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Abstract. Theoretical calculations, simulations and
measurements of rotation of earthquake focal mecha-
nisms suggest that the stress in earthquake focal zones
follows the Cauchy distribution which is one of the sta-
ble probability distributions (with the value of the ex-
ponent a equal to 1). We review the properties of
the stable distributions and show that the Cauchy dis-
tribution is expected to approximate the stress caused
by earthquakes occurring over geologically long inter-
vals of a fault zone development. However, the stress
caused by recent earthquakes recorded in instrumental
catalogues, should follow symmetric stable distributions
with the value of & significantly less than one. This is ex-
plained by a fractal distribution of earthquake hypocen-
tres: the dimension of a hypocentre set, §, is close to
zero for short-term earthquake catalogues and asymp-
totically approaches 2% for long-time intervals. We use
the Harvard catalogue of seismic moment tensor solu-
tions to investigate the distribution of incremental static
stress caused by earthquakes. The stress measured in
the focal zone of each event is approximated by stable
distributions. In agreement with theoretical considera-
tions, the exponent value of the distribution approaches
zero as the time span of an earthquake catalogue (AT)
decreases. For large stress values o increases. We sur-
mise that it is cansed by the § increase for small inter-
earthquake distances due to location errors.

1 Introduction

The knowledge of tectonic stress in the lithosphere is
an important ingredient for our understanding of earth-
quake mechanics and the interaction between earth-
quakes. Several techniques now exist for measuring
stress in-situ (Hickman, 1991; Zoback, 1992). These
methods however usually do not have the resolution and
accuracy necessary to study the stress variation in the
earthquake focal zone. Large rotations of the earth-

quake focal mechanisms indicate that the stress field re-
sponsible for earthquake generation in seismogenic zones
is highly variable and heterogeneous (Kagan, 1892}). In
this work we study the incremental stress caused by
carthquakes. Measurements of static displacements due
to large earthquakes indicate that there is agreement be-
tween the experimental results and theoretical calcula-
tions which use the dislocation model in a half-space (cf.
Bock et al., 1993). Reliable and extensive earthquake
data which allow the incremental stress calculations ex-
tend for only 15-20 years. Thus we are observing only
a short time interval in the development of earthquake
fault zones the history of which is sometimes measured
in millions of years. The above faciors call for a statisti-
cal interpretation of the stress data: averaging over large
tectonic areas we might infer the general properties of
stress and its influence on earthquakes.

Statistical investigations of the world-wide pattern of
static incremental stress present several problems: it is
not clear at what points the stress should be evaluated
for further study. A seemingly obvious solution — to
compute the stress on a lattice of points distributed uni-
formly over the 3-D space — will not work since earth-
quake hypocentres or centroids (see a more detailed ex-
planation of these terms in the next section) are con-
centrated on a fractal set (Kagan and Knopoff, 1980;
Kagan, 1991). Thus the great majority of lattice points
would be far away from any earthquake and hence have
a zero incremental stress. We could select certain seis-
mogenic zones for the study, but in this case the results
would be strongly dependent on the selection criteria
used. The only way to make the results independent of
the arbitrary boundaries of the zones is to calculate the
stress field at special points — at the positions of pasi
carthquakes. This is similar to the approach proposed
by Mandelbrot (1983) for a definition of point density
for fractal sets: unconditional density cannot be defined,
whereas the conditional density — measured around each
point of the set — has a well-defined limit.



Geometric structures of earthquake focal zones ex-
hibit great variability of an essentially stochastic char-
acter. In a series of papers (Kagan and Knopoff, 1980;
Kagan, 1982; Kagan, 1991) we showed that earthquake
hypocentres form a fractal set; for shallow earthquakes,
the dimension increases with the time span of an earth-
quake catalogue (AT') approaching the limit of 2%. Al-
though a planar earthquake fault is a reasonable de-
scription of earthquake geometry in the first approxi-
mation, a detailed investigation shows the faults form
a complex branching pattern governed by the Cauchy
rotational distribution (Kagan, 1982). The Cauchy law
has been proposed to describe the random stress caused
by defects in the medium (Zolotarev and Strunin, 1971;
Zolotarev, 1986; Kagan, 1990). The measurements of
the correlations of earthquake focal mechanisms con-
firmed that the focal rotation also has the Cauchy distri-
bution (Kagan, 1992). This leads to the conclusion that
the presence of old earthquake fractures contributes to
the randomness of the stress in an earthquake focal zone
which in its turn generates new, more complex patterns
of earthquake rupture.

However, the above papers had two drawbacks: a) the
stress was not investigated directly, its properties were
inferred through the geometry of earthquake hypocen-
tres and focal mechanisms; b) we investigated long-term
properties of earthquake geometrical patterns. In this
work, we investigate the siress caused by earthquakes
recorded in the catalogues of seismic moment tensor so-
lutions, hence we are able to study not only the stress
distribution but also to investigate its dependence on
time.

2 Earthquakes and stress

As a first approximation, an earthquake may be repre-
sented by a sudden shear planar failure — appearance of
a large dislocation loop (Aki and Richards, 1980} in rock
material. In Fig. ta we show a fault-plane trace on the
surface of the Earth (similar to viewing from above an
earthquake occurring on the San Andreas fault}. Earth-
quake rupture starts at the hypocentre (the epicentre is
a projection of the hypocentre on the Earth’s surface),
and propagates with velocity close to that of shear waves
{(3.0-4.5 km/s). As a rule, the hypocentre is situated at
one end of the rupture area, thus its position is acci-
dental with regard to the earthquake focal zone. The
centroid is in the centre of the ruptured area, its po-
sition being determined by seismic moment tensor in-
version (Dziewonski et al., 1993). As a result of the
rupture two sides of the fanlt surface are displaced rel-
ative to each other in the direction of the arrows, for
large earthquakes the displacement is of the order of a
few meters.

Figure 1b shows a graphic representation of an earth-
quake source: quadrupolar radiation patterns character-
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Fig. 1. Schematic diagrams of carthquake focal mechanism. (a)
Fault-plane trace on the surface of the Earth. Earthquake rup-
ture starts at the point on the fault-plane called the hypocentre
(epicentre is the projection of 8 hypocentre on the Earth surface).
(b) Equel-area projection {Aki and Richards, 1980, p. 110) of
quadrupole radiation patterns.

istic of earthquakes. Standard seismological focal plots
involve painting on a sphere, the sense of the first motion
of P-waves, solid for compressional motion and open for
dilatational. Two orthogonal planes separating these
areas are the fault and auxiliary planes. In the routine
determination of focal mechanisms it is impossible to
distinguish between these planes,

The earthquake data are assembled in catalogues,
The most complete and homogeneous at the present
time is the worldwide catalogue of moment tensor in-
versions compiled by the Harvard group (Dziewonski et
al.,, 1993). The available Harvard catalogue covers the
period from January 1, 1977, to December 31, 1992,
and contains more than 10,000 events. As an example
of earthquake data, in Fig. 2 we display focal mecha-
nisms for earthquakes in the Southern California area.
(In this case we use preliminary Harvard data to dis-
play the recent January 17, 1994 Northridge, Califor-
nia earthquake.) Lower hemisphere diagrams of focal
spheres are shown; the diagrams can be seen as 3-D ro-
tations of the mechanism shown in Fig. 1b. The diagram
shows that earthquakes are not concentrated only on a
few well-known faults and the mechanisms of neighbour-
ing events may have very different orientations, i.e., they
undergo large 3-D rotations.

We use the earthquakes shown in Fig. 2 as well as
earthquakes in surrounding areas to calculate the incre-
mental static stress at the surface. For most stress cal-
culations we use Okada’s {1992) programme for a point
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Earthquake focal mechanisms in S. California 1977-1994
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Fig. 2. Focal mechanisms of earthquakes from the 1977-1994 Harvard list in the Southern Californie arca and major surface faults:
Iatitude limits 32.0-37.0 N, longitude limits 114.0-122,0 W, Lower hemisphere diagrams of focal spheres are shown, the diagrams can be
thought of as 3-D rotations of the mechanism shown in Fig. 1b. Size of 8 symbol is proportional to earthquake magnitude.

fault. However, for computation of stress caused by
earthquakes with magnitude 6.5 and larger (including
the Landers, 1992 earthquake, and the Superstition Hills
earthquake of 1987) we use Okada’s (1992) programme
for a rectangular earthquake fault. We subdivide the
known rupture surface into several patches and calcu-
late the stress increments due to all fault patches.

In Fig. 3, we show the cumulative stress change of
the first stress invariant (I;) (average normal stress, see
Eq. 14 below) for Scuthern California from 1977 to the
present. Stress is evaluated at a surface. The distri-
bution of the stress is dominated by the Landers 1992
earthquake (Stein et al., 1992). The incremental stress
pattern in all the maps forms a complex mosaic due
to the interaction of incremental stress fields of many
carthquakes. The complex character of stress once again
underscores the necessity of analysing the data statisti-

cally.

3 Stable probability distributions

Two properties of the stable probability distributions
are of special interest for us: a) the sum of variables
distributed according to any of the stable distributions
has again the same type of probability distribution (the
normal, or Gaussian distribution, which is one of the

stable distributions, is the best known example of such
behaviour); b} for most distributions, their tails decay
according to a power law, hence the stable distributions
underlie many fractal patterns (Mandelbrot, 1983). Ex-
cept for a few cases, the stable distribution density does
not have analytical form; however, their characteristic
function can be expressed by a simple formula. The
characteristic function is the Fourier (or Laplace) trans-
form of a statistical distribution, and there is a one-to-
one correspondence between both functions.

The general form of the characteristic function for a
stable disiribution is (Zolotarev, 1986)

log¢(c,a,ﬁ,A,'r) = f\[iC’Y— |C|a+icw(C:arﬂ)]a (l)

with0<a<2 -1<8<1, —0o<y<o0,A>0,and

|c|a-15tan(§a), i a1,

o= pa tact @)

In these formulae the exponent « is the main parameter
of a stable distribution which characterises its form, =y is
a shift parameter, A is a scale parameter, § is the degree
of the distribution asymmetry, 3 = 0 corresponds to a
symmetric distribution. We use

$(¢, a) = ¢((,2,0,1,0). (3)
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It can be shown (see below) that the stress distri-
bution follows a symmetric pattern. Thus below we
consider only the symmetric distributions (8 = 0, and
+ = 0). Only few symmetric distribution density func-
tions can be expressed in a closed form, using the an-
alytical or special functions, For a = -;- (cf. Zolotarev,
1986, p. 155, Eq. 2.8.30)

e = S a(]e(2)
Bos@@) o

where C; and 53 are Fresnel integrals (Abramovitz and
Stegun, 1972, p. 300).

F
1 cost

Cg(::) = ﬁ Wdt;
Si0) = —= / sinf . (5)

Another expression for ¢ = % is also quoted by Zolota-
rev (1986, p. 157, Eq. 2.8.32)

f(z,2/3) = 5?_'\/5_1; exp(;? _2)

4
xW_ 1/32, 1/6(27 2): (5)

where W_,/3 1/6 is a Whittaker function (Abramovitz
and Stegun, 1972, p. 505).

For # = 0 the density in (4) and {6) can be evaluated
by (Iolt and Crow, 1973, p. 148)

S @™, (7)

where T is the gamma function.
Two symmetric stable distributions have an analytic
form: the Cauchy distribution density is

_f(:c,l)=—

and the Gaussian stable distribution density is

f(0,0) = —

1+2%)7% (8)

2\/- exp —— (9)

The distributions (4) and (6) have been evaluated us-
ing the MATHEMATICA package (Wolfram, 1991). Holt
and Crow (1973) calculated four-decimal tables of the
stable distributions for « = 0.25(.25)2.00 and
B = —1.00(.25)1.00. In Fig. 4 we display distributions
(4), (6), (8), and (9), as well as two symmeiric distri-
butions from Holt and Crow (1973) compilation: for
o = 0.25 and o = 0.75. Cumulative curves for these dis-
tributions are obtained by numerical integration. Since
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Fig. 4. Symmetric stable probability distributions. Since the
distributions are symmetric, we consider absolute values of X.
The value of exponent a is

1/4 ‘o’ symbols;
1/2 solid line;
2/3 dashed line;
3/4 dashdot line;
1 ** aymbols (the Cauchy distribution);
2 ‘+' symbols (the Gaussian distribution).

(a) Distribution density.
(b) Cumulative functions.
(c) Cumulative functions, enlargement of {b).



the distributions are symmetric, we calculate and dis-
play them for the absclute value of the argument. Ex-
cept for the Gaussian law, which is a special case, dis-
tribution tails decay according to a power law:

a—1

flz,a) xe™@" ", for =z — oo, (10)

for the distribution density, and

1-F(z,a) xz™%, for z— oo, (11)

for the cumulative function F. The decay (10) signifies
that all of these distributions do not have the first statis-
tical moment (mean) for & < 1, therefore we need some
other method to compare random variables. One con-
venient way to compare the distributions is to use the
median, i.e., abscissa of intersection of curves in Fig.
4c with the ordinate value 0.5 (the median for absolute
values of |X| corresponds to quartiles of a symmetric
X distribution). Whereas for the Canchy distribution
% of a sample should be concentrated between —1 and
1, for the stable distribution with o = i the range is
larger: from —2.2 to 2.2. This means in effect that a
variable which follows the Cauchy distribution is con-
centrated closer to zero; the Cauchy variable has fewer
observations with very large values than, for example,
1

the distribution with o = .

4 Stress theoretical distributions

The Green function & for an individual earthquake is
symmetric, o(-r) = - o(r), where r is the radius vec-
tor. We assume also that the distribution of earthquake
hypocentres around each reference event is also symmet-
ric on average. Thus the resulting stress distribution will
also be symmetric, hence -y and 3 in (1) are both zero.

Zolotarev and Strunin (1971} and Zolotarev (1986)
show that for any point in an elastic medium which is
surrounded by defects, the characteristic function for
the random stress distribution can be written as

log $(¢,a) = f[exp(i{ar_a) - l]u(r)rzdr, (12)

whete v(r) is the density of defects which might de-
pend on r, distance from the reference point, and o is
the normalized (for » = 1) stress Green function of an
earthquake, stress decays with distance as r—3.
Zolotarev’s formula (12) has been derived for uni-
formly distributed defects of one and the same size (but
possibly of different type), while seismic moments of
earthquakes vary enormously (Kagan, 1993). Thus, av-
eraging over seismic moments is necessary in (12). If
one uses for seismic moment distribution, a power law
(Pareto distribution), then its first and second moments
are infinite and Zolotarev’s (1986) conditions (see his
Eqgs. 1.1.10 and 1.1.11) are not satisfied. In reality the
seismic moment distribution is a gamma law (Kagan,
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1993), which has finite statistical moments, but the in-
fluence of strong earthquakes as shown in Fig. 3, is
clearly predominant. However, for the global seismic-
ity distribution we average over an ensemble of seismic
zones, hopefully gnaranteeing the stability of statistical
estimates.

To simplify the notation, we display the distribution
for only one component of a stress tensor; the distri-
bution for any other component differs only by a scale
factor. For the uniform 3-D distribution of defects v =
vg. However for the fractal distribution of sources v =
vor =2, where D = 3 is the Euclidean dimension of the
space, and § is a fractal correlation dimension of earth-
guake hypocentres (Kagan and Knopoff, 1980; Kagan
1991). Then (cf. Zolotarev 1986, Eq. 1.1.16)

o0

vo | [exp(iCau) — l]u(”3)_1du
/
= wl(=e)l(|% (13)

with @ = /3. This means that if § = 3 the result-
ing distribution is the Cauchy law (8) (Zolotarev and
Strunin, 1971; Zolotarev, 1986; Kagan, 1990), whereas
for a fractal spatial distribution of earthquakes o < 1.

logg((ia) =

5 Incremental stress measurements

Using Okada’s (1992) programme for a point and ex-
tended dislocation in a half-space, we compute the com-
bined incremental static stress in the focal zone of each
shallow event (the depth range 0-70 km) with the mag-
nitude greater than 5. There are 7903 such earthquakes
in the worldwide Harvard list of 1977-1992, their cen-
troids taken as reference points. However, in the stress
calculation, we use earthquakes at all depths (since large
events which are deeper than 70 km can still contribute
a significant stress increment to shallower depths). The
total number of all earthquakes is 10,566.

In Fig. 5 we display the histogram and the cumula-
tive distribution for the first stress invariant (Jaeger and
Cook, 1979, p. 23; Kagan, 1994)

Iy = tr(sy;) = s11 + 822 + 833, (14)

where s;; is a stress tensor. For comparison, we also
show three symmetric stable distributions, a = 1/2, 2/3,
and 1. The theoretical curves are calculated using the
scale factor A = 10713, this value seems to approximate
the experimental data reasonably well; we did not {ry to
fit the histogram and the cumulative curve more closely
to the theoretical curves for the reasons explained be-
low. It is obvious from the plots, for example, that the
I distribution is more sharply peaked than the Cauchy
law predicts. The difference between the theoretical and
experimental curves is difficult to see in these diagrams,
thus we produce another plot in which we use the sym-
metry of the stress distribution.
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Fig. 5. Distribution of incremental stress invariant Iy for world-
wide shallow earthquakes in the Harvard catelogne. We calcu-
late the incremental stress caused by earthquakes at all depths
at a centroid point of any event in the depth range 0-70 km (see
Figs. 2 and 3). The invariant corresponds to the sum of principal
stresses, or to the mean normal stress. Positive values correspond
to dilatation. The theoretical curves are colculated using the scale
factor A = 10=!-8 the value of exponent o for these distributions
are:

1/2 - dashed line;
2/3 - dashdot line;
1 - dotted linc (the Cauchy distribution}.
(a) Theoretical distribution density and histogram for stress in-

variant I,
(b) Cumulative distributions.

According to the Coulomb failure criterion (Scholz,
1990; Kagan, 1994), we would expect the disiribution
of the average normal stress (I;) to be highly asym-
metric with more earthquakes occurring when the in-
cremental stress is dilatational. Contrary to such ex-
pectations, the plots (Fig. 5) are almost symmetric. The
cumulative curves (Fig. 5b) exhibit a slight preference
for dilatational stress (for example, about 9% of earth-
quakes occur when Iy > 1.0 bar whereas only about 7%
of earthquakes occur with I; < —1.0 bar). However,
the analysis of curves for various seismic regions (Ka-
gan, 1994) shows that this asymmetry is not spatially
or temporally consistent and could be explained by the
stress random fluctuations.

Even if the distribution of the I; has a slight asymme-
try, the distributions of stress tensor components should
be symmetric, hence we might study their absolute val-
uwes. In Fig. 6, we show several curves calculated for
stress components S = (|s11] ++ |s12] + |922])/3; these
components have been selected since the horizontal com-
ponents are larger than the vertical ones for shallow
earthquakes (Kagan, 1994). We use the sum of three
components to suppress random fluctuations. As we
have explained earlier, the sum of stable variables is dis-
tributed according to the same stable distribution, as a
single variable. For @ < 1 this would imply that the sta-
tistical moments of the sum would have a higher scatter
than the moments of its components (the mathematical
expectation for all the moments is infinity); however, in
our case we are interested in the cumulative function
fluctuations, and these fluctuations decay when we add
several fensor components.

We calculate the incremental siress at the centroid
point of each of the reference points for several sub-
catalogues: one curve is for a {ull Harvard list, i.e., for
10,566 earthquakes registered over 16 years, other curves
are for the stress caused by earthquakes which are sep-
arated from a reference event by no more than 1250,
250, and 50 catalogue entries. This means that on the
average we compute the stress caused by earthquakes in
time intervals (A7) not exceeding 16, 1.9, 0.4, and 0.08
years.

Several possible sources of error need to be consid-
ered with regard to the experimental data. First, earth-
quake locations are greatly perturbed by location errors
which randomise the position of earthquake centroids.
This error is especially serious when distances between
earthquakes are small. The location errors for modern
worldwide earthquake catalogues are of the order of 10
km (Dziewonski et al., 1993). Second, the point model
for an earthquake source is inappropriate for small dis-
tances. During a large earthquake, the rupture prop-
agates over a plane-like volume of significant extent.
Even if we use the Green function for an extended fault
(Okada, 1992), the computed resulting stress pattern is
a gross over-simplification. Shallow earthquakes are ac-
companied by a large number of aftershocks which are
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Stress increments are calculated:

for the full catalogue — stars;

for 1250 carthquakes before and after the reference event — circles;
for 250 earthquekes before and after the reference event — ‘x'-es;
and

for 50 earthquekes before and after the reference event — pluses.
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concentrated in a focal zone, manifesting the large stress
concentrations inside the zone. The measurements of
surface displacement in the recent Landers earthquake
(Sieh et al., 1993) demonstrate that the earthquake slip
changes drastically over small fault distances. Hence
there are very large residnal stresses which remain after
an earthquake.

When comparing the theoretical and experimental
curves, we can vary the values of two adjustable param-
eters, that of o (index of a distribution) and of A (scale
factor). As we explained above, since the stress distri-
bution is symmetric: # = 0 and v = 0 (see Zolotarev’s,
1986, formula 2.1.2), we can consider only absolute val-
ues of the variable. The change of A causes a horizon-
tal shift of theoretical carves in the diagrams in Fig. 6,
whereas a modification of o leads {o a change of the
asymptotic slope of the curves for £ — oo (distribution
tail}, as well as to a change of the curvature in the left-
hand part of the diagram (see also Figs. 4b,c). Since
the A parameter has not been evaluated and adjusted
in Fig. 6, the curves can be arbitrarily shifted in a hor-
izontal direction. For all the experimental curves, the
distribution of stress for large abscissa values has a slope
approaching one, hence they are closer to the Cauchy
distribution. These large stresses are caused by near
earthquakes, and the hypocentres of these earthquakes
have a fractal dimension close to three due to location
errors (Kagan and Knopoff, 1980; Kagan, 1991): That
makes the behaviour of the curves at the right-hand tail
of the distribution to be strongly influenced by location
€Irors.

The experimental curves for small stress values are
less influenced by the location errors discussed above.
However, even for these curves it is not clear how {6 ap-
proximate them by theoretical stable distributions: we
do not have a sufficient number of theoretical curves to
fit the curves and infer the parameter values. As a pre-
liminary solution, we measure a slope of linear parts of
the experimental curves: according to (11), the slope
in the loglog plot should correspond to «. In practical
terms, we have used the following intervals to determine
the slope (o) by visually fitting a straight line to the
curves:

AT = 16 yr, 1 - 100 bars, o = 0.74;
AT =19yr, 1072 -3x10"! bars, « = 0.39;
AT =04yr, 1073 -107"! bars, o = 0.29;
AT =0.08 yr, 10~* - 10~2 bars, a = 0.17.

The earthquake fractal (correlation) dimension is de-
pendent on the time span (AT) of a catalogue, for ex-
ample, for a one day interval beiween earthquakes the
dimension is § & 1.0, for 0.1 year interval § ~ 1.5, and
for one year interval § = 1.9 (Kagan, 1991, Tables 2 and
3). According to (13) @ = §/3. Thus the « values versus
AT should be as follows:
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a=0.75 for AT = 23.5 yrs;

a =063 for AT =1 yr;

a=05 for AT =0.1 yr;

a=0.33 for AT = 1/365 yr.
Thus the predicted values of & exponent are similar to
those obtained by fitting the curves to experimental dis-
tributions in Fig. 6: the largest discrepancies are for
composite catalogues with small time intervals.

To test whether the replacement of an extended earth-
guake focal zone by a point source causes significant
changes in the distributions, we performed similar stress
calculations using the rectangular fault model by Okada
(1992). There are several complications in this anal-
ysis. For the majority of earthquakes in the Harvard
catalogue we cannot distinguish between the fault plane
and the auxiliary nodal plane, thns the planes might be
interchanged in about half of the cases. Moreover, the
plane orientation is estimated with an error, over large
distances this error might lead to a significant devia-
tion of the calculated stress from its real values. The
histograms we obtained by using the extended source
approximation are found to be similar to those shown
in Fig. 6.

8 Discussion

There are several consequences for the incremental stress
to be distributed according to stable distributions with
the index o < 1. As we mentioned in section 3, since
these distributions do not have finite statistical moments
of any order, the average stress is infinite, i.e., cannot
be meaningfully defined. To characterise the stress dis-
tribution we should use a median or other measure of a
distribution scatter, i.e., quartiles, etc. The a value is
lower for smaller inter-earthquake time intervals. This
signifies that the random stress is more likely to be larger
in the earthquake focal zone around the time of earth-
quake occurrence, than before or after the event. This
stress increase might seem to be obvious, since most
shallow earthquakes are accompanied by foreshocks and
aftershocks, or are themselves foreshocks or aftershocks
of some other event. Therefore, it is to be expected that
this temporal and spacial earthquake clustering would
result in strong stress concentrations. However, the
above analysis quantifies these assumed inter-relations.

In deriving the theoretical distributions for the stress
increments (13) we made several simplifying assump-
tions (Zolotarev and Strunin, 1971; Zolotarev, 1986; Ka-
gan, 1990): for instance, earthquakes were taken to be
independently distributed through the volume of rock.
The presence of extensive aftershock sequences, among
other evidence, points out that earthquakes are strongly
interdependent, and it is generally assumed that the
physical basis for this interdependence is stress incre-
ments caused by earthquakes. However, the results of
statistical analysis of earthquake catalogues seems to

confirm the prediction by (13) that the stress is dis-
tributed according to the stable distributions with the
exponent a < 1.

As we mentioned in section 3, the stable distribu-
tions have a certain property of ‘self-replication’: the
sum of random stable variables is itself a stable vari-
able. Consequently, we can assume that the distribution
of sources in an earthquake focal zone is controlled by
a stable distribution of stress in such a way that new
sources (due to earthquake rupture, fault propagation
and branching) again cause the new stress increments
which are distributed according to the same stable dis-
tribution. We might interpret this fractal earthquake
fault pattern created in the presence of large tectonic
and lithostatic stresses, as a critical self-organization of
earthquake faults (Bak and Chen, 1991, and references
therein).

In our previous work (Kagan, 1982; Kagan, 1990}, it
was shown that a non-planarity of earthquake faults can
be explained by the stress distribution due to earthquake
sources and interaction of the incremental stress with
the regional tectonic stress. The deviations of earth-
quake focal mechanisms from coherence are shown to
be approximated by the Cauchy distribution {Kagan,
1992). On the other hand, this statistical distribution is
the consequence of the simplest assumptions about the
earthquake fault zone structure (see Eq. 13). There-
fore, the stress interaciion presents a plausible model
for an earthquake generating process. The Cauchy dis-
tribution has @ = 1, thus our results in this work which
suggest that o < 0.75, seems to contradict the previous
results. Several issues need to be taken into account in
the comparison: 1) the difference between stable distri-
butions with & = 1 and & = 0.75 is not large as exem-
plified by the diagrams by Holt and Crow (1973) and
by Zolotarev (1986, his Fig. 3); 2) there is no equiva-
lent for the roletional stable distribution with exponent
0.75, it is possible, that if such distribution were avail-
able, it would fit the experimental curves for rotation of
earthquake focal mechanisms (Kagan, 1992) even bet-
ter than the Cauchy rotational distribution; 3) rotation
of earthquake focal mechanisms is the result of a very
long process (millions of years) of tectonic deformation;
it is possible that the correlation fractal dimension 6 is
larger than 2.25 for such intervals.

The above considerations do not take into account the
dynamic processes during the earthquake rupture pro-
cess. The dynamic stress increments impacting on the
rock medium near the rupture front might be consid-
erably higher (cf. Heaton, 1990) than the static stress
changes we considered in this work. Thus the higher
stress at the earthquake focal zone for a small time span
of an earthquake catalogue, which is predicted by (13)
and confirmed by our calculations (Fig. 6), might inter-
act in the limit AT — 0 with the dynamic overstress due
to the earthquake rupture. Their interaction then de-
fines possible deflection of the rupture surface from pla-



nar propagation, i.e., branching of an earthquake fault,
non-planar fault extension, and, in general, the forma-
tion of a complex earthquake fault zone.
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