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Abstract. The multifractal properties of a 2-ycar time
seriecs of 8-min rainfall intensity observations are
investigated. The empirical probability distribution function
suggests a hyperbolic intermittency with divergence of
moments of order greater than 2. The power spectrum E(f)
of the series obeys a power law form E(f)=f 066 in the
range of scales 8 min to approximately 3 days. The
variation of the average statistical moments with scale
shows that the series is characterized by a multifractal
behavior between 8 min and approximately 11 days. The
multifractal parameters associated with universality were
estimated to be «=0.63 and C; =0.44 by using the Double
Trace Moment, DTM, technique. The moment scaling
functions obtained from the empirical values and the
universal expression are in good agreement in the
approximate range l1=g<3. Outside of this range,
however, differences exist which may be related to either
limitations of the data or an inexact estimation of the
parameters by DTM. The evident multifractal nature of
rainfall time series is encouraging since it may lead to new
and improved ways of processing rainfall data used in
hydrological calculations.

1 Introduction

The applicability of multifractal theery in combination with
cascade processes to describe observations from
atmospheric processes has been thoroughly investigated
during the latest years {(e.g., Schertzer and Lovejoy, 1987;
Lovejoy and Schertzer, 1990, 1991; Gupta and Waymire,
1993; Hubert et al., 1993; Ladoy et al., 1993; QOlsson et
al., 1993; Tessier et al., 1993; Davis et al., 1994). These
investigations have been performed on data sets of clouds,
wind, and rainfall and the aim has been twofold. Firstly to
examine the overall scaling behavior to obtain the range of
scales over which the multifractal relations hold, i.e., the
scaling regime. Secondly, usually on basis of the

somewhat contested notion of universality, to estimate
parameters characterizing the multifractal behavior.

Regarding the temporal rainfall process, scaling
properties have been investigated using time series with
resolutions ranging from 1 day down to minutes (e.g.,
review by Hubert et al., 1993; Fraedrich and Larnder,
1993; Olsson et al., 1993). The overall scaling regime
obtained in these analyses is approximately from minutes
up to 2 weeks-1 month. However, this range is still
associated with some uncertainties. The first one concerns
the upper limit which in some studies was estimated to be
significantly lower than 2 weeks (Fraedrich and Larnder,
1993; Olsson et al., 1993). The second uncertainty
concerns a possible break in the scaling at 2-3 hours, but
it has not yet been established whether this break is
actually related to the rainfall generating mechanisms (e.g.,
a characteristic time above which frontal systems are the
most influential and below which individual storms
dominate the scaling behavior) or if it is an artificial break
related to the resolution of the measuring device (Fraedrich
and Larnder, 1993). The estimated values of the
multifractal parameters associated with the notion of
universality {(e.g., Lovejoy and Schertzer, 1990) are
a=0.51 and C, =0.44 with moderate differences between
the studies (Hubert et al., 1993).

The aim of this study is to further investigate the
temporal multifractal properties of rainfall by analyzing a
2-year series of 8-min rainfall intensity observations. Some
multifractal properties of these data have previously been
investigated (Olsson et al., 1993), but since that analysis
was performed on the raw 1-min data using rather
uncertain analyzing techniques, both the limits of the
scaling regime and the values of the multifractal
parameters obtained in the previous siudy were associated
with uncertainties. In this study the data are analyzed in a
more reliable form, the original 1-min values have been
aggregated into 8-min values in order to achieve a more
correct representation of low rainfall intensities (see
Sect.4), but still limitations that affect the results exist and
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these are thoroughly described. The analysis is done firstly
by using standard statistical techniques (empirical
probability distribution function, power spectrum),
secondly by studying the scaling of average statistical
moments, and finally by employing the analyzing technique
Double Trace Moments, DTM (Lavallée, 1991), to
estimate the multifractal parameters.

2 Some Multifractal Foundations

The theoretical basis of multifractal atmospheric fields is
founded on an assumption that fluxes of water and energy
in the atmosphere are govemned by multiplicative cascade
processes successively transferring these quantities from
larger to smaller scales (e.g., Schertzer and Lovejoy,
1987; Lovejoy and Schertzer, 1990; Gupta and Waymire,
1993). This assumption may be justified both on theoretical
and cmpirical grounds. Theoretically, a cascade
phenomenology may be deduced from the equations for
hydrodynamic turbulence which have been proposed to be
approximately valid for the atmosphere (see, e.g., Tessier
et al., 1993). Empirically, the often observed hierarchical
structure of rainfall fields is directly indicative of a cascade
type of behavior (see, e.g., Gupta and Waymire, 1993). A
cascade process is generally described as eddies breaking
up into smaller sub-eddies, each of which receives a part
of the flux of its parent eddy. This way, the main part of
the flux is concentrated into smaller and smaller parts of
the available space and the resulting field exhibits extreme
variability and intermittency.

By considering the statistical properties of a field
produced by a cascade process, the following fundamental
relationship describing the behavior of the statistical
moments at different scales may be deduced (Schertzer and
Lovejoy, 1987)

(D ~NE@ ()

where {(¢,9) is the (ensemble) average gth moment of the
normalized intensities at scale ratio A, the latter here being
defined as the ratio of the outer (maximum) scale of the
field to the scale of interest, and K(g) is the moment
scaling function. .

Under a simplifying assumption of universality, i.e., out
of infinitely many possible parameters needed to describe
a process only a few are relevant due to an inherently
converging nature of the process, K(g) may be expressed
as (Schertzer and Lovejoy, 1989)

C
K(q)=—11(q"‘—q) 0<a<l, I<a=<2 @
—

K(g) =Ciqloglg) , =1 (3

where (| is the codimension of the mean process and e is
the Lévy index. It should be mentioned that this notion of
universality has been questioned (Gupta and Waymire,
1993). Here, no attempt to participate in the theoretical
debate is made, but the aim is to compare the empirical
and the universal moment scaling functions in order to
evaluate the applicability of the latter.

According to e.g. Tessier et al. (1993), K(g) is in
practice restricted by an upper limit of g related to two
different aspects {¢.g., Lavallée et al., 1991). The first one
is the effect of the limited sample size used in the analysis.
The critical value gg associated with this effect depends on
the sample size and by increasing the sample size it is thus
possible to increase the range of validity for K(g). The
second aspect is that the process may exhibit divergence of
moments of order higher than a critical value gp,. This may
roughly be interpreted as that at g<gp the average
moments are influenced by all values in the series, whereas
at ¢>gp the average moments ar¢ influenced mainly by
the maximum value. According to Schertzer and Lovejoy
{1992), the straight-lined behavior of the empirical K(gq)
resulting from these limiting aspects may be regarded as a
multifractal phase transition.

3 Methodology

Before applying any specific multifractal analysis technique
to the series, information about the scaling behavior is
obtained using two standard statistical descriptions of the
data.

The first is the empirical probability distribution function
(pdf) which describes the scaling of the intensity
fluctuations at a given scale, normally the scale
corresponding to the measurement resolution (Fraedrich
and Larnder, 1993). If the series is characterized by a
hyperbolic intermittency (¢.g., Lovejoy and Mandelbrot,
1985) expressed as a power-law form of the tail behavior
of the empirical pdf, i.e., for high threshold intensities x

PrX>x)ocx P @

where X is the observed intensity, this is equivalent to the
divergence of moments of order greater than or equal to
qp (e.g., Schertzer and Lovejoy, 1987).

The second is the power spectrum, E(f), which has been
used in several investigations to examine the scaling
behavior of rainfall time series (e.g., Ladoy et al., 1991,
1993; Fraedrich and Larnder, 1993; Olsson et al., 1993).
If the spectrum obeys a power-law form

E(fH=f8 5

where f is the frequency, this indicates absence of
characteristic time in the range of the power law, i.e.,



scaling of the fluctuations, and thus a multifractal behavior
may be assumed to hold. From the value of the power law
exponent { information may be drawn about the
stationarity of the data. Stationarity is required in analyses
of scaling since they are normally based on some form of
averaging over large ranges of scales. It has been argued
that if <1 the data are stationary, otherwise some
processing, e.g. fractional differentiation (Tessier et al.,
1993), is needed to produce stationarity (Davis et al.,
1994).

To characterize the multifractal behavior, Eq.1 is directly
employed to obtain values of the moment scaling function
K(q). The data are firstly normalized (and non-
dimensionalized) by dividing each value with the average
value. Because of this normalization, {e,}=1 for all values
of A. Then the series is averaged over successively doubled
time intervals (corresponding to successively halved values
of ) and for each N\ the average gth moment (&%) is
calculated. When this procedure is performed down to
A=1 the multifractal behavior of the series as expressed by
Eq.1 is investigated by plotting {e,7) as a function of \ in
a log-log plot. In the scaling regime the curve will exhibit
an approximately straight-lined behavior with a slope that
is an estimation of the value of K(q). By performing this
procedure for different gvalues, the empirical moment
scaling function may be obtained.

To estimate the multifractal parameters « and C
producing the best fit of Eq.2 or 3 to the empirical moment
scaling function, different ways are possible. One is to
directly fit Eq.2 or 3 to the values, but this procedure is
associated with large uncertainties because the regression
is non-linear and the parameters are correlated. Instead the
Double Trace Moment, DTM, technique is employed
{Lavallée, 1991; Tessier et al., 1993). By DTM a direct
estimation of « is made possible by the introduction of a
second nth moment. The original field e is transformed into
e", and K(g) into K{(q,n) which, under the assumption of
universality, is related to n by (Lavallée, 1991)

K(g.m) =1°K(9) | ©

through which o may be directly estimated. The procedure
is thus implemented by raising all values to » after the
normalization and then caleulate {¢,"9) and K(g.n) as
described above. By using different values of » and then
plot K(g,n) as a function of » in a log-log plot, o may be
estimated as the slope of the straight-lined part of the curve
in accordance with Eq.6. Then C is calculated from Eq.2
or 3 using the relationship K(g)=K(q,1).

4 Rainfall Data

During 1979-81 a detailed observation program of the areal
and dynamic properties of shori-term rainfall was
performed in the city of Lund, Sweden. The rainfall
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intensity was measured with a time resolution of 1 min by
small tipping-bucket gages with an intensity resolution of
0.033 mm/min. The longest continuous measurement
period was 2.5 years (January 1979 to July 1981), and the
most complete time series was used in the present study.
However, the sensitive tipping-bucket gage was unreliable
during winter periods where the occurrence of snow
introduced errors in the measurements. Therefore, for
every day in the 2.5-year period, the tipping-bucket
measurements were compared with daily values of
precipitation and temperature observed in Lund by the
Swedish Meteorological and Hydrological Institute. By this
way, winter periods with erroneous registrations could be
found and excluded. This modification may affect the
analysis results, but since the seasonal variation of rainfall
in the region is limited it may be assumed that the
influence is small. Because of the removal of winter
periods, the length of the analyzed series is 2 years and
during this time there were no missing values. For further
details about the database and observation area see
Niemczynowicz (1986a, b).

It must be emphasized that the gages were used
somewhat differently from common practice. Normally the
time of each "tip" is recorded and then the bucket volume
is evenly distributed over the time interval between this
"tip" and the previous "tip". In this investigation, however,
for each gage the number of "tips” that occurred during a
certain minute was recorded at the beginning of the next
minute (provided that at least one "tip" had occurred at at
least one gage). Both strategies of measuring are associated
with difficulties at Jow rainfall intensities. In the first case
("time-of-tip" recording), the bucket volume may be
distributed in a way that time periods when in reality no
rainfall occurred receive a constant low-intensity rainfall.
In the second case ("number-of-tips" recording), rainfall
intensities lower than the gage resolution are represented
as "1-tip" rainfall registrations separated by a number of
zero-registrations corresponding to time periods when in
reality low-intensity rainfall occurred. When analyzing the
series, these errors may affect the resulting scaling
behavior at small scales. To overcome or at least reduce
the influence of this problem, the original 1-min
registrations were aggregated into 8-min values
"absorbing" many of the erronecus zero-registrations.
Because of the measuring strategy, the high intensity
resolution, and the final aggregation, the accuracy of these
data should be among the highest available from rain gage
observations at this time scale.

5 Results

Figure 1 shows the empirical probability distribution
function Pr(X>x) of the series. The hyperbolic tail
behavior is evident with a slope of 2.0, estimated from the
fitted regression line shown in Fig. 1. This thus indicates
that moments of the series of order greater than or equal
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Fig. 1. Empirical probability distribution function Pr(X>>x) of the 8-min
rainfall time series. The straight line has been fitted by regresston.

to gp=2.0 diverge. These findings agree fairly well with
Fraedrich and Larnder (1993} who obtained a similar gp,-
value (=1.7) at approximately the same intensity levels.
However, at very high intensities (farger than
approximately 30 mm/5 min) their empirical pdf breaks
and a second straight-lined section is revealed having
gp =~3.0. In the data used in this study no intensities of that
magnitude were observed. This is probably partly due to a
less "violent" character of the rainfall generating
mechanisms occurring in the present region, partly to the
rather short measurement period (2 years).

Figure 2 shows the power spectrum E(f) of the series in

the range of scales 16 min (the Nyquist frequency) to 2
years. The spectrum has been averaged over
logarithmically spaced frequency intervals. E(f) exhibits a
well respected power law form in the range 16 min to
approximately 3 days where the spectrum breaks and the
slope becomes flatter. The upper limit 3 days is in
contradiction with some other studies where it was found
to be in the region of 2 weeks (e.g., Ladoy et al., 1993).
It must be emphasized that E{f) at these low frequencies is
associated with higher uncertainty due to the limited length
of the series used here (2 years). However, the 3-day
break agrees with the findings in Fraedrich and Larnder
(1993) where the scaling regimes of various European
rainfall time series are investigated using power spectra.
They claim that 3 days is the upper limit of the scaling
regime associated with frontal systems, but that this limit
may well be higher depending on the climatic
characteristics of the region in question. Their results
indicate that this regime extends down to 2.4 hours where
a break occurs to another regime that they claim is possibly
associated with individual meso-scale storms. From Fig.2
no apparent break at 2.4 hours is indicated. The value of
the power law exponent 3 in the range 16 min to 3 days is
0.66 estimated from the solid regression line shown in
Fig.2. This thus indicates that the series is scaling with a
well respected stationarity in this range of scales.
According to Fraedrich and Larnder (1993), another
possible explanation for their apparent 2.4-hour break
might be an inability of the gages to measure signals below
some threshold level (i.e., low rainfall intensities). Thus it
would be an artificial break that would be less pronounced
the higher the sensitivity of the gage used and that would
disappear when the sensitivity is sufficiently high. The
present results support this assumption since the resolution
of the data used in this study (0.033 mm) is 3 times higher

0.2

-0.8-

Log[E(h]

-1.8

16 minutes

2 years

11 days
2.8 I T T ! T T I T I
-6 -5 -4 3 : -2 -1 0
Log(f)
Fig. 2. Power spectrum E{f) of the 8-min rainfall time series averaged over logarithmically spaced frequency intervals. The solid straight line has been
fitted by regression. The dotted line has been extrapolated from the solid regression line.

3 days 2.4 hours
I




Log{average moment)

q=3.0

q=0.6
-1 q=0.2
11.4 days 8 min
-2 | I |
] 1 2 3

Log(lambda)

Fig. 3. The average moment {¢,9) as a function of A (lambda) in the range
8 min to 11.4 days for values of g between (.2 and 3.0. The straight lines
have been fitted by regression,

than the 0.1-mm resolution used in the investigation by
Fraedrich and Larnder (1993) (Fraedrich, 1994). Another
observation in favor of the assumption is that the power
spectrumn obtained from the raw 1-min data (intensity
resolution 0.033 mm/min) used in this study exhibited a
pronounced break at about 45 min (Olsson et al., 1993),
whereas in the spectrum from the more sensitive 8-min
data (intensity resolution 0.033 mm/8 min, approximately
0.004 mm/min}) this break has disappeared.

From the power spectrum, the scaling regime was thus
estimated to be from 8 min up to approximately 3 days.
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Fig. 4. The moment scaling function K{(g) for the 8-min rainfall time
series; empirical {point values) and universal using «=0.63 and C; =0.44
(the solid line),

However, when performing the moment analysis it was
found that a multifractal behavior as expressed by Eq.1
was well respected up to more than 10 days (Fig.3). By
studying the power spectrum between 3 and 11 days
(Fig.2), it may be observed that it does not deviate too
strongly from the straight-lined behavior in the range 16
min to 3 days (the dotted line in Fig.2, extrapolated from
the solid regression line). Thus a multifractal behavior is
expected to hold approximately also for this range.

Figure 3 shows {¢,%) as a function of A using values of ¢
between 0.2 and 3.0. The curves exhibit a well respected
straight-lined behavior in the range 8 min (A=2048) to
11.4 days (A=1). To the curves, straight lines have been
fitted by regression {the straight lines in Fig.3) having an
average R? of 0.994 with a standard deviation of 0.004.

From the slopes of the lines in Fig.3, the values of the
empirical moment scaling function may be estimated. In
Fig.4, this function is shown for values of ¢ between 0.2
and 4.8 (the point values).

As previously mentioned, to estimate the multifractal
parameters ¢ and C; producing the best fit of Eq.2 or 3 to
the empirical moment scaling function, DTM is employed.
Figure 5 shows K{(g,) as a function of 4 for g=1.3, 1.4,
and 1.5. The curves exhibit a straight-lined behavior for a
range of gvalues in which straight lines have been fitted by
regression. At both ends the curves deviate from the
straight-lined behavior and the range of nvalues where the
straight-lined behavior is respected is in fact rather limited.
The upper limit corresponds to gn=3.4 which seems
reasonable considering that it is related to the divergence
of high-order moments which makes K(g,%) approach a
constant value. The lower limit (gy=1.7) is higher than
what has been found in other DTM-analyses of rainfall
time series (e.g., Tessier et al., 1993), Generally, when
raising the values of the series to small exponents the
importance of the extreme values is decreased whereas the
importance of the low values are increased. Thus
inaccuracies of the low values may affect the analysis
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Fig. 5. DTM-analysis: X(g,n) as a function of n (eta) forg=1.3, g=1.4,
and g=1.5. The straight lines have been fitted by regression.

results to such an extent that the scaling behavior cannot be
accurately determined at low values of ¢ and 7. Slight
inaccuracies may exist in the present data depending both
on the low-intensity problem previously described (see
Sect.4) which may remain to some extent also in the
aggregated 8-min values, and on possible noise in the data.

From the slopes of the straight lines in Fig.5, the
estimated values of o are 0.624 (g=1.3), 0.631 (g=1.4),
and 0.633 (g=1.5). The average value of « obtained from
1.1=g=<1.6 is 0.626 with a standard deviation of 0.009.
Using these values, the average value of C; becomes 0.439
with a standard deviation of 0.003.

C,=0.44 agrees very well with the results from previous
analyses of rainfall time series. In the review by Hubert et
al. (1993), C; is found to be 0.444+0.16 based on five
different sets of rainfail data. The estimated values of o
show some difference, 0.63 in this study compared to
0.5140.05 in Hubert et al. (1993). One reason for the
difference may be the differences in the upper limit of the
scaling regime, it was at least 2 weeks in Hubert et al.
(1993) compared to 11 days in this study.

In Fig.4, a comparison between the universal moment
scaling function obtained from Eq.2 using «=0.63 and
C;=0.44 (the solid line) and the empirical function (the
point values), is shown. In the approximate range
0.8=<g<3.2 the agreement is good, but outside of this
range the functions differ somewhat. From ¢=3.0 and up
the empirical function is straight-lined. This behavior has
been found also in other analyses of rainfall time series
(e.g., Ladoy et al., 1993) and it is most likely associated
with the restrictions of K{(g) imposed by the two limiting
aspects, undersampling and divergence of moments,
described in Sect.2. The empirical probability distribution
function, however, indicated divergence of moments {and
consequently a straight-lined K(g)) from g, =2.0 (Fig.1).
This discrepancy may be related to difficulties in estimating
the true tail behavior of the probability distribution due to
an insufficient amount of data, as mentioned above. The

almost straight-lined behavior of the empirical function
from g ~2.0 and down, which produces the most striking
difference from the universal function at g <0.8, has not
been found in other studies. This part of the empirical
function may be affected by the low-intensity problem (see
above and Sect.4).

Another possible reason for the difference between the
empirical and the universal moment scaling function may
be that the values of oo and C} obtained by DTM are not
ideal and that other values may provide better fits. The
almost straight-lined behavior of the empirical function at
low values of g actually indicates that a universal function
with «=0 (i.e., implying a monofractal behavior) would
produce a better fit in this range. This is, however, in
striking contrast to the apparent multifractality of the data
found in a previous investigation (Olsson et al., 1993) and
therefore this finding is left merely as an observation.

6 Summary and Discussion

A 2-year time series of 8-min rainfall intensity
observations, aggregated from 1-min data, was analyzed in
order to investigate whether it was characterized by a
multifractal behavior. The empirical probability distribution
function indicated a hyperbolic intermittency with
divergence of moments of order higher than or equal to 2.
The power spectrum indicated that the series was scaling
within the range 8 min to 3 days with a well respected
stationarity. By studying the average statistical moments at
different scales, a multifractal behavior was well respected
from 8 min up to 11.4 days. By using Double Trace
Moments, DTM, the multifractal parameters associated
with the notion of universality was estimated to be «=0.63
and C;=0.44. The agreement between the universal and
the empirical moment scaling function is satisfactory
although at high and low values of g the curves differ. At
g>3 the difference is likely to originate from either
undersampling or divergence of higher-order moments. At
g<1 the difference may be related to an improper
representation of low-intensity rainfall in the analyzed time
series. Another possibility is that the parameter values
obtained by DTM are imprecise and that other values
would produce better fits.

This study constitutes yet a contribution to the growing
number of analyses where the hypothesis of a multifractal
behavior of rainfall fields is supported. The multifractal
behavior is accurately respected from the 8-min resolution
of the series to approximately 11 days. From a
hydrologica! point of view it is interesting to note that the
interval 1 day to 1 hour is well within the limits of the
scaling regime. Present sophisticated hydrological
modelling often requires rainfall data input at a time
resolution ‘of at least 1 hour, sometimes even minutes.
Such data are very seldom available, instead daily or at
best 6-hour values observed by meteorological services
must be used. Thus new ways of connecting the rainfall



properties at these different scales are of great importance.

The estimated values of the multifractal parameters
«=0.63 and C;=0.44 agree fairly well with previous
studies. The number of investigations is, however, still low
and more analyses of data observed at different time and
space scales in different climatic regions are needed to
further validate the parameter values. However, in parallel
with the continuing rainfall data analyses the development
of methods for using the multifractal approach in practical
rainfall applications should be commenced. For example,
to extract robust and useful information about the small-
scale rainfall properties from larger-scale data, something
that would increase the accuracy of the output from
hydrological models.
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