Brunt - Vaisala frequency, which
determine many properties of the internal wave field.
The theoretical model for the description of nonlivear
internal waves is based on the well-known Korteweg -
de Vries equation, which is given in Section 3. Statis-
tical estimations of the variability of the coefficients of
the Korteweg ~ de Vries equation for the Levantine Sea’s
polygon are given in Section 4. It is found that the vari-
ations of the speed of long wave propagation and disper-
sion parameter are relatively small in comparison with
the variation of the nonlinear parameter. Spatial distri-
bution of kinematic characteristics of the internal wave



Fig. 1. The map of polygon in the Mediterranean.

field on the Levantine Sea’s polygon is demonstrated in
Section 5. KEstimations of the nonlinear properties of
the internal waves being measured, based on the calcu-
lation of the local Ursell parameter, are given in Section
6. These data can be used for the investigation of the
internal wave transformatior processes in this polygon
and prediction of the wave characteristics in the parts
of the polygon, where the measurementis are absent.

2 Average Profiles of the Brunt — Vaisala Fre-
quency and their Variations in the Levantine
Sea

The map of the polygon in the Mediterranean (Levan-
tine Sea’s polygon) is shown in Fig. 1. The depths of the
polygon are varied from 800 m to 2800 m. There were
53 slations on the polygon in August 4 - 6, 1991, The
vertical structure of temperature and salinity fields were
measured by the hydrological complex MHEI-4102 of the
Marine Hydrophysical Institute (Sebastopol, Ukraine).
The density of the sea water is defined by the known
oceanographic formula through temperature, salinity and
depth, and then the Brunt-Vaisala frequency N(z) is
calculated (Nikolaenko et al., 1992). All measurements
were made only for depths up to 600 m. Spatial distri-
butions of the maxima N(z) and their depth are shown
in Figs. 2 and 3. '

These data were used for the calculation of the mean
vertical profile of the Brunt — Vaisala frequency and its
rms variation. Since the depths of temperature and
salinity measurements were different for the different
stations (points), we have calculated the mean profile
taking into account the various number of data on the
same depths. The results of the calculation of the mean
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Fig. 2. Spatial distributions of maxime Brunt-Vaisala frequency.

profile N(z) and its rms deviation 6N(z) are shown in
in Fig. 4 for depths less than 150m. One season pycno-
cline with a frequency 23 cycles/hour at the depth 25m
is selested in the average profile of the Brunt-Vaisala fre-
quency. For 2 depth of more then 150 m, this function
can be described by the regression relation:

N(z) = 4.64 exp(~0,000416 ), (1)

where N is in cycle/hour and & is in m. The curves of
N(z) and 6N(z) are rather similar and large variations
in the N(z) are observed near the upper boundary of
the pycnocline. The value of 6N/N is large (90%) at
depths 15 - 20 m and constant (15%) below the pycno-
cline (Fig. 5). Similar results have been obtained in our
expedition in the Black Sea and at another region of the
Mediterranean (Nikolaenko et.al, 1992). They are typi-
cal for the tideless seas in spring — summer hydrological
season.

Polygon measurements of the Brunt-Vaisala frequency
profiles for the Levantine Sea were fulfilled to give statis-
tical and geographical characteristics of kinematic and
nonlinear properties of internal waves and to establish
the imits of the applicability of averaged models of wave

" motion which use only averaged (over large regions and

times) profiles of the Brunt-Vaisala frequency.

R Y SCY ¥ S T ¥ A T S (X 3.0

Fig. 3. Spotial distributions of the depth of maxima Brunt-
Vaisala frequency.
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Fig. 4. Averaging profile of N(z) and its rms deviation.

3 Korteweg —.de Vries Equation for Interaal
Wave Field

Usually, internal waves of large energy have wavelengths
of the order of 1000 m or more. For such long waves, the
Korteweg — de Vries equation is an appropriate physical
model for the description of the nonlinear and disper-
sive properties of internal wave field (Benney, 1966; Lee
& Beardsley, 1974; Pelinovsky et.al, 1977; Grimshaw,
1981, 1983; Gear & Grimshaw, 1983; Smyth, Holloway,
1988; Zhou & Grimshaw, 1989). It has the following
form:

an o dn &Pn
&+Cam+&ﬂa—x+ﬁ§—0 (2)

where n(z,1) is the displacement of the pycnocline, z is
a horizontal coordinate, ¢ is time and parameters a and
£ are determined by the hydrology of the region:

e [y Wiz

2 ff}r Po [%}2 dz
. (3)
where p is the sea density. The phase speed of linear long
waves ¢ and the structure of vertical displacement of the
pycnocline in mode W are determined by the eigenvalue
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Fig. 5. Relative deviation of N(z)

problem:
d*W  N%(z) _ _ _
5zt W =0, WH)=W(0) =0, (4

W(z) is normalized by its maximal value. It means that
n{z,t) is the isopycnal surface with maximal displace-
ment.

Solitary waves (solitons) are the steady-state solutions
of the Korteweg — de Vries equation:

n = a cosh™? z _AVt , (5)

where the soliton velocity V and its half-width A are
determined by the wave amplitude a:

_ aa 128\'?
V-c+3, A_(aa) . (6)

Although the solution (5) and its properties are con-
cerned with an arbitrary wave mode, only the first mode
is discussed below, because it dominates, as a rule.

It should be emphasised that the dispersion parame-
ter § is always positive, but the nonlinear parameter «
can be either negative or positive (or zero). In the ap-
proximation under consideration, solitons can exist only
when o # 0 (in the opposite case it is necessary to take
into account the cubic nonlinearity). Besides the prod-
uct, oo is always greater than 0, so @ > 0 when the
pycnocline is displaced upwards, in the opposite case
a < 0.

The Korteweg ~ de Vries equation is completely in-
tegrable (see, for example, Newell, 1985), anf this fact
enables us to consider the nonstationary processes for
arbitrary time. The evolution of arbitrary disturbance
depends on the parameter:

U= |H|L?, (")

where H is a height and L is a half-width of initial dis-
turbance. This parameter is proportional to the Ursell

parameter in the theory of surface waves. In particular,
if U < U, , where

128
Uy = —, 8
fal (8)

the evolution of an initial disturbance results in only
one soliton {provided it has the proper polarity) and a
large oscillatory tail. If U > U, , then several solitons
will be generated. The parameter I/ can be treated as
a criterion for nonlinearity of the wave motion. One
can calculate the parameter U for the available internal
wave field records to determine their nonlinearity, Such
an approach has been used in (Serebryany, 1990; Gory-
achkin et al, 1992) for the analysis of real records of the
internal waves using a simplification of the ocean strat-
ification. For some density profiles the coefficients of



Korteweg — de Vries equation can be obtained in an ex-
plicit form. For example, if the sea stratification in the
upper layer can be described as a two-layer model with
a density jump Ap on the depth h, the coefficients of
Korteweg — de Vries equation are found in an algebraic

form
= gAph(H —~ h)
- ———.__pH )

_ 3¢[h® — (H - b))

2HA(H — h) @
_ ch(H — k)
= —F""

It allows us to write the analytical formula for soliton
parameters as

_ [ 4HR(H - k2 PP
s= s 0
_ AHR(H - b)Y
Ve = sime @ —ma) (1)

The next limiting case of sea stratification is the sea
of a very large depth when the influence of the season
pycnocline can be neglected and the Brunt - Vaisala fre-
quency can be considered as a constant in depth. In this
case the caleulating formula in Boussinesq approxima-
tion is as follows:

NH N H?
c= —, f=-——

T’ 272 '

a=10. {12)

In the framework of the constant Brunt — Vaisala fre-
quency model and the Boussinesq approximation, the
quadratic nonlinearity is absent and the long waves with
scales greater than the sea depth become linear. In fact,
we have to tale into account the terms of the next order
in nonlinearity and do not have to use the Boussinesq
approximation. In this case we obtain the modified Ko-
rleweg — de Vries equation. Thus it is clear that the
nonlinear effects are smaller in this case, :

As it Tollows from the asymptotic expressions given
sbove, the nonlinear parameter ¢ can vary nonmonoton-
ically with depth. It is positive at small depths (the py-
cnocline is close to the bottom), equal to zero when the
pycnocline lies at the depth H/2 and increases with its
absolute value, being negative at a definite depth, and
tends to zero at large depths. Such asympiotic expres-
sions, of course, take place in the limiting cases which
turn out to be impossible in real situations. Therefore
it is necessary to make special numerical calculations
for regions with real stratification based on the formula
(3) - (8) Making such calculations for the Levantine
Sea’s polygon, we have added the absent data of Brunt-
Vaisala frequency for depths greater than 600 m by the
commonly used exponential approximation:

N(h) = N(600m) exp{0.000416(600 — 4)}  (13)

&3

in accordance with Eq. (1).

A few words about the applicability of this theoretical
mode] associated with the Korteweg - de Vries equa-
tion. First, we did not take into account the currents
that usually are present in the ocean. However, as it
is seen from the calculations, the speed of long wave
propagation appears to be equal to 2 - b m/sec, and,
therefore, the currents with typical! velocities 50 cm/sec
(unfortunately, the data on the currents in this region
are unavailable to us) will not be essential for the kine-
matic characteristics of long waves. Second, we did not
take into account the dispersion due to the Earth’s ro-
tation. In the long wave approximation the dispersion
relation for internal waves is given by the well — known
equation (Shrira, 1986; Ostrovsky, Stepanyants, 1990)

w? = f2 4 R0 - 288, (14)

where f is a Coriolis parameter. 1t is seen that in the
case 20c?k* >> f? we can neglect the dispersion due
to the Earth’s rotation, and this condition is satisfied
for waves of lengths 1 - 10 km. Third, Eq. (2) does not
include the terms responsible for horizontal variability
of the parameters of the ocean. Analysis carried out in
Sections 4 and 5 shown the strong variability of all coef-
ficients of the Korteweg — de Vries equation which infiu-
ence on on the variability of the nonlinear internal wave
field. Because the horizontal variability of the charac-
teristics of the ocean medium is enough smooth we can
ignor the reflection of the wave energy from horizontal
inhomogeneties and seek the solution for the vertical dis-
placement of the pycnocline in a form: #(t, F) W(z, €7),
where W is again the vertical structure of the pycn-
ocline displacement, found from Eq. (4), and the small
parameter ¢ characterizes the smoothness of the horizon-
tal inhomogenety of the ocean medium. Corresponding
equation, obtained with using of the asymptotic proce-
dure, can be written in following form (Pelinovsky et al,
1977; Zhou & Grimshaw, 1989):

b, enn, Ao, 1 daJ
al e? Ps

where

is a time in the system of coordinates moving with a
linear speed of long waves, ! is the distance along the
ray which is found from eikonal equation

(Vr)? = c73(P), (17)
J is a differential width of a ray beam, and

0= P fj’i (dW/dz)*dz
T & [, (dWo/dz)2dz

(18)

and values with index *0” are the values at any initial
point lp. Additional term in Eq. (15) depends on the
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wave geometry (the curvature of wave fronts). We have
no measured data about the spatial distribution of the
internal wave field and, as & first step, we will study here
only characteristics of nonlinear internal waves related
with the density stratification and bottom bathymetry.
These characteristics can be considered in the frame of
the Korteweg — de Vries equation (2).

4 Statistical Estimations of the Korteweg — de
Vries Coefficients

We have used the following procedure for statistical esti-
mations of the Korteweg — de Vries equation coefficients
(this method has been developed for any polygon mea-
surements in (Ivangv et.al, 1892)):

- The Korteweg ~ de Vries equation coefficients ¢, a, £
as the functions of depth have been calculated with the
use of the average vertical profile of the Brunt-Vaisala
frequency N(z).

- The same calculations have also been made by us-
ing two vertical profiles of the Brunt-Vaisala frequency
N(z) £ 6N{z), which characterize the deviations of the
hydrological fields This procedure allows us to obtain
the deviations of the Korteweg ~ de Vries equation co-
efficients.

- Similar calculations, by using the data of the real
stations in the Levantine Sea’s polygon, have been made
to estimate the applicability of average dependencies.

The results of calculations, having been obtained by
this method, are shown here. Figs 6 — 8 show the lin-
ear speed of wave propagation c, parameters of disper-
sion J and nonlinearity o as functions of depth for
diflerent cases of the numerical solution of the eigen-
value problem (4): for profiles N(z) (solid lines) and
N(z) & 6N(z) (dashed lines with &). Here the data of
calculations for the real stations in the polygon are also
given. The character of these curves confirms the ideas
mentioned above concerning the dominant role of a sea-
son pycnocline at small depths and the possibility of
using & two-layer model in this case. For large depths,
the approximation of exponentially stratified sea with
the mean Brunt — Vaisala frequency N = 4 cycle/hr (1
cycle/hr = 21072 1/sec) is preferred for the calculation
of ¢ and . As it is seen, the values of propagation speed
and dispersion, calculated on the basis of the data of real
hydrological stations in the polygon are in good agree-
ment with those calculated by using the mean Vaisala
frequency. Therefore, one may use the data of a single
vertical temperature and salinity profile and the bathy-
metric map to estimate, in the first (rough) approxima-
tion, the values of the kinematic characteristics of linear
internal waves on the polygon. But the accuracy of such
calculations is rather poor and the error may reach 40%.
It can be easily explained within the model of exponen-
tial density stratification, where ¢ and £ are proportional
to the Brunt — Vaisala frequency, such model is valid at

phase speed (m/s)

o

Fig. 6. Linear wave speed: calculations for N{z) (solid lines)
and N(z) £ §N(z) (dashed lines with +). Points are data of
calculations for the real stations in the polygon.

the large depths (see 12} and, consequently, the error is
28N/N = 40%.

It is interesting {o note the nonmonotonous charac-
ter of the nonlinear parameter dependence on depth
{Fig. 8). The resulis of calculations on the basis of real
station measurements yield large deviations, by more
than one order. It is related to the influence of the main
layer of the sea (below the pycnocline) where the strat-
ification may be approximated by an exponential law,
for which the nonlinearity parameter is absent in com-
pliance with (12). Evidently, the relative variations of
nonlinearity {(when its mean value is small) are not small
and the use of calculations based on the mean values is
not effective.

The obtained values of the Korteweg — de Vries equa-
tion coefficients have been used for calculation of the
"soliton” Ursell parameter by Eq. (8). The limits of
deviations of this parameter are defined by

- 12.6+, v = 128-
o_ (4 7S

Us

(19)

The results of the calculations of the averaged U, and
its variations are shown in Fig. 9. As it is seen, the
values of the Ursell parameter are large at large depths

gispersion porometer (m’/s)

depth (m)

Fig. 7. Dispersion parameter: calculations for N(z) (solid lines)
and N(z)} £ SN(z) (dashed lines with ). Points arc data of
calculations for the real stations in the polygon.
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and in the range of depths 40 - 50 m, where the non-
linearity parameter is small. Here the waves must be
more linear than for other depths. The Utrsell parame-
ter reaches its minimum at the depth about 60 m (and,
of course, at depths less than 30 m, which are not con-
sidered here) and it is equal to 10° m®. In fact, it may be
confirmed when the depth is greater than 40 m and wave
parameters (amplitude and wavelength) are such that
U < 10° m®, then the nonlinearity of internal waves
may be neglected (in this case the actual soliton for-
mation is also possible but only as a single one and its
amplitude is less than the initial value (Newell, 1985)).
If the wave parameters are such that U > 10° m®, the
result will depend on the sea depth; thus to confirm the
nonlinearity of the wave field, it is necessary to com-
pare the local Ursell parameter defined by (7) with its
"soliton” value U/, depending on the sea depth.

The deviation of the Ursell parameter in terms of Eq.
(19), taking into account the assumption of the statis-
tical independence of & and f, is approxirnately 80%.
For examining the real deviation, we have repeatedly
used the results of calculation of the Korteweg — de
Vries equation coeflicients for real stations or the poly-
gon. They are shown by appropriate points in Fig. 9. It
is seen that such calculations ofler wider deviations for

deolh (m)

Fig. 9. Averaging profile of U; and its rms deviation. Points are
data of calculations for the real stations in the polygon.
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depths near 100 m (more than two orders), as explained
by the respective deviations of nonlinear parameter c.
Therefore, for a rough estimation of the Lkinematic
characteristics of linear internal waves in a large poly-
gon, it is enough to use the vertical profile of density (or
temperature and salinity) and the map of depths on the
polygon. But this approximation is too rough for esti-
mation of the nonlinear properties of the internal wave

field.

5 Spatial Distribution of the Korteweg — de
Vries Equation Coefficients

It has been shown above that the approximation of the
mean Brunt - Vaisala frequency is sufficiently rough for
calculation of the Korteweg — de Vries equation coef-
ficients, and, therefore, for estimation of the nonlinear
properties of internal waves. Under these conditions,
calculation of the wave characteristics can be made on
the basis of real spatial distribution of the parameters
mentioned above, as in the similar problems of long sur-
face waves (tides, tsunami waves}, where the bathymet-
ric maps are used. Since the internal wave characteris-
tics depend on bathymetry and hydrology, the maps of
the Korteweg — de Vries equation coefficients play the
same role as the bathymetric map for surface waves. iso-
lines of the Korteweg — de Vries equation coefficients are
shown in Figs. 10 — 12. It is interesting to compare the

. calculated maps with the bathymetry one (Fig. 1) and

the maps of Brunt — Vaisala frequency (Figs. 2 and 3).
As it was expecied, spatial distributions of the propa-
gation speed ¢ and dispersive parameter § roughly cor-
relate with the bottom bathymetry in case of large vari-
ations of depth. In particular, an underwater hill with
coordinates 33.55 — 33.65°E, 32.50 — 32.77°N is mani-
fested as a decrease of propagation speed and disper-
sive parameter in this region. In this area smaller inho-
mogeneities of depth may be compensated by inhomo-
geneities of the Brunt — Vaisala frequency and further-
more, they are not manifested on the maps (Figs. 10 and
11). The nonlinear parameter o, which has been shown,
depends on both depth and Brunt — Vaisala frequency
variations. In addition, there are many small scale re-
gions in a corresponding map to compare with initial
maps (Fig. 12).

The maps of the Korteweg — de Vries equation coeffi-
cients permit one to caleulate the evolution of the wave
field at a long distance, taking into account its nonlinear-
ity and dispersion. Since the scales of variability of the
Korteweg — de Vries equation coefficients are much more
than the typical lengths of the internal waves, (several
kilometers) this equation may be seen as an equation
with constant coefficients at small distances and con-
sequently, the well-known theory of soliton formation
from impulse perturbations (or the recurrence) can be
applied to the description of internal waves. Further-
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Fig. 12. Spatial distribution of nonlinear parameter.

more, the coefficients are varied slowly, the use of ray
methods for studying the internal wave transformation
in & sea with horizontal inhomogeneities of depth and
density field is possible (some analytical solutions and
examples of numerical simulation for certain models are
given in (Pelinovsky & Shavratsky, 1976; Smyth & Hol-
loway, 1988; Zhou & Grimshaw, 1989; Pelinovsky et.al,
1994). We suppose to consider this problem in the fu-
ture, but some points that follow from the ray methods,
should be mentioned here. In particular, the regions
of decrease of the propagation speed play the role of
underwater mountains for surface waves concentrating
their energy there. Besides, the underwater mountains
can trap part of wave energy, and as a result, the reso-
nance peaks may appear at the fixed frequencies. These
significant problems, which are well known for surface
waves, have not been considered for internal waves yet,
especially for the real horizontal variability of sea hy-
drology.

6 The Estimations of Nonlinear Properties of
Internal Waves, Measured on the Polygon

We attempt at using this theory for rough estimation of
the nonlinear properties of internal waves measured in
the Levantine Sea’s polygon. During 27 - 29 July, 1991,
in the 27-th cruise of the RV ”Professor Kolesnikov”, an
experiment on recording internal waves was performed.
It consisted in towing of the MHI- 4106 probe (a dis-
tributed temperature sensor of length 25 m) in the ther-
mocline. The description of the measurement data is
given in (Ivanov et.al, 1993). The parameters of seven
intern al waves with relative large amplitudes are given
in Table 1. The values of the Ursell parameters calcu-
lated for these waves have the order of (2.1 - 5.3) 106 m?
that is much more than the minimum value of "soliton”
Ursell parameter (10° m®). The upper and lower limits
of the calculated Ursell parameters are shown as hori-
zontal dashed lines in the Fig. 13, and the curve U (H)
is also given. As it can be seen, all calculated values of
the Ursell parameter are less than the "soliton” curve
for depths more than 350 m. Therefore, it can be said
that all measured internal waves may be treated as al-
most linear. But when the wave reaches shallow water
(less than 300 m), it becomes nonlinear. Furthermore,
when the depth becomes less than 200 m, the exceeding
of the Ursell parameter over the "soliton” value is so
large that, from the point of view of the nonlinear wave
theory, the dispersion is generally "put off” and does
not influence the subsequent wave evolution. As a re-
sult, the wave will transform to a shock (bore) under the
action of the nonlinearity and small dispersion induces
many osciliations (solitons) behind the shock front. It is
simple to define the form of this wave and the number
of solitons (see, for example, Newell, 1985). These theo-
retical predictions for the waves in the Levantine Sea are



Table 1. Characteristics of measured internal waves
Height (m) Wavelength (lan)  Ursell Parameter {10° m?)

1.5 5.5 11.3
1.6 5 10.0
1.7 5 10.6
2.7 2.6 4.6
1.2 2.6 2.0
1.2 2.8 2.5
1.8 2.8 3.3

correlated with the well-known facts of strong deforma-
tion of internal waves on the shelves. In particular, they
were observed in tidal waves on the Guinean shelf during
the 20-th cruise of RV "Professor Kolesnikov” (Gory-
achkin et al, 1992). We could not obtain experimental
results about the internal wave transformation on the
shell of the Mediterranean Sea. Nevertheless we can
predict strong nonlinear deformation of internal waves
on the shelf, using theoretical results mentioned above.
Tor more accurate estimations, it is absolutely necessary
to study the processes of internal wave transformation
from the Levantine Sea to the shelf, and the calculated
maps of the Korteweg — de Vries equation coefficients
can be useful for numerical simulations. It may be the
topic of the further theoretical and experimental works.

7 Conclusions

The statistical and spatial distributions of the kinematic
and nonlinear properties of the internal wave field in the
Levantine Sea’s polygon in the Mediterranean have been
investigated. This analysis is based on the measure-
ments of the vertical structure of the hydrological fields
and internal waves obtained in the 27-th cruise of the RV
”Professor Kelesnikov” in 1991, The coefficients of the
Korteweg — de Vries equation, describing the nonlinear
internal waves have been calculated within the averag-
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10"
16°
10’

10!

1000
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Fig. 13. Ursell parameter. Solid line corresponds to U.. The
upper and lower limits of calculated U for measured waves are
shown as horizontal dashed lines,
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ing models of density stratification, using data of real
hydrological stations. It is shown that the variations of
long wave speed propagation and dispersion parameter
are relatively small, in comparison with the variation
of the nonlinear parameter. Such characieristics can be
calculated using the data of one hydrological station and
the bathymetric map of the polygon. For calculation of
the nonlinear parameter, it is important to produce the
data from all hydrological stations in the polygon. The
nonmonotonical character of the nonlinear parameter,
changing with depth, is obtained. The estimations of
the nonlinear properties of measured internal waves are
based on the calculation of the local Ursell parameter.
Its strong dependence on depth results in the broadcast-
ing processes of breaking of the internal waves as ” plung-
ing” with the formation of & wave bore. The developed
method can be used for investigation of the processes
of internal wave transformation in oceanic regions with
horizontal variability of hydrophysical fields.
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