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Abstract. Assuming that the behaviour of a nonlinear
stochastic systemn can be described by a Markovian dif-
fusion approximation and that the evolution equations
can be reduced to a system of ordinary differential equa-
tions, a method for the calculation of prediction time is
developed. In this approach, the prediction time de-
pends upon the accuracy of prediction, the intensity of
turbulence, the accuracy of the initial conditions, the
physics contained in the mathematical modei, tlie mea-
surement errors, and the number of prediction variables.
A numerical application to zonal channel flow illustrates
the theory. Some possible generalizations of the theory
are also discussed.

1 Introduction

Prediction of the characteristics of nonlinear stochastic
systems is of considerable interest in modern theoretical
physics. See, for example, Kravtsov (1986) for a discus-
sion of approaches to this prablem. In the last few years
this topic has become very popular in hydrodynamics,
plasma physics, geophysics, astrophysics, etc. As noted
in the excellent review of Harms et al. (1992) climate
prediction is now emerging as an extremely important
issue in geophysics.

A basic problem of prediction is the estimation of the
prediction time Tpreq. Knowledge of mpreq gives the time
period during which a mathematical model might be
used for reliable predictions of the evoluiion of a real sys-
tem {reality). In principle, fpreq can be calculated if the
cross-cortelation function between the model prediciion
and reality is known (Kravtsov, 1986). There are essen-
tially two ways to achieve this. One is to use archived
observations as reality and construct cross-correlation
functions by comparison with model predictions. In
effect, Tpreq is assessed from hindcasts. Alternatively,
the cross-correlation function can be estimated by di-
rect comparison of model predictions or forccasts and
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new observations.

Both approaches have several obvious deficiencies.
First, it is difficult to obtain the functional connections
between 7preq and the physical factors which limit the
models. Secondly, Tpreq is usually caleulated a posteri-
ori. However, in some cases Tpred can be estimated a pri-
ori using special analytical methods that have been de-
veloped in the last years. Unfortunately, this approach
Lias been limited to cases of the prediction of the be-
haviour for linear systems or nonlinear systemns with the
weak noise intensities (e.g., Kravtsov and Etkin, 1981)
and so the application of these methods is limited.

By assuming that the evolution of a nonlinear stochas-
tic system can be deseribed by the Markovian diffusion
approximation and that the evolution equations can be
reduced to ordinary differential equations, a new method
for the calculation of meq for deterministic models is
proposed. This method does not require the assump-
tion of weak noise; moreover, it is applicable to strongly
nonlinear dynamical systems.

The remainder of this paper is organized as follows. In
the next section the classical approach to the prediction
problem is described. In the third section this problem
is reformulated. The reformulation is based on three
premises. One is a finite dimensional representation in
terms of dynamical systems variables, The second is
the use of the Markov diffusion approximation as a de-
seription of the stochastic behavior. The third is the
utilization of the analogy between the reformulated pre-
diction problem and the classic first passage time prob-
lem. These latter {two types of prediction problems are
discussed in some detail. The mathematical description
introduces two special functions P and W, and the for-
malism for their calculation is discussed. Here these
functions are represented as single-layer potentials, as
this is more useful in our applications than the tradi-
tional double-layer potential representation. Section 5
discusses approximate equations for the calculation of
P and W. In Sect. 6 the approach is used to estimate



the prediction time for a three-mode model of flow in
a zonal channel. The approach is generalized for more
complex cases than the Markovian diffusion approxima-
tion in Sect. 7. Finally, in Sect. 8, the results of this
investigation are summarized.

2 Classical approach to the prediction problem

Let the evolutlion of the characteristics of a medium be
described by the following stochastic equations

di

- = Lz, t)+ Ly(30) (1)
4 Ir=¢0= &g, (?)

Here, £ is an m-dimensional vector that characterizes
the medium, &g is its initial value, and £ and £, are
nonlinear operators describing the deterministic and the
stochastic evolutions of the medinm. Here & will denote
reality.

The deterministic model of the evolution of # is ex-
pressed generally as

dz o ‘
= M5, 0 (3)
£ lim= %0 (4)

where M is a nonlinear vector operator. In the classi-
cal statement of the problem for the calculation of the
prediction time it is necessary to find a time, Tppeq, such
that for any time larger than 7.4

oplap — 22 <e? p=1,...,m (5)

where ¢ is the prediction accuracy, ~— is the ensemble
average of the initial position of the vector &, and ap
are weighted multipliers which characterize the impor-
tance of the contribution of each component of # to the
prediction.

3 Reformaulation of the prediction problem

It is known that the stochastic behaviour of nonlinear
dynamical systems can be described by linear probabilis-
tic models (e.g., Kiyatskin, 1980). For example, the dy-
namical problem of the nonlinear Navier-Stokes’ equa-
tions with stochastic forcing can be solved as a prob-
abilistic problem using the linear Hop{ equation. The
statistical characteristics of nonlinear stochastic systems
that describe ordinary differential equations can be cal-
culated from linear evolution equations for the proba-
bility density. We shall use this idea to reformulate the
prediction problem.
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Obviously, the dircct solution of (1)~(5) is possible
only in very special cases because £, £, and M are non-
linear operators. Therefore, the problem of the calcula-
tion of 7preq needs to be reformulated. The reformula-
tion is based on the following three assumptions.

First, consider solutions to (1) and (3) to be given by
a truncated eigenfunction expansion. This is consistent
with the recent trend in hydrodynamics to use finite
dimenstonal representation of media characteristics and
the Galerkin-Bubnov method to treat partial derivatives
for the sclution of the systemn equations. See Gledzer
et al. (1981} for a summary and discussion.

Sccondly, assume that # is an m-dimension Marko-
vian diffusion process (m > 3) and for its description
transport coellicients L, (¢ = 1,...,m) and mixing ten-
sor &, (r,s =1,...,m) will be used. In principle, the
theory can be developed for non-Markovian processes,
but then the methods for calculation of Tpred are more
complicated and not justified at this stage.

The third basis for the development of theory is the
analogy between the prediction preblem and the clas-
sic first passage time problem. See Stratonovich (1961,
1963). Apparently, this analogy was first noted by Ivanov
and Kirwan (1993). The analogy provides an efficient
mathematical theory to the calculation of rreq for non-
linear stachastic systems from deterministic models.

We now consider the analogy in more detail and give a
geometrical interpretation of the inequality in (5). Con-
sider one realization of (5):

312 2

aplzp(t) — (1] < 27 (6)
Imagine an ellipsoidal surface 5;: ape, — z,(1)]* = €2
moving in m-dimensional space. Here, z,(f) is the tra-
jectory of the geometric center of the ellipsoid. The
stochastic trajectory x,(f) can be within or outside of
the ellipsoid. This trajectory will intersect the surface
periodically. Tt is suggested that when the trajectory
z,(t) is within the ellipsoid then the prediction is real-
ized and wlen it is cutside there is no prediction. If the
trajectory leaves the ellipsoid then its Intersection with
the surface S, denotes the prediction limit. In this case
the prediction time is identical to the time the trajec-
tory first passes S;. This gives a direct analogy between
our prediction problem and the classic first passage time
problem. The difference is that in the present case 5, is
a moving surface, while in the classic case it is motion-
less.

Using this analogy two types of predictions arise as
a consequence of inequality (6). The first type (P1) is
the prediction when the initial position of the trajectory
starts and moves within the ellipsoid. For the analo-
gous prediction problem introduce a probability fune-
tion P(tg, £o,t —1g) which gives the probability that the
trajectory #(t), which was at the initial position #p, will
leave the ellipsoid at time £ — ¢y. Then the trajectory
approaches the boundary from within. In this case Ty.eq
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agrees with the time of the first intersection of & and
can be calculated from formula

o3 P —
Tpredl(i'O) = ] (t - tO)aP(tO’ 16;, ! tn)dt (7)
to

We now discuss the second type of the prediction (P2).
Here the stochastic trajectory #(t) is outside the ellip-
soid at the initial position. However, it will later inter-
sect the ellipsoidal boundary from outside for some time
Tpreds. 1t 1s suggested that 7preqn is the time predictions
can start. For the description of this type of prediction
introduce the function W (¢, £o, t — #g). This function
gives the probability that the trajectory will intersect S;
from outside for time equal to t —#g. In this case Tpeeas
can be calculated from the following [orinula:

) o0 OW (tg, g, L —t
Tpredz(xo)zj (1 1g) L0 g: o) gy, (8)

to

Of course, more complex types of the prediction can be
formulated. For example, the stochastic trajectory can
leave the ellipsoid and return several times for some time
period. Such cases are not discussed here, however.

4 Equations for the calculation of F(lg, &0, 1 —1g)
and Wi, &¢, ! — n)

The functions P(tq, &o, t —fg) and W(tq, &o,{ —1o) play
a central role in this study. The method for calculating
P(tg, &g, t — tp) is discussed here in detail. Since the
determination of W is quite similar only the final result
will be given.

The determination of P(ty, &g, t —to) 1s facilitated by
introducing {fo and £ by

By = éD + 3(1‘.0)

&= £+ 5(0) (9)
Then define
P(tg, Fy, t — to) P[to, éo -+ f(tg), t— to]

= d(ty, &y, t —1g). (10)

Using L and T as space and time scales, respectively,
the following nondimensional quantities are defined:

¢=L7"

=T

Ly =L7'TL,

wl, = L7 T=,,. (11}

Hereafter (1) and (3) will be regarded as nondimension-
alized and so the primes will be omitted.

The function ®(¢q, £o, t — ¢g) is the probability that
the stochaslic trajectory which starts at & can leave
the fixed ellipsoid bounded by the surface Sé:

e = €2, (12)

We now formulate a boundary value problem to de-
termine ®(t, €9, t — to). Taking into account that £(2)
is a Markovian diffusion process it can be shown that
P(iq, &, t — 1g) must satisfy Kolmogorov's equations
(Stratonovich, 1961):

LO(ty, &y, t—to) =0 (13)
(I)(t, éo, U) =0 (14)
D(ta, €o, 1 — Lo) |£»D£Sé: 1. (15)
Here

ij - .
£ = i {Lq[E0 + 2(t0), to]

o

- ﬂ‘fg(tal)}vq + &y [‘fo + é(tn)u tg]V,—Vs
and

e]

r,og, g=1,..., m

There is an elegant method due to Pogorzelski (1958)
that can be used to solve (13)—(15). With this method,
the solution of (13)—(15) is represented as a single-layer
potential. This is in contrast to the classical theory of
differential equations for the Dirichlet problem {e¢.g., La-
dyzhenskaya et al., 1967) where a double-layer potential
usually is used. The use of double-layer potentials for
this problem causes unnecessary mathematical complex-
ity.

The first stage of the determination of the solution
{13)-(15) by Pogorzelski’s method (Pogorzelski, 1958)
is to find the solution to an auxiliary problem. This
is formulated as a Neumann problem for part of m-
dimensional space unrestricted by the elliptic surface Sé:

L' (tg, o, 1 —15) =0 (16)
&'(t, &, 0) =0 (17)
Loy '

G 'e'ucb‘s‘ V. (18)

Here 7 is normal to the surface Sf- and V is some func-
tion which will be specified later. In addition to (18)
note that if ‘fo tends to any point on the surface Sé from
the interior of the ellipsoid, than &' will approach 1.



The solution of (16)-(18) can be written as a single-
layer potential generated by some density ¢ at the sur-
face 5:

(Lo, €0, t — o) =
t

] dT/ plto, &o, 7 0ke(n, T)dSy. (19)
to SE-

Here p(ty, &, T, 7} is the fundamental solution for the
operator £ and (7, T) satisfies the integral equation

w(i, 7) =
t
—9 / dr' / M(r, 4, 7, 0)p(0, T)dS;
te Sy
+2V(#, 7). (20)

Also, M(, #, 7', 8) = SO e (, TIVep(T, B, T, 0)
is the kernel of the integral equation. In the theory of
parabolic equations, TLadyzhenskaya et al. (1967) have
argued that (20) are the Voltera equations which can be
solved by the iterative method.

We now proceed to the sccond stage of the solution.
Note that ®(lo, &, ¢ — o) is a solution of (13} and
satisfies (14) within an ellipsoid bounded by the surface
S:. Moreover, as é[] tends to any point on 5; then @ will
tend to 1. But this result is independent of direction: a
general property of single-layer potentials. Therefore,

B(t, Lo, L —to) = ¥ (ta, £, t — to) (21)

within the domain bounded by S¢. Thus, the solution
of (13)-(15) is known from (21).

Obviously the calculation of the function W(t, o, 1 —
lo) proceeds in a similar manner. In that case, the result
is

W(t, &0, t —tg) =
t
] dr f plto, €0, 7. )@, 7)dSs (22)
to Sé
and
o, 7) =
t
2] df'/
ty Sf,
M(r, 0, 7, 6)@0, 7)dS; — 2V (5, 7). (23)

The final equations for W(ty, &y, t—ta) and Pty &o,t—
ty) can be easily found from (19) and (22) through the
reversible transformation back to the variables zg, #.
The mathematical structure is identical to the structure

of (19) and (22).
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Let us briefly discuss the functional dependencies of
W(t, &o, t — tp) and P(t, &0, t — {o). The predictabil-
ity times, Tpred1 and Tpredz depend upon the accuracy
of prediction, the intensity of turbulent noise, the accu-
racy of the initial conditions, the physics contained in
the mathematical models, the measurement errors, and
number of prediction variables. Of special interest here
158 NOW Tppred1 and Tpreqz functionally depend on the mea-
surement errors. The latter are not shown explicitly in
the equations for W(t, £o,t—1o) and P(2, &g, t—tp). The
effect of measurement errors occurs in the nonlinear-
differential operator £ solution of the prediction prob-
lem since this employs the Galerkin-Bubnov method.
This method reduces the system of partial differential
equations to an infinite dimensional system of ordinary
differential equations. For practical applications only
m-equations are used. Clearly, the value of m depends
upon the measurement errors.

5 Approximate solutions for P({q, #, t — t5) and
Wity, &g, t —1q)

The mathematical structure of (19) and (22) suggests
the following geometric interpretation. The probability
that the stochastic trajectory can leave or return to the
ellipsoid bounded by the surface S, is the composition
of the probabilities of the intersection of the surface for
different time period é&€fty, t], where [ is number of the
time period that the particle intersects the surface S;.
This interpretation can be used to simplify the calcula-
tion of P(to, &, ¢ — ly) and W(tg, &, t — ty). We shall
also make use of the fact that ¢ is a small parameter for
an exterior Dirichlet problem.
Starting from Eq. (22) we introduce a new variable

7 =" 4,5 (24)

Here ;31,7 is the linear mapping which transforms the dif-
ferential operator @, V.V, to §,, V.V, V. = 8/dy.
and §,, is the Kronecker symbol.

Taking into account that 2 < 1, W, P, and ¢ can be
represented as:

g 1) = @0, )+ e (W, )+ (25)
Wity, 2, t — 1) =
WO(to, @0, t —to) + eW'(te, 20, t — o)+ ... (26)
P('!D; Zy, T, 7}) |v}=5‘12p[107 Tg, T, ZA(T)] (27)

Then, substituting (25) into (22) the ¢™~? order equa-
tion is found to be

WOt 2o, 1 — tg) = 2e™2

t 950
/ drplto, 2o, 7, 2(7)] %ﬁwdA,J‘IS,;. (28)
to Sﬁr n
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Here (i}, 7) is a harmonic function satisfying the equa-
tion

AG(H ., 7) =0, (29)

with the boundary conditions

) s, = 1 (30)

g, 1) =0 if § — oo (31)

It can be shown that the integral in {28) over the ellip-
tical surface Sy depends ouly upon the coefficients of
diffusion, which characterize the influence of turbulent
noise on the trajectory.

A problem similar to (28) was previously solved in the
theory of the optimal control (Mishenko and Pontrya-
gin, 1961). They represented the solution to (22) by a
double-layer potential. That solution has a very com-
plex mathematical structure and cannot be uscd easily
in application. Kolmogorov et al. (1962) used proba-
bilistic ideas to postulate a solution to (22), which was
similar to (28). However, that solution and ours are
different. This difference is manifested in the integral
multiplier fS of (28). When a,, does not depend on

time this factor is not important and the two solutions
are in good agreement. However, in the nonstationary
case this multiplier becomes very important. Unfortu-
nately, the Kolmogorov et al. (1962) solution cannot
be checked because the result was postulated and not
calculated. However, Kolmogorov et, al. (1962) demon-
strated that their solution and the solution of Mishenko
and Pontryagin (1961) have identical asymptotics. It
should be noted that our solution also has the same
asymptotics.

It is important to note that a simplification to (19)
is possible even when ¢ is not a small parameter. To
demonstrate this introduce L, z,, and ¢ in the follow-
ing form:

o, 1) =0 T+t T (32)
Ly (€ + £(to), to] = L,[2(t0)] (33)
20s[€) + £(t0), t0] = wra [2(00)] (34)
p(to, 20, 7, 7) 2 plto, &0, 7, £(7)] (35)

The convergence of the series (32) was shown by La-
dyzhenskaya et al. (1967). Equations (33)-(34) are a
consequence of the fact that transport coefficients change
slowly on the spatial scales compared with value £. In
this case ¢°(#’, 7) is the solution of

3(,‘; [Ly = MV — 0 ViV 6" = 0 (36)
o(H, t0) =0 (37)

S, o) |, =1 (38)
The mathematical structure of Eq. (36) i1s simpler than
the structure of (19). In this case, F(fo, Zo, t — {p)
satisfies the following equation:

iD! 101 { _tD) =~

/ drplty, To, 7, #(7)]

9" -1
., O ~dA; Sy (39)

In the next section we use (39) to estimate 7.1 for a
small-mode number geophysical flow.

6 Application

In this section the theory is applied to the calculation
of Tpred1 for a three-mode model of zonal flow.

Consider zonal, barotropic, and noundivergent flow in
channel, The #-effect, bottom topography, dissipation
(friction in the channel) and Ekman pumping are all in-
cluded. This flow is prescribed by three modes (m = 3).
The streamfunction ¥, the wind stress # = (7, 7y) =
(7w, 0) and the bottom topography H can be represented
as series expansions of the eigenfunctions v, of the lin-
earized flow stability problem:

v = Ap(t)'l;bﬂ(l‘! y) (40)

M e

1

fl

P

o
I
e

By ()n(x, y) (41)
p=1
3
H =3 Co(t)nlz, ). (42)
r=1
Here,

¥ = V2cos(y/L); 2 = 2cos(2z/L) sin(y/L);
a3 = 2sin(2z/L)sin(y/L)

and L is the channel width. Periodic and nonshp con-
ditions were used on open and solid boundarics of the
channel, respectively. The equations for the description
of the evolution of mode amplitudes A,(t) can be easily
obtained by the Galerkin-Bubnov method (e.g., Gledzer
et al., 1981).

Consider a special case where By = By = 0; By # (;
Cy % 0; Cy # 0; C3 = 0. In this case the equations for
A, are
dA;

— = ALt C1H Aq (43)



dA
Tz = —’)/Ag — (?‘Al — ,(3]:1,5 + 7132 (44-)
% = —’yAg - Cgf}_‘ll + (?‘Al — ;B)AE (45)

Here v is a coeflicient of the channel friction, n is inten-
sity of the Ekman pumping, and r, (1, Co, H are all
numerical multipliers.

For present purposes the following parameters were
chosen {Eremeev et al., 1088):
L 8v2 L

- =01Ci=—:; (Cy =
d =it =g

Ciir= 64\/5/157r;

2L ~a,
B ==yl = 0.04; 0 = 15°

1 wp 1/2
= — (=)' =0.015 - 0.06;
v He(2fo)
vp = 10* — 10%cm*/s;

Ho = 10%¢m; By = 1; 7 =001 H =0.01. (16)

Here Hy is the average depth in the channel, d is the
radius of the Earth and wg is the turbulent viscosity.
These values are typical of large scale processes in the
ocean.

The following sct of nondinensional quantities are
used:

' = fot;

¢ =Lt

¥ =Ly

¥ = L7 Sy

T:: = L_Qfo_zTa:;
H' = H;'H. (47)

In (43)-(45) and later, the primes of all nondimensional
quantities are dropped. Initially, the fluid is at rest so

(Ah Aa, A3) ||:0: 0. (48)

If the wind i1s a deterministic then the solution is
straightforward (e.g., see Fig. 1). Of more interest is
the case when the wind is stochastic. Then (43) through
(45) are changed to include stochastic additions on the
right-hand side. In this case the dynamical Eqs. (43)-
(45) become:

dA;

— = AL+ Ol A+ m () (19)
d4 :
—a-t—z— = —7Ay — (rA1 — DAz + 1+ mfolt) (50}
dA = .

_(Eé — —‘rAs —CgH/‘i] +(?’A1 —ﬁ)A3+T]3f3(t) (5]‘)

(Ala A?: A3) L:u: 0. (52)
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t{days)

Fig. 1. Temporal evolution of mode amplitudes: v = 0.015

Here f, 1s a §-correlated vector process with the statis-
tical characteristics

(fr} =05 (f?'(t)fs (1‘1)) = b, 0(t — 1), (53)

¢ in (53) is the delta or unit impulse function and 7y,
n2, 3 characterize the intensity of the stochastic wind
pumping. Here we take v, as a percent of n. Predictions
of the temporal evolution of the A; use the following
model:

d< A >

7 = --‘.}" < ,-41 > +C'flI:I < A2 > (54)

—F<Ar>—(r< A >=-0) < A3 >+ (55)

d< Az >
dt -
— < Ay > —CoH < 4, >
+ir<Adr>-p0)< 4y > {h6)

< Al >|f=02 .41(5”



230
< As >|:=e: Aﬂ(ét)
< Az >|‘=ﬂ= A3(5f) (57)

Here < -.. > is the ensemble average operator; 8t =
2 days is the difference hetween starting limes of the
model system (54)—(57) and the stochastic system (49)-
{52); ¥ is the renorinalized coefficient of the friction in
the channel The 7eqr was found as the solution of the
following inequality:

apIp(Tprear) < €7 (58)

with I, = [A,(1)— < Ap(t) >]°.

For construction of the statistical ensemble one thou-
sand realizations were utilized. Calculation Tpreq; by
inequality {58) is called the direct calculation. Another
way of calculating meq1 18 to use equations (7} and {39).
The fundamental solution p{tg, A° ¢, ;i’g,}i) plays a
critical role in this case. This is found by solving the
following Fokker-Plank equations:

Oplty, A°, t, A -
p( 2 Bt ) + L‘qup(rol AO‘

=&, V, Vaplto, A°, tLA) s7,5=1,2,3 (59)

plto, A° 1, A)|,_,= 8(A) = 6(A4)6(A2)8(43).  (60)

Here

v, = 8%

Li=—vA, + C1HA, (61)
Ly = —vAs — (rd; — $)Az +n (62)
La=—yAs — CoHA; + (rd; — 3)4s (63)
Wy = nf;é,s. {64)

The solution can be easily obtained for (49)-(52) by
standard statistical methods (e.g., Stratonovich, 1961).

Equations (49)-(52) and (54)-(57) were iniegrated
numerically with a fourth order accurate variable time
step integrater (Nordsieck, 1962). Tle solution of the
Fokker-Plank equation was obtained by a special flux
corrected transport (FCT) method (Boris and Book,
1976). The principle advantage of this method is that
it works well with small values of viscosity, The calcu-
lation was performed on a 30 x 30 x 30 grid with space
steps AA; = A4y, = Adz = 0.02 and a time step of
At = 0.1. On the boundaries A1 = As = Az = 0 were
assumed. The calculation was controlled by the conser-
vation of

/ plto, A°, 1, A)d®A = 1. (65)

v

Here v is the calculated volume.

The solution of (23) used an iterative method with a
typleal nuimber of iterations ranging from 5 to 10. The
function °(7, ¢} was calculated from the Green’s fune-
tion for the three-dimensional Laplace’s equation in el
liptical coordinates (Morse and Feshbach, 1953).

A typical evolution of the functionals < A4, > and
I, is shown in Fig. 2 and Fig. 3, respectively. Fig. 4 is
typical for the fundamental solution pfto, A?, 1, {A(t))].
Note that after 4 days this function can oscillate when
v = 0.045. This oscillation i1s an artifact of the calcula-
tion procedure and is related to the FCT method when
the function pfte, A°, t, {A(1))] is small. However, even
in this case there are no negative values for the funda-
mental solution.

This model of the circulation allows one to investigate
the functional dependence of Tpreq) on three parameters:
£, ng, and y. The results of this calculation are shown
in Fig. 5 along with results of the caleulation from (19)
and estimates using the direct method. The difference
in solutions for large values 7 can be explained by the
numerical viscosity of the model. This can reduce some-
what the value of p[ta, A%, t, (A(1)}]. Aside from this the
agreement is quite satisfactory.

7 Generalization

This method 15 readily generalized to include general
Markovian and non-Markovian processes. The Marko-
vian process #(t) used as the model of reality should
satisfy the following equation:

P fe 0+ L6 1), (66)
Here 5 is a d-correlation stochastic vector m-dimensional
process. In principle £ can be a Markovian processes
with a finite correlation time. To generalize our ap-
proach to this case we use the fact that nearly all Markov
stochastlc processes with finite correlation times can he
represented in the form (Ilyatskin, 1980)

& 5 on .
=L, (67)

In (67) € is a é-correlation stochastic m’-dimensional
process. In the expanded space of vectors with dimen-
sion of m + m’ the vector (#, £) can be considered as a
Markovian diffusion process.

Similarly, 1t is possible to consider stochastic systems
witlh non-Markovian behavior, if they satisfy

dz

E:t@an. (68)

Here £ is the Markovian stochastic process with an ar-
bitrary correlation time.



5.10-2 9

n _\/\/\J"_-
<Ap>  -5-10-29
~110°1 4

-1.510-1 = 7 g u T T v t d

0 Ely 1‘0 1‘5 2‘0 25 a0 35 40 45 50 85 60

tdays)

21014
11614
<BAo> 0
-1-10-1 4

-2:10-% T g T T T T T T T i T g

o H 10 15 20 25 30 35 40 45 50 585 60

t{days)

1-10-1
o

1101 4 T T

<A3»

210-14
-3-10-14

-4-10-1 T T T T T T T T T T T 1

bl 5 0 15 20 25 30 35 40 45 5S¢ 55 &0

t{days}

Fig. 2. Temporal evolution of average mode amplitudes: 55 =
20%; v = 0.015

8 Conclusions

In this paper an approach for calculating the predic-
tion time Tyreq1 for nonlinear stochastic systems was de-
scribed. This approach can be extended In at least two
ways. One is to analyze problems such as the compari-
son of the Lagrangian and Eulerian prediction times or
the determination of the dependence bhetween corrcla-
tion and prediction Limes.

However, the principle application of the approach
would be to maximize the prediction time using Pon-
tryagin’s principle {Moiseev, 1975). This problem should
have numerous practical applications in hydrodynamics,

~ plasma physics, geophysics, astrophysics, etc.
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Fig. 5. a) Functional dependence of Tpreq1 upon values e: 4 =
0.015; g = 20%; oy = o2 = I; a3 = 4; ¥ = 0.02. Circles
indicate the direct method; triangles from Eq. (39). b) Functional
dependence of Tp,eq41 npon values v ¢ = 3.107%; ns = 20%;
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method; triangles from Lq. (39). ¢) Functional dependence of
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(39)
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