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Abstract. Shear flow in a stable stratification provides
a waveguide for internal gravity waves. In the inviscid
approximation, internal gravity waves are known to be
unstable below a threshold in Richardson number, How-
ever, in a viscous fluid, at low enough Reynolds number,
this threshold recedes to Ri = 0. Nevertheless, even the
slightest viscosity strongly damps internal gravity waves
when the Richardson number is small (shear forces dom-
inate buoyant forces). In this paper we address the
dynamics that approximately govern wave propagation
when the Richardsen number is small and the fluid is
viscous. When Ri << 1, to a first approximation, the
transport equations for thermal energy and momentum
decouple. Thus, a large amplitude temperature wave
then has little effect on the fluid velecity. Under such
conditions in the atmosphere, a small amplitude “turbu-
lent burst” is observed, transporting momenturn rapidly
and seemingly randomly. A regular perturbation scheme
from a base state of a passing temperature wave and
no velocity disturbance is developed here. Small ther-
mal energy convection-momentum transport coupling is
taken into account. The elements of forcing, wave dis-
persion, (turbulent) dissipation under strong shearing,
and weak nonlinearity lead to this dynamical equation
for the amplitude A of the turbulent burst in velocity:

Af =AA+ /\gA& + )‘3‘45&'5 -+ A4AA5 + b(f)

where £ is the coordinate of the rest frame of the pass-
ing temperature wave whose horizontal profile is b (£).
The parameters A; are constants that depend on the
Reynolds number. The above dynamical system is known
to have limit cycle and chaotic attrators when the forc-
ing is sinusoidal and wave attemiation negligible.

Carrespondence to: M.G. Velarde

1 Introduction
1.1 Linear dispersive waves as harmonic oscillators

Waves manifest in a great many physical circumstances
from the classical studies of optics and water surfaces to
plasma and condensed matter. In nearly all of these pro-
cesses, the first analysis of the wave propagation comes
from assuming the amplitude of the wave is infinitesi-
mally small. It follows that linear waves are solutions to
linearized equations. This simplification, without con-
sidering complicated interactions of linear waves with
boundaries, leads to only one distinguishing factor for
waves of any given wavenumber-its phase velocity. If
waves of different colour have different phase velocity, a
wave packet disperses. If the dispersion effect is small
and the waves neither grow nor decay, to a good approx-
imation, in isotropic media the phase relation is

w=ck—k? (1)

which is equivalent to a wave equation for the amplitude
A of the wave

A—t +cA; + A:r.rz: =10 (2)

The above equation is the linearized Korteweg-deVries
equation and is generally applicable to many weakly dis-
persive wave phenomena if the amplitude is small. Par-
ticular interest focuses on waves with permanent form,
since many signals are observed that propagate unchanged
over large distances have permanent form. Mathemati-
cally, this means that there is a frame of reference, given
by a transformation 7 = ¢ and § = & —cot. with relative
velocity eg in which the amplitude is steady. Applying
this transformation to (2) and requiring %ﬁl = 0 gives

(c—co) Ag + Agge =0 (3)
Upon one integration with respect to £, we arrive at

Age +(c—co) A =0 (4)
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The above is the dynamical equation governing a Hooke's
Law spring—the classical harmonic oscillator. The usual
harmonic oscillators oscillate in time, but because the
wave has permanent form, it oscillates in the space-
timme coordinate £. Viewed in this reference frame, to a
first approximation, isotropic dispersive waves are har-
monic oscillators. If the waves are weakly nonlinear and
weakly dispersive, we can generalize the above analogy.
It should be noted that Equation (2) does not support
localised solutions (solitary waves). Some new physical
mechanism must be incorporated balancing dispersion
to have solitary waves. Throughout this paper, we will
treat a specific waveguide that manifests nonlinear dis-
persive waves—a sheared, stably stratified fluid layer-and
gain insight to the possible attractors of the wave motion
by exploiting the analogy between waves and oscillators
that comes from the search for the reference frame in
which waves have permanent form.

1.2 Nonlinear dispersive waves as nonlinear oscillators

There has been substantial activity in understanding the
low dimensional dynamics of solitary waves propagating
internally in a waveguide provided by a stably strati-
fied fluid systemn with shear. Since the most prominent
applications are meteorological and oceanic, the tradi-
tional view is to idealize the system as inviscid. Shallow
layer approximations lead to an amplitude equation for
density and stratification of the form

Ar + (o — C)AE + BAA: + aAgee =10 (5)

o and 3 are constants which depend on the background
conditions of vertical stratification and wind shear. Equa-
tion (5) is the KdV equation, after a Galilean transfor-
mation to the frame of reference £ = x —ct. If ¢ = ¢,
then if the nonlinearity exactly cancels the dispersion,
then A, = 0 and the wave has permanent form. It is
equivalent to require ¢ to be the reference frame where
Ar = 0 and hereafter this is adopted. Equation (5)
is a restatement of the weak nonlinear analysis of Ben-
jamin (1966) and Benney (1966) that arbitrary but sta-
ble density stratification and shearing is unstable to the
propagation of large amplitude solitary waves of perma-
nent form. A prescription for the phase velocity, ¢y, and
the vertical structure of the streamfunction and den-
sity were given in terms of cigensolutions to a specific
boundary value problem, and the coefficients « and 3
were given by quadratures of the eigenfunction density
and shear profiles. Maslowe and Redekopp (1980) com-
puted o and 3 for the specific case of linear shear and
density stratification, where « and 3 depend only on the
gradient Richardson number, the depth of waveguide-
wavelength ratio m = (h/)) and the amplitude-depth of
waveguide ratio (). Integration of Equation (5) leads
to

g —C B 2
42 =
= A+2a 0 (6)

Age +

which is the dynamical equation of a harmonic oscilla-
tor, if # = 0, corresponding to linear dispersive waves as
in the previous section, and acting as a simple nounlinear
oseillator with a phase space of dimension two if 7 £ 0.
Equation (6) supports stecady periodic solutions corre-
sponding to cnoidal waves and also homoclinic solutions
corresponding to the famous sech?¢ solitary waves.

Recently, Zimmerman and Velarde (1994) have recon-
sidered internal solitary wave evolution in a waveguide
of a stably stratified and sheared fluid layer, paying par-
ticular attention to weak viscous effects. They found the
attenuation of nonlinear waves from friction and thermal
conduction losses is magnified as the Richardson number
approaches 1/4, and additionally, the diffusion of wave
energy is important as well. The equation governing the
evolution of solitary waves takes the form

Ag +710A + 724 + adgee + BAA =0 (7)

where 7o and y; depend on the Prandtl number, Reynolds
number and Ri. Equation (7) is truncated to O(m?) and
Q(=).

For an arbitrary shear flow with nonuniform vorticity
profile, we expect diffusion of wave energy to dominate
attenuation by viscous forces. Hence vy << %3, If we
neglect yp, then upon integrating, Equation (7) becomes

Yz 1 B 2
A =~ A — — A = 8
EE+a E+aA+2aA 0 (8)

This is the equation of a damped linear oscillator if 3 =
0, but if @ # 0, Equation (8) corresponds to a damped
nonlinear oscillator with a phase space dimension two.
If v, 1s diffusive, then solutions to Equation (8) have a
simple phase space portrait-spirals to fixed points.

So far, the view of nonlinear internal waves as non-
linear oscillators in a steady frame of reference has only
brought us simple dynamics in two-dimensional phase
spaces. If we jump to the simplest three-dimensional
phase space we have the additional possibility of chaotic
dynamics. Consider for a moment the ad hoc addition
of a sinusoidal forcing term to Equation (8):

B8
2a0
This is a damped, forced nonlinear oscillator. The spe-
cific choice of the nonlinearity gives us the so called
Helmholtz-Thompson oscillator (sec del Rioct al.  (1992))
which is known to have chaotic attractors.

From a dynamical systems viewpoint, Equation (8)
barely differs from Equation (6) — the additional term
representing damping is a minor but ever present ef-
fect in the best known oscillator in mechanical systems
- the pendulum. The ad hoc addition of the sinusoidal
forcing term in Equation (%), however, requires expla-
nation and justification in terms of fluid physics. We
interpret the forcing terms as representing a transport
process that translates with the same phase velocity as
the response wave with amplitude A. It is possible that

At + 1—21‘15 + i—A+ A% = Bsin(Q€) (9)



such a process could be caused by a geometrical change
to the bounding surfaces of the waveguide. The premise
of Benney (1966), Benjamin (1966} and Zimmerman
and Velarde (1994) is that the bounding surface of the
waveguide comprises planes parallel to the direction of
wave propagation and perpendicular to the gradient of
background density. If these surfaces were corrugated
sinusoidally, the disturbance would be a sinusoidal forc-
ing, but not one that is then steady in the frame of ref-
erence of the wave. We are left with the conclusion that
a force taking the form of the forcing term in Equation
(9) must be a bulk transport process,

Indeed, we have two scalar fields of the bulk at our
disposal — disturbance streamfunction and density. For
convenience we will assume that the density stratifi-
cation arises from differences in potential temperature
with height. The assumption leading to Equations (5)
and (7) is that to leading order, the streamn function and
temperature fields are intimately coupled according to

Wz, 1) = Al — )y O () + O(e, m?)
T(z,y,t) = Az — )T (y) + O(e, m?) (10)

Ri was taken to be a free parameter. Approximate solu-
tions to the inviscid transport equations exist for 1/4 <
Ri < oo with the ansatz (10). With finite Reynolds
number, the lower bound recedes from Ri = 1/4 and
the waveform of the solution is altered to include an
oscillatory head. For one of these two scalar fields to
provide the forcing function for the oscillatory response
of the other, according to Equation (9), the coupling of
Equation (10) must be broken.

Davey and Reid (1977) studied the numerical solu-
tions to the fully viscous transport equations in the lin-
ear approximation. In addition to finding classical in-
ternal gravity waves in the inviscid limit for Ri > 1/4
they also studied the lower Richardson number modal
structure, 0 < Ri < 1/4, where internal waves of the
form Equation (10) grow rapidly and break up in the
inviscid approximation. For the special case of Ri = 0,
they noticed the mathematically obvious fact that the
linearized equations for energy and mementum trans-
port decouple. That is, there exist solutions to the tem-
perature equation that are travelling waves when the
disturbance streamfunction vanishes identically, These
are known as the temperature modes. Further, when
the disturbance temperature vanishes identically, there
exist solutions to the momentum equation (the Orr-
Sommerfield equation). These are known as the velocity
modes. Whenever Ri is small but nonvanishing, Davey
and Reid demonstrated that a perturbation scheme in
Ri about a base state that is either a velocity mode
or a temperature mode gives slightly coupled temper-
ature and streamfunction fields which are nearly pure
temperature modes or nearly pure velocity modes. This
classification scheme works quite well for the exact nu-
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merical solutions to the linearised transport equations
throughout the interval 0 < Ri < 1/4.

The observation by Davey and Reid that at high shear-
ing rates there is decoupling, or rather weak coupling,
between temperature and streamfunction enables us to
satisfy the conditions necessary for Equation (9) to char-
acterise the approximate dynamics of the wave evolu-
tion. Firstly, the forcing term may be due to a passing
temperature wave with phase velocity cp. With strong
shearing, the buoyant forces associated with the tem-
perature wave passing will be weak and make negligible
contribution to the momentum equation at leading or-
der in Ri. Thus, we can assume that the response in
strearnfunction will be small as O(Ri). Secondly, we
need tangible dissipation effects for Equation (9) to be
the description of the dynamics. In laminar flows, vis-
cosity and thermal conductivity provide the dissipative
mechanisms. In oceanic and atmospheric flows, how-
ever, the dimensionless measure of dissipation by viscous
forces —the inverse Reynolds number— is very small and
unlikely to be important in the bulk, but rather only
in boundary regions. A much more plausible source of
dissipation is turbulent dissipation. The usual model
of eddy viscosity (vr) gives a large contribution to the
momentum balance in turbulent shear flows:

T~

173 T 6.’1’:3
where 1’ is the disturbance velocity and U is the mean
shear flow. Further, the stronger the shearing, the larger
vy. It follows that with high shear (low Ri) we achieve
quasi-decoupling of the passing temperature wave and
strong turbulent dissipation in metecrological flows -
the prerequisites for Equation (9) to describe the dy-
namics. Indeed, in Section 2 we will put this claim on
the firm mathematical footing of perturbation theory
along the lines already outlined.

2 'Waves in a stably stratified shear layer
2.1 Basic Equations and Scaling

Consider a Boussinesq fluid occupying a shallow fluid
layer bounded below by a plate and heated from above.
The temperatures are maintained constant on each pla-
nar surface. The depth of the layer is uniform, h, with
gravity acting antiparallel to the gradient of the tem-
perature so that the stratification is stable. We require
that the basic flow, temperature profile, density strati-
fication and constant pressure are only functions of the
vertical: 4(y), T(y), p(y) and p(y). Velocity components
in the (x,y) directions are denoted (u,v). In order to sim-
plify the problem, we will take &t = y and p = 1 — g3y
(constant density gradient). We have scaled as follows
—-we expect long waves of characteristic horizontal scale
A, so that the co-ordinates (x,y) are scaled by (Ah);
the velocities are scaled with (U,mU), density with pq,
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pressure with pogh, temperature with 3, h, where 3. is
the characteristic temperature gradient, and time with
the horizontal convection time A/TU. The velocity scale
U is constructed from the characteristic Conette shear
rate v, i.e. I/ = vh. For this two-dimensional flow, the
Boussinesq approximation admits a dimensionless dis-
turbance streamfunction, ¥(z,y,t). Neglecting molec-
ular transport processes of viscosity and thermal con-
ductivity, but retaining turbulent eddy viscosity in the
model, we consider these Boussinesq equations for the
disturbance heat and momentum transport.

ar

Fy + yTe — e +e(PyTe — ¥ Ty) =0 (11)

[thyt + Ytbys — Pauly + RiTy =
5["1")1/51.!; - ¢yy¢w]y - mg[d’m + Yozls
_5m2 ['@by'ﬁbzz - ¢z¢zy]m

+6¢yyyy + 26M Pooyy -+ EM Yuzas (12)

Pressure has been eliminated by taking the curl of the
Navier-Stokes equations. For boundary conditions, we
require the temperature be maintained constant at the
upper and lower surfaces and no slip on the boundaries:

¥ ly=0= % |y=1=10
Py ly=0= ¥y ly=1=0 (13)
T ly=0=T jy=1=10

The parameter ¢ << 1 measures the wave amplifude
- depth ratio and is formally small so that the dis-
turbed streamlines differ little from Couette shear and
the disturbed temperature differs little from a linear
profile. The dimensionless parameters that arise are
6 = 1/(m? Re) where the Reynolds number is based on
A and either kinematic viscosity v or turbulent viscos-
ity vr, 3 = By h (the stratification parameter) and the
Richardson number Ri = af.gh?/U% The Boussinesq
approximation sets 3 = 0, so that the velocity field is
solenoidal, but retains the buoyant force where it is the
driving force in the Navier-Stokes equations through the
non-vanishing Ri.

2.2 Perturbation Scheme

Wave solutions that are steady and of permancnt form
in the Galilean reference frame £ =  — ¢t are sought, so
we rewrite (12) as

[(y — e)bys — Pely + RiTe = e[ihrpey — dyyiiely
—m?(y — e)peee — em” [Yytbee — Yeeyle
+8tyyyy + 26m beeyy + 6m*egee (14)
If Ri = 0, the system of equations (11} and (14) is iden-

tically satisfied by a temperature wave disturbance and
vanishing disturbance streamfunction:

T(z,y,1) = ()8 (v)
Pz, yt)=0

If the temperature disturbance takes the form above,
however, the streamfunction is not constrained to vanish
when Ri > 0. Rather, ignoring dispersive and nonlinear
effects in (14), the limit ¢ = m? = 0, the distnrbance
streamfunction is estimated by

M [1)] = —Ribg# (16)

(15)

where M is the linear operator of (19) below. It fol-
lows that 1 = O (R{), unless the operator L has eigen-
functions, i.e. solutions to the homogencous equation
L[¢n] = 0. With the assumption that these eigenfunc-
tions exist, it is appropriate to seek solutions that are
wave-like in the horizontal and stationary in the vertical,
namely

1/)(.7:,y,t) = A(E)¢(y) + O(E,Ri, 7”2) (17)

Since it is only the streamfunction response to the tem-
perature wave b8 that is sought, the corrections to the
temperature field from the convection via the distur-
bance velocity field are neglected. Motivated by (16)
and (17), the formal scaling of Ri ~ ¢ ~ m? is adopted,
and without loss of generality Ri = ¢ = m?, since cor-
rections from weak buoyant forces, weak dispersion, and
weak nonlinearity are likely if the mechanisms they rep-
resent are to contribute to the waveform. Truncating
the momentum equation (14) at (1) yields the follow-
ing boundary value problem

—8¢yyyy A + [(y — c)py — SlyAe =0 (18)

Equation (18) is a parabolic partial differential equa-
tion which separates if A = A4 and we arrive at the
following boundary value problem for (0,

b Byyyy + My — C)¢y —dly =10
¢ |y=0= ¢ ly=1= dy ly=0= ¢y |y=1=0 (19)

which can be solved for eigenvalues M")(¢)/§ and eigen-
functions ¢,, where n is an integer. We then rcalise
that the separation condition is only correct to O{Ri)
and include corrections

AE =MAd+ )\QR?:A“ =+ AgR’iAEEE + /\4R'1AA£ — RibE(ZO)
and correct Equation (17) as well according to

Bz, 1) = AE)é(y) + RDD(EHH (y)
FRID () D(y) + RIDE () (y) (21)

and we find the hierarchy separates if Dél) = AAg,

D® = Ag and DP) = Agee. With these require-
ments, we arrive to the following inhomogeneous bound-
ary value problems for the functions WIOR

O(Ri) problem 1:

Ly = — My — )y — Bl + [Buy¥ — (6)7ly



$Wly=0 = $Vy=r = PMy=0 = 9P =10 (22)
((Ri) problems 2 and 3:

Ly = —x[(y — ) — gly + 268y,

L@ = —xg[(y— )p — 8y + (y— ©)¢

P yzo = pPyor = V|00 = Tf)(a)|y:1 =0
PP |y=0 = ¥§Dy=1 = ¥\ |y=o = ¥ y=1 = 0

L is the linear operator of (19). Application of the Fred-
holm Alternative Theorem gives a constraint uniquely
determining each of the coefficients «; — that the inho-
mogeneous terms in Equations (22 - 23) be compatible
with the boundary conditions.

If we take £-dependence of the passing temperature
wave to be sinusoidal, b(£) = B’ sin(2£), then Equation
(20) is a simple nonlinear oscillator with a phase space
of dimension four, similar to 9. Equation (19) suggests
that Ay ~ & for the two terms to be balanced. Thus if
dissipation is weak, it may be appropriate to neglect the
A1A term in Equation (20). In this case, Equation (20)
may be integrated to yield

1 A4

/\2 2 . .
A — Ay — — A4 —A" =~ !
g + s ¢ " + s RiB’ sin(2€) (24)

(23)

The A; are defined by comparison with Equation (20).
'This is precisely the form of Equation (20), proposed ad
hoc from a dynamical systems approach to wave prop-
agation. We now propose that Equation (refeg:corr), a
forced KdV-Burgers equation, models the streamfunc-
tion response to a passing temperature wave in a strongly
sheared fluid layer. If the passing temperature wave is
sinusoidal, and if dissipation from turbulence is weak
(which is usually the case in a stably stratified medium
since the stratification tends to suppress turbulent three-
dimensional modes), then the Helmholtz-Thompson non-
linear oscillator of Equation {9) and Eguation (24) is
a good approximation of the streamfunction dynam-
ics. Indeed, if this proposition is valid, we would find
regimes of temperature wave induced chaos, since the
Helmholtz-Thompson nonlinear oscillator has chaotic at-
tractor solutions. Further, the emnbedded dimension of
the chaotic attractors would be three or four depending
on the importance of dissipation.

3 Conclusions

Stably stratified shear flows provide a waveguide for
internal solitary waves that are classical KdV solitons
when the Richardson number is uniformly high through-
out the layer. The solitons propagate due to an inti-
mate coupling of the disturbance temperature and ve-
locity fields (see Equation (10)). In contrast, when the
Richardson number is uniformly small throughout the
layer, the leading order behaviour of the velocity field is
also small, O(Ri) (see Equation (14)). The temperature
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field car be any passing wave. In this case, dissipative
mechanisms (eddy viscosity or kinematic viscosity) must
be important even at high Re as the velocity gradients
are large in the background shear flow. Thus, a fluid
mechanical model of the momentum and temperature
transport leads to (20) as a first solvability condition-
a wave equation for an attenuated, forced, nonlinear,
dispersive and diffusive wave. If wave attenuation can
be neglected, in the frame of reference of the wave, the
dynamics are equivalent to a damped, forced nonlin-
ear oscillator (24), which is known to have regimes with
chaotic asymptotic attractors [Thompson (1989)]. It
is our fervent hope that this work will spur the analy-
sis of turbulent bursts such as those observed over an
Antarctic ice shelf [Rees and Rottman (1994)] by phase
portrait reconstruction to demonstrate that the dynam-
ics are indeed those of low dimensional chaos,

Future work will consider the parameter regimes where
(20) has chaotic attractors and the temporal stability of
this spatial chaos. It is reasonable to assumec that if
the dynamics of the time reduced equations (stationary
in the moving frame) have low dimensionality and are
chaotic, inclusion of one more phase dimension (time)
cannot increase the dimensionality of the attractor by
more than one dimension. Nevertheless, the dynamics
of spatial-ternporal chaos may be essentially different in
quality than for the stationary chaotic wave discussed
here.
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