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Abstract. The equations describing the interaction of
long inertio-gravity (IG) waves with the Rossby waves
are derived. Due to remarkable cancellations, the inter-
action is shown to be anomalously weak. As a result, an
inverse cascade of turbulence produces wave condensate
of large amplitude so that wave breaking with front cre-
ation can occur.

1 Introduction

Numerous observations (Warren, 1966; Vincent, 1985;
Vinnichenko, 1970; Van Delden, 1992) show that fre-
quency spectra of large-scale atmospheric and oceanic
turbulence have a strong peak at the frequency of the
uniform inertial oscillation (that of Foucault pendulum)
f = 2Qsin¢. Here Q is the rotation frequency of the
planet, ¢ is the local latitude. Theory (Falkovick, 1992)
explains the creation of this peak as a result of inverse
turbulent cascade due to inertio-gravity waves. Coriolis
parameter f is the lowest frequency of IG waves. The
inverse cascade due to inertio-gravity waves has the en-
ergy spectrum E(k) oc k~7/3 (Falkovich and Medvedev,
1992) and it could take place for the scales larger than
those of the inverse 2d energy cascade E(k) o« k~5/3
(Kraichnan, 1967). Since the exponent of the wave cas-
cade (7/3) is larger than the exponent of the vortex cas-
cade (5/3) then for sufficiently small k the wave cascade
may overcome the vortex one. Such a picture is in a
good agreement with the data of the atmospheric obser-
vations (Lilly and Petersen, 1983; Nastrom and Gage,
1983) that show the 5/3 spectrum until wavelengts hun-
dreds of kilometers and for larger scales the spectrum is
steeper with the exponent 2.2+ 2.4 that is quite close to
the theoretical value of 7/3 for the wave cascade. That
inverse cascade produces the condensate of uniform in-
ertial oscillations and it is the challenge for theory to
explain a feedback mechanism that stops the growth of
the condensate.
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It has been shown by Falkovich (1992) that nonlinear
self-interaction between IG waves cannot stop the cas-
cade or provide for an instability of condensate. The
interaction of short IG waves with long Rossby waves
in the equatorial region has been considered by Boyd
(1973). Such an interaction also cannot stop the in-
verse cascade and creation of longer and longer IG waves
(Boyd, 1973; Falkovich, 1992). In cur consideration, we
allow wavelengthes of IG and Rossby waves tc be com-
parable and be larger than Rossby radius (dispersion
scale). We treat atmosphere and ocean as a rotating
shallow water. In Sect.2 we derive a truncated system of
equations from the general shallow-water equations and
show that [G-Rossby interaction is anomalously weak
and cannot provide an instability of the condensate too.
This explains the existence of large-scale anticyclonic
currents in the ocean that are necessary to provide for
the observable value of tidal dissipation of the Earth’s
rotation (Le Blond and Mysak, 1978; Falkovich, 1992).
The amplitude of the condensate can thus grow until
the value allowing for wave breaking and front creation.
We describe this phenomenon in Sect.3.

Despite the weakness of I(3-Rossby interaction, there
may be the situations where 1t is substantial. At Sect.2,
we show that if IG waves occupy the region of space
larger than cyclone, then the local maximum of IG den-
sity appears at the centre of the cyclone. This can de-
celerate or even stop the westward motion of Rossby
waves,

2 Truncated system for IG-Rossby wave inter-
action

We start from the well known system of shallow-water
equations (see e.g. Lesieur, 1990) written for the fluid
depth H and the horizontal momentum p = Hv =



8H 4 divp =10 . (1)

Axis £ and y are directed eastward and northward re-
spectively. Coriolis parameter is a function of y: f =
fa(1 + By) with 3 of order of the inverse planet radius
R.

Being linearized near the unperturbed state H = Hy,
p = 0, the system (1) describes two branches of small-
amplitude waves. First, there are inertio-gravity waves
with the dispersion relation: wp = +/f3 +¢2k?. The
asymptotic velocity ¢ = (gHy)'/? is that of gravity waves
on a shallow water. This is written neglecting S-term
which is possible for the scales of motion L = 2x/k
less than the so-called intermediate geostrophic radius
R; = (Rp*)'/3 where the geostrophic (Rossby) radius
p = ¢ffa. Second, there are Rossby waves whose fre-
quency is solely due to F-effect (y-dependence of f):
Qi = fBke/(k?* + p~2). We are interesting in the scales
larger than the Rossby radius so that 2 < w for any 3.
We thus come to a classical problem of describing inter-
action between low-frequency waves and an envelope of
high-frequency waves. Our case is quite special, though,
with a plenty of unexpected cancellations.

Let us lock for the solution of the system (1) in the
form

HfHg = h+ hje™"o! 4 hge™ 2ot e e,
P =po+pie o + pre ¥ e,

Higher harmonics are irrelevant. Qur aim is to obtain
nonlinear equations for the amplitude of the first har-
monic ¥ = (p1 +iq1)/(eHo) describing IG waves and for
the slow variable h that describes Rosshy waves. The
main assumption we make is that the dispersion is small:
L/p>> 1. We shall keep the terms up to L~2 in the ex-
pansion. The below calculations are valid even if the
nonlinearity parameters h — 1 (pressure variation) and
¥ (Froude number) are of order unity.

Separating in (1) terms with different time exponents,
we have in the main order the conditions of the geostro-
phic balance of the currents and the pressure:

2 2
Po=—g§£3 (h2+|¢|),

2f 7 h
hy = —%(ax —i0y)¢ ,
q2=_ip2=_§(ax_iag)%2.
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Substituting that into the equations for 9y /0t and SR/t
and neglecting 3, after cumbersome calculations we get
Gh/8t = 0 and

O .

225 + 20J(h,¥) + hAY — YAR =0 . (2)
We use the dimensionless variables fot and #/p and des-
ignate J(A, B) = 8; A0y B — 8, B0y A. The equation (2)
has been firstly obtained by Falkovich (1992). Two re-
markable cancellations are worth emphasizing: i) there
is no high-frequency pressure (like V | 4 |2} in the equa-
tion for h without f-effect; ii) the terms cubic in ¢ (of
order ¢3/L?) exactly cancel each other (for any A) in
the equation for ¢ (note the computational error in the
equation (4) in (Falkovich, 1992) which had no influnce
on physical conclusions made there). IG self-interaction
not only gives no condensate instability or frequency
renormalization (Falkovich, 1992) but identically van-
ishes at this order unlike the linear dispersive term.

Therefore, an actual small dimensionless parameter of
the expansion is | ¥ |* (p/L)? so that the nonlinearity
parameter | ¥ | should be less than L/p but can be larger
than unity. Physically, this means that the nonlinearity
parameter is not v, /¢ but ves./von where von = fo/k
is the phase velocity of the IG waves and v,,, is the
oscillatory part of the velocity field.

We thus see that for sufficiently small 3 (far from the
equator) the problem is reduced to studying the behav-
ior of ¥(z,y,t) in a given field h{x,y). This will be
discussed in detail elsewhere. Here we answer the ques-
tion that is of most importance for the destiny of the in-
verse cascade: can IG waves be trapped by a geostrophic
modulations of the atmosphere height? By introducing
a new function ¢ = 1,;’)/\/5, we can rewrite the equa-
tion (2) as Schrédinger equation for the particle with
the mass 1/h in the magnetic field B = —Alnh and
in the scalar potential I/ = Ah/4 — 3(Vh)?/(8h). For
example, an anticyclone (hump in k) gives the well (neg-
ative [/} at the center and positive barrier near the edge
and vice versa for a cyclone. One can readily found
the steady state (with zero energy): (2, y) = h(z, y}.
Since h # 0 then the y¥-function has no zeroes and thus
represents the ground state. At r — o0 the fluid is un-
perturbed h — 1 so that our ground state is not a bound
state; the function g represents the lower boundary of
continuous spectrum. Therefore, there are no bound
states of ¢ in any localized perturbation of h. This gen-
eralizes the proof given by Falkovich (1992) for shallow
one-dimensional well and confirms the assumption made
there that the presence of geostrophic modulations can
not prevent the spreading of 1G wave packets and stop
the inverse cascade.

Still, some nontrivial dynamics can happen if we have
multi-scale situations. For example, it has been discov-
ered by Falkovich et al {1994) that if the initial distribu-
tion (z, y,0) is much broader than the (cyclonic) well,
then IG waves are captured by the well for a long while
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so that the amplitude in the centre of the cyclon grow
at the initial stage of evolution. Ounly after the time of
order fLY /(L,p*), the packet spreads. It is thus inter-
esting to study the back influence of ¥ on 5 determined
by another small parameter # (which actually is not nu-
merically so small for the Earth atmosphere). Making
account of § we get the time variation of the slow vari-
able

oh 30 % |2
a—ia(’“*T)- @

We see that | 4 |? indeed modifies pressure. According
to the nature of Rossby waves, variations of pressure
only along = matter. To get a self-consistent system of
equations, one should account for 3 in the equation for
1 as well. We write it for a one-dimensional case:

O .

235 + htppe ~ Yher = 2ifhe | (4)
The system (3,4) conserves the energy [(h%+ | ¢ |?
/h)dedy. In the framework of this system, one can read-
ily show that IG condensate ¢ =const is stable even at
the presence of B-effect.

In the framework of (3,4) one can describe gqualita-
tively the influence of the IG waves on the propagation
of geostrophic modulations: In the presence of a broad
distribution of IG waves, a maximum of ¢ appears at
the center of cyclon according to (3). Then one can see
from (4) that this diminishes the westward. velocity of
the cyclon propagation. Such an interaction might take
part in maintaining atmospheric blocking. Let us em-
phasize that this is valid as long as the external source
of IG waves is present. Any localized distribution of ¥, A
eventually spreads. There is neither steady solutions of
soliton type nor collapse events in the weakly nonlinear
regime. Note that the weakness of nonlinear coupling
thus found explains surprisingly high accuracy of linear
computations even at v/c >~ 1 pointed out by McIntyre
(1992).

Therefore, the inverse cascade of IG wave turbulence
should produce large-scale currents of high amplitude.

3 Wave breaking and front creation

We thus come to the consideration of the strongly non-
linear case with v,s./vpp being arbitrary. We consider
large scales so that we neglect dispersion, omitting grav-
ity from the equations (1). We thus assume the typical
scales to be much larger than Rossby radius which is
possible for the atmospheres of big planets rather than
that of the Earth. As far as the Earth atmosphere is
concerned, the below analysis can be applied only qual-
itatively.
The Euler equation now contains only velocity:

Ov/ot+ (vViv=vx{, (5)

The value H having the meaning of 2d density can
be found from continuity equation for the given veloe-
ity. The equation (9) can be elementary integrated by
characteristics which correponds to the passing to a La-
grangian description. On the characteristic dr/dt = v,
the velocity obeys the Newton equation dv/dt = v x f.
Solving an initial value problem (with given r(0) = rq
and v(z,y,0) = vo) for this equations we get v, + vy =
[vgz(ro)+ivoy (ro)]e ¢, The trajectories of the particles

z = zg+ ve(ro) sin(ft)/ f + vy(ro)[1 — cos(ft)]/ f,
Y = vo + vz(ro)[cos(f1) — 1]/ + vy(ra) sin(f2)/f  (6)

give the solution of (5) in the implicit form. To get
explicit solution, one should find ry(r,{) from (6) and
substitute it into the preceding expression for the ve-
locity. It is clear from that solution that the velocity
v Is a periodic function of time with the constant fre-
quency f. It means that whatever be the velocity field
the nonlinear frequency shift is absent (in the preceding
section we have shown that even account of gravity gives
no nonlinear frequency renormalization in the long-wave
limit).

The general solution (6) enables one to describe the
wave breaking. The map (2o, %) — (2,y) becomes am-
biguous when the matrix 4;; = 8r;/dro; becomes de-
generate. Expressing the determinant of A from (6) we
get the degeneracy condition:

det A=1 + f~'{divvsin(ft) + curl v[l — cos ft]}

dvy du duy, Qv
—2 OV Oy OUy OVz |y _
+ I (6:::06;;0 8y 5?10) 0

where all derivates are taken with respect to rg for fixed
t.

One could readily find the conditions for breaking
from (6). If, say, at ¢ = 0 the velocity maximum is
U at some circumference of the radius R and there is a
particle with the velocity u > Rf + 2U within the cir-
cumference, then at 9 < 27/f that particle will move
through the circumference so that trajectory crossing
and breaking should occur. The inequality for the ve-
locity is equivalent to the condition ku/f = ufvpn > 1
of strong nonlinearity for long waves.

In a general case, the real solution of the equation {7)
will appear at some instant of time #; as a single point
in space. The velocity derivative with respect to the
direction parallel to the eigenvector n of A with zero
eigenvalue turns into infinity at this point. This is a
wave breaking of the velocity profile. The characteristic
velocity amplitude in the breaking time will be of the
order of the characteristic phase velocity. The “density”
H also turns into infinity at this point which follows
from the Lagrangian representation

d(zo, Yo)

H(l‘.‘) = Ho(ro)—m

= HgdetA .



Of course, our description is not applicable after the
singularity appears. It is reasonable to assume, never-
theless, that a powerful dissipation occurs in the break-
ing region so that other fluid particles move along char-
acteristics without feeling the influence of that region.
The formation of singular region will thus continue by
forming the extending line of wave breaking. For time
t —typ & to, such a process of front creation can be
described from (7) by the motion of two branch points
a:él’g) along the direction transversal to the eigenvector
n. Due to the presence of Coriolis force, the break-
ing line might form spiral-like structures. On the other
hand, such fronts will have their proper fine structure
and serve as sourses of the generations of short wave
desturbances. More sophisticated models of frontogene-
sis (with the account of pressure, temperature etc) can
be found in (Hoskins and Bretherton, 1972). Here we
have presented the simplest model which allows for a
complete solution.

The wave breaking and front creation thus described
in the dispersionless limit is the powerful dissipation
mechanism for the long IG waves produced by an in-
verse cascade in the rotating shallow water.

Let us point out some analogy: a cubic nonlinear term
describing self-interaction of electron Langmuir waves
in a cold collisionless plasma exactly vanishes in 1d (Za-
kharov, 1966; Kuznetsov, 1976). The motion of any elec-
tron is an oscillation with plasma frequency (Vedenov et
al, 1961) and the only mechanism of nonlinear dissipa-
tion is the wave breaking if the ions stay at rest (having
infinite mass, for instance). In plasma, it is the motion
of ions that gives the main nonlinear interaction com-
parable with dispersion even at small nonlinearity and
produces the feedback for the inverse cascade: modula-
tional instability of the Langmuir condensate and wave
collapse (Zakharov, 1972). In our problem, there are no
particles of the second sort so that nonlinear interaction
of long 1G waves is significantly suppressed.

This work was partually supported by the Rashi Foun-
dation (G.F.) and by the Landau-Weizmann program
(E.K.). G.F.is grateful to D.Schertzer and S.Lovejoy for
the excellently organized and fruitful conference NVAG3.

17
References

Boyd, I. P., Long wave/short wave resonance in equatorial waves.
Journal of Physical Oceanography, 13, 450458, 1973,

Falkovich, G. and Medvedev, S., Kolmogorov-like spectrum of
inertio-gravity waves, Eurephys. Lett., 19, 279-284, 1992.

Falkovich, G., Inverse cascade and wave condensate in mesoscale
atmospheric turbulence, Phys. Rev. Lett., 69, 3173-3176, 1992.

Falkovich, G, Shafarenko, A., and Wilford, G., Joint behavior of
inertio-gravity and Rossby waves, preprint WIS, 1994.

Hoskins, B, and Bretherton, F., Atmospheric frontogenesis mod-
els: mathematicsl formulation and sclution, J. Atm. Seci., 239,
11-37, 1872.

Kuznetsov, E., Weak Langmuir turbulence, Sov. J. Plasma Fhys.,
2, 178186, 1976.

Lilly, D. K. and Petersen, E. L., Aircraft measurements of atmo-
spheric kinetic energy spectra. Tellus, 354, 379-382, 1983,

LeBlond, P.H. and Mysak, L.A., Waves in the Ocean, Blsevier,
QOceanogr. Ser. 20, Amsterdam, 1978.

Lesieur, M., Turbulence in Fluids, Kluwer, London, 1990.

McIntyre, M., in The Use of EOS for Studies of Atmos. Physics,
North-Holland, Amsterdam, 1992.

Nastrom, G. D. and Gage, K. 8., A first loock at wavenumber
spectra from GASP data, Tellus, 8§54, 383-388, 1983,

Van Delden, A., Mesoscale atmospheric dynamics, Physics Re-
ports, 211, 251, 1992,

Vedenov, A., Velikhov, E. and Sagdeev, R., Plasma turbulence,
Nuclear Fusion, 2, 11, 1961.

Vincent, R.A., Planetary and gravity waves in the mesosphere,
Handbook for MAP, 16, 265-277, 1985,

Vinnichenko, N.K., The kinetic energy spectrum in the free atmo-
sphere — 1 second to b years, Tellus, 22, 158-166, 1970.

Warren, B., in Encyclopedia of Oceanography ed. by R.Fairbridge,
pPp.-590-596, Reynhold, NY, 1966.

Zakharov, V., Weak turbulence in a plasma without magnetic
field, Sov. Phys. JETP, 24, 1967, 1966.

Zakharov, V., Collapse of Langmuir waves, Sov. Phys. JETP, 35,
908, 1972.



