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Abstract. A detailed nonlinear time series analysis
has been made of two daytime geomagnetic pulsation
events being recorded at L’Aquila (Italy, L ~ 1.6} and
Niemegk (Germany, L ~ 2.3). Grassberger and Procac-
cia algorithm has been used to investigate the dimen-
sionality of physical processcs. Surrogate data test and
self affinity (fractal) test have been used to exclude col-
ored noise with power law spectra. Largest Lyapunov
exponents have been estimated using the methods of
Wolf et al. The problems of embedding, stability of
estimations, spurious corrclations and nonlinear. noise
reduction have also been discussed. The main conchu-
sions of this work, which include some new results on
the geomagnetic pulsations, arc (1) that the April 26,
1991 event, represented by two observatory time series
LAQ1 and NGK1 is probably due to incoherent waves;
no finite correlation dimension was found in this case,
and (2) that the June 18, 1991 event represented by ob-
servatory time series LAQ2 and NGK2 , 1s duc to low
dimensional nonlinear dynamics, which include deter-
ministic chaos with correlation dimension Du(LAQ2) =
2.254+0.05 and Dy(NCK?2) = 2.02+0.03, and with pos-
itive Lyapunov exponcuts Apar{(LAQ2) = 0.055£0.003
bits/s and Apa(NGK2) = 0.062 £ 0.003 bits/s; the
predictability time in both cases 1s & 13 s.

1 Introduction

The Earth’s magnetosphere is a macroscopic open sys-
tem with a characterislic permanent state that is far
from thermal equilibrium. The non-equilibrium state is
ensured by the permanent solar wind - magnetosphere
interaction.

Bargalze et al. {1985) have used linear prediction fil-
ter technique to show that the magnetospheric response
to solar wind energy and mass loading is significantly
nonlinear. Baker et al. (1990) have attempted to anal-
yse the loading-unloading cycle of magnetospheric re-
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sponse as an output time pattern of a nonlinear, damped
harmonic oscillator. A plasma physics analogue model
of substorms was proposed by Klimas et al. (1991).
A simple model of the magnetotail which incorporates
dynamics and thermodynamics and exhibits chaos was
proposed by Goertz et al. (1991). The nonlinear mod-
els involve only a lew degrees of freedom assuming that,
the solar wind-magnetosphere systern asymptotes to a
low dimensional chaotic attractor in its associated phase
space.

The first results of nonlinear time series analysis of
AE, AL indices (Vassiliadis et al., 1990; Shan et al.,
1991; Pavlos et al., 1992) and local field variations (Vo-
ros, 1991), in fact, supported the idea that, on the
time scale of magnetospheric substorms (30-50 min),
the number of active degrees of freedom is finite (from
3 to 5). Recently, however, the method (Grassberger
and Procaccia, 1983) used in (Vassiliadis et al., 1990;
Shan et al., 1991; Vérds, 1991) seems to be ambiguous
due to the problems connected with correlation dimen-
sion ( number of degrees of freedom) estimates of col-
ored noise (Osborne and Provenzale, 1989) and due to
spurious correlations (Prichard and Price, 1992). For-
tunately, it is not difficult to introduce a correction to
spurious correlations {Theiler, 1986). It is also possible
to set up reliable criteria for the exclusion of pseudo-
chaotlic dynamics caused by colored noise (Roberts,
1991; Pavlos et al., 1992). In the latter casc, however,
the situation is not very simple. Fractal dimensional-
ity (self-sitmilarity) has been shown to be characteris-
tic for H-component of the local field variations (ran-
dom curve) during geomagnetic storms (Voros, 1990;
De Santis and Chiappini, 1992). It is known that col-
ored random noise is possible to interpret in terms of
random fractal curves (Osborne and Provenzale, 1989).
It has also been shown that colored noise with two com-
pounents, bicolored noise, shares many properties with
AE index data (Takalo et al., 1993). The reason for this
similarity 1s not clear yel.
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A possible explanation of these contradictory results
is that magnetosphere time series only exhibit low di-
mensional behaviour during selected time intervals (ac-
tivity levels 7). In any case, the solar wind - magne-
tosphere system should be studied in future, as a non-
linear dynamical input - output system (Prichard and
Price, 1992). To be more concrete, we note, the so-
lar wind (kinetic energy ~ 10* GW) - magnetosphere
(dissipated energy 200 - 800 GW) coupling has an ef-
ficiency of an average = 5%. These 5% are provided
by several different transfer processes such as reconnec-
tion, diffusion, Kelvin-Helmholtz instability, drift entry,
etc. For this reason nonlinear input-output analysis re-
quires a broad-range mapping of the physical processes
while the underlying data is supplied by surface as well
as satellite measurements.

This paper is devoled to the nonlinear time series
analysis of two geomagnetic pulsation events. From the
pure energetical point of view pulsation activity repre-
sents a petty part of the energy inflow to the magneto-
sphere (1-10 GW). Elucidating better the complex chain
of nonlinear interactions between the solar wind and the
magnetosphere field-line structures, however, one may
contribute to the understanding of the macroscopic non-
linear input-output systemn. In this paper, as a first step,
we address the problem of identification of deterministic
chaos as manifested in time series of pulsation events,

2 Geomagnetic pulsations

The origin of geomagnetic pulsations has been clari-
fied in rough outlines in recent years (Southwood, 1974;
Hasegawa et al., 1983; Cz. Miletitz et al., 1990; Vel-
lante et al., 1993). Morphologically several types can
be distinguished, the most frequent one is the continu-
ous type Pc2-4. Such pulsations occur at mid-latitudes
nearly continuously during daytime hours.

The energy of these pulsations is, however, strongly
changing on different time scales, beginning with beat
structures ( with an envelope of a duration of about
10 cycles) to activities lasting several hours. Impulsive
events do occur, too. The activity of the Pc2-4 pulsa-
tions has been shown to be controlled by interplanetary
parameters: amplitudes by the solar wind velocity, en-
ergy and by the cone angle (the angle between the Sun-
Earth direction and the direction of the interplanetary
magnetic field - IMF), the period by the IMF scalar mag-
nitude. An imnmediate connection with upstream waves
in the pre-magnetospheric solar wind was established,
too.

In spite of the connection between interplanetary
parameters and pulsations, pulsation periods change
with geomagnetic latitude or L-value, indicating seri-
ous transformation in the magnetosphere. Thus, con-
nection between pulsation parameters and interplane-
tary ones are valid rather statistically than in particular

cases. Nevertheless, events can be distinguished when
the magnetospheric influence is stronger (e.g. the pe-
riod changes with the L-value, the waveform is regular-
sinusoidal) and when it is weaker (period constant at dif-
ferent latitudes, less regular waveform, period changes
correspond to changes in the IMF magnitude). Mag-
netospheric signals are attributed to field line/shell res-
onances, when the period is determined by the reso-
nance period of a geomagnetic field line or of a shell
of field lines. Shells of field lines are supposed to be
of a thickness of 100 or a few hundreds of km-s at the
surface, and sometimes slightly (by about 10 percent)
different periods of neighbouring shells are observed si-
multaneously (beating structure). Even signals of inter-
planetary origin and of magnetospheric origin are ob-
served at the same time. Thus, pulsations are due to
several, simultaneously active sources which have dif-
ferent characteristics. The previous summary is to be
supplemented further by waves coming from the tail, by
impulsive excitation (e.g. by substorm onsets, night-
time Pi2 pulsations). In such a situation Pc2-4 activi-
ties may have quasi-continuous spectra with resonance
peaks, and nonlinear time series analysis may contribute
to a separation of signals coming (mostly) from one or
other source. As the most significant contribution in the
Pc2-4 spectrum comes from upstream waves and field
line resonances, the investigation of pulsations is to be
concentrated on this aspect. The only doubtless identifi-
cation of these types is due to a comparison of (dynamic)
spectra at different latitudes, at the same meridian, or
near to it. That is why the events will be studied in the
followmg at the Central European stations: Niemegk
(Germany, L = 2.3) and L’Aquila (Italy, L = 1.6).

3 Data analysis in the time and the frequency
domain

The first step which should be done in conjunction with
the nonlinear methods is to look at the power spectrum
by using fast Fourier transform. In this way we can
recognize periodic, quasiperiodic and aperiodic motions
(discrete, singular continuouns and continuous spectra,
respectively). On this basis, however, one can not dis-
criminate between chaotic processes with a few active
degrees of freedom and stochastic or random processes
with a practically infinite number of degrees of freedom.

In spite of it, the spectral method still remains a very
useful and indispensable procedure. Even in the cases
ol quasiperiodic or aperiodic motions, large amount of
essential information is possible to obtain by careful ex-
amination of spectra. We mention several typical ex-
amples that we will use in this work: recognition of
characteristic frequency (range) could help in the recon-
struction of phase space (see later); enhanced activity in
some frequency interval (band) gives information about
the underlying physical processes (Pi, Pc pulsations, lo-



cal, global events, wave packets, etc); power-law specira
may indicate fractal structure (Osborne and Provenzale,
1989) ; significant distortion or spurious peak emergence
in the spectra warns the researcher that the signal is
probably overfiltered, etc.

Fourier transforming the power spectra we compute
the autocorrelation function, which, for a chaotic signal,
tends to zero as the lag time increases.

4 Nonlinear methods

As input data we use scalar time series of two pulsa-
tion events. To follow a proper dynamics of geomag-
netic pulsations, we suppose that, after transients’ dy-
ing down, the system under consideration asymptotes
with increasing time to a low dimensional attractor in
its associated phase space. After the reconstruction of
an artificial phase space (Takens, 1981) we estimate the
correlation dimension D (Grassberger and Procaccia,
1983), which is roughly equal to the number of active
degrees of freedom (sometimes 203 + 1 coordinates are
needed), and compute the largest Lyapunov exponent
(Wolf et al., 1985) which characterize the system’s ex-
treme sensitivity to initial conditions. We also use sev-
eral tests and apply criteria to insure the robustness
of estimations and to eliminate the possibility of pseu-
dochaotic dynamics .

4.1 Phase space reconstruction

We create a set of m-dimensional state vectors (X;) from
a single scalar time series X; = X(;),¢=1,...,N; by
using a time delay (7) as follows {Takens, 1981)

X = (X(t,t),X(t!’ + ‘r), . ..,X(t,' + (m — 1)7)) (1)

For finite amounts of noisy data the choice of time
delay is crucial. For small values of 7 the reconstructed
attractor will be squashed along the phase space diag-
onal. A delay time which is larger than the charac-
teristic recurrence time of the system causes overfold-
ing”, because flows with contrary directions have separa-
tions less than the resolution (Buzug and Pfister, 1992).
When 7 is too large, noise will dominate and dynami-
cal information will be lost. We use several methods to
choose a time delay appropriately,

4.1.1 Attractor covering method

Drawing profit from the above knowledge, we have de-
veloped an extremely simple method to find a relevant
interval for time delay. In m dimensional phase space
we cover an attractor by a grid of defined resolution and
then compute the ratio of unfilled to filled boxes (Al-
tractor Covering Method - ACM).This ratio is saturated
when 7 is too large and the phase space reconstruction
is dominated by noise.
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Figure 1 shows the relative (percentual) ratio of un-
filled to filled boxes (the number of both is usually sev-
eral hundred depending on grid resolution and embed-
ding dimension) computed for known mathematical sys-
tems (using the computed ”time series” of 1D Henon
map, Lorenz and Rossler attractors). For these systems
the proper interval for time delay is from 80% to 90%
of the saturated (noise dominated) level.

In addition, checking up the spurious effects caused
by improper stretching and folding we examine care-
fully two dimensional phase space portraits for various
time delays, each chosen from those 80% — 90% inter-
val. " Overfolding” looks like a crumpled sheet of paper
{Buzug and Pfister, 1992). We use this method for geo-
magnetic pulsation data.

4.1.2 ”ACF” method

We examine the autocorrelation function (ACF) and
accept that the l/e fraction or the first zero of the
ACT leads to delay times which ensure that two coordi-
nates become linearly independent (Schuster, 1989).The
method fails for systems of higher dimension.

4.1.3 ”Pseudocycle” method

Another simple criterion is to take 7 in a range of about
25% of the pseudocycle (characteristic time - Tog) and
then pragmatically accept the value for which the corre-
lation dimension is unchanged when 7 is varied (Buzug
and Pfister, 1992).

For low dimensional systems all these methods should
approximately yield the same interval for 7.

4.2 Nonlinear noise reduction

It is expected that the time series of geomagnetic pulsa-
tion data will necessarily be noisy. For this reason, we
decided to clean the data by a noise reduction algorithm
{Schreiber, 1993). The effectiveness of the nonlinear
noise reduction algorithm (NNR) was tested by using
noisy 1D map data, the Mackey-(Glass delay differential
equation (Schreiber, 1993), data from a Taylor-Coutte
experiment (Schreiber and Grassberger, 1991).

"The main idea of the NNR technique (Schreiber, 1993)
is to replace each measurement (X;) by the average value
of this coordinate over points in a suitably chosen neigh-
bourhood of radius p .The neighbourhoods are defined in
a reconstructed phase space and k coordinates from past
and future are used to construct embedding vectors X;.
Then the coordinate X; is replaced by its mean value in
U;

corr __ 1
X; — X; —IU_fI%;Xj (2)
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Figure 1. Percentual ratio of unfilled to filled boxes as a function
of time delay 7. Embedding dimension is fixed to m = 4.

where Uf is the set of all neighbours for which
” xj -X; |I3up< P

In every case it is necessary to examine carefully the
effects of the cleaning. To this end we always gener-
ate several realizations of cleaned time sequences {sym-
bolically {NNR(k,p)X;}), and only those parameters
(k and p) are considered for further computations, for
which the correlation dimension estimation leads to the
equal values (within error bars). The occasional distor-
tion of the power spectrum due to overfiltering is also
examined (an emergence of spurious peaks should yield
a spuriously low correlation dimension).

4.3 Correlation dimension

Following the procedure proposed by Grassberger and
Procaccia (1983) , a reference phase space point X; is
chosen and all its distances |X; — X;| from the N-1 re-
maining points are computed. For a chaotic attractor a
scaling law exists for the number of data points that are
within a prescribed distance £ from point X;

N N-j
P20 s 37 % O(e— | XP - XP ||= C5, (3)
=W i=1
and
2

XN —WYN W+ 1)

where [y is the correlation dimension; N is the number
of data points (N = 107 is the minimum number of data
points required to reconstruct an attractor properly);
© is the Heaviside step function; m is the embedding
dimension; €%, 1s the correlation sum; Euclidean norm
is used. Those points for which Ji—j|8t (8t = t;41—1;) 1s
less than the autocorrelation time (= W) are excluded
{correction to spurious correlations - Theiler, 1986).

If we subsequently compute D:(m) in a phase space
of increasing dimension m, then for chaotic time series,

80
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Figure 2. Geomagnetic pulsation time series —event April 26,
1991~ with 1s time resolution, registered at a 1’Aquila (LAQ1);
b Niemegk (NGK1)

Dy(m) reaches its saturation limit. A convenient way to
visualize the dependence of Dy(m) on In(e) is to plot the
slope of Aln Cp(€)/AIn(g) versus In(g). If, for increas-
ing value of m, there is a statistically significant scaling
region (with lower and upper limit} where the slope re-
mains constant, then this saturation value of the slope
will be considered as the correlation dimension. The ro-
bustness of the whole procedure will be tested for several
values of time delay .

For the exclusion of pseudochaotic signals (colored
noise) the following two criteria are involved, too.

4.3.1 Surrogate data test

Randomizing the phases of the Fourier transform of the
original time series and then inverting the transform we
create several (= 5) realizations of surrogate data with
same spectra and ACF as of the original time series.
After it we recalculate Do for each of the surrogate data.
If the results do not significantly differ from those of the
original time series, the dimenston estimate should not

be trusted {(Roberts, 1991).
4.3.2 Self-affinity (fractal) test

Self-affinity means that if the time scale is rescaled by
a factor 5 and the signal itself is rescaled by a [aclor
n~# , then the transformed time series has thc same
statistical properties as the original one. If the signal is

self-affine, then (Osborne and Provenzale, 1989)

(X (8 +98t) — X(t:]) = ™" (IX (8 + &) = X(t:)))  (4)
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Figure 3. a The power spectrum of the LAQ1 data; b the autocorrelation function of the LAQ1 data; ¢ the power spectrum of the

NGK1 data; d the autocorrelation function of the NGK1 data

where the symbol ()} indicates time average; H is the
self-affinity scaling exponent - a slope of the straight line
in a log-log plot of {|.X (t;+nét)— X (¢;|} versus n; 7 is the
scaling factor. A kind of colored noise with power law
spectra is self-affine, and in this case the Grassberger
and Procaccia (1983) algorithm measures the fractal di-
mension of a self-affine curve instead of the correlation
dimension Ds which is related to the nonlinear system’s
dynamics. Therefore, if a time series shares several prop-
erties of colored noise (similar spectral exponent, single
fractal dimension - straight line in the log-log plot as
above), the correlation dimension estimate should not
be trusted.

4.4 Largest Lyapunov exponent

In general, the spectrum of Lyapunov exponents, A;,
may be calculated by linearizing the relevant equations
of motion and studying the evolution of small pertur-
bations (Haken, 1983). If A; > 0,¢=1,2,...,m; the
motion along trajectories i1s unstable and small pertur-
bations grow exponentially with time.

In an experimental situation the computation of the
whole spectrum of the Lyapunov exponents is quite dif-
ficult (Grassberger et al., 1991). An interactive program
package written by Wolf et al. (1985) allows us to es-
timate easily the largest Lyapunov exponent using the
relation

Ames %

i iy ) ®)

where L(1;} denotes the distance which separates two
nearby trajectories in the reconstructed phase space;
L(to) is the distance between two initial points. The ini-
tial length will have evolved to length L'(¢)), etc. The
total number of replacement steps is M, and the replace-
ment vectors are reorthogonalized from time to time by
means of a Gram-Schmidt procedure.

100
B
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901

851

BO% 20 49 80 B0 1907 120
8 T Lel

100
e

861
NGK1
20

B6

T R I - ) FOTTE6E TR0
-

Figure 4. Same plots as in Fig.1 for the a LAQ1, b NGK1
time series.
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Supposing that, Ay = dpee > 3, i = 2,00, m;
the predictability or error doubling time may be esti-
mated as

log, 2
: (6)

TeprEDICT ™ 3
mar
We will compute the largest Lyapunov exponent only
for pulsation events for which the above procedure
proves the existence of deterministic low dimensional dy-
namics. Again, the results must be stable over changes
in all parameters such as time delay, evolution time
between replacement steps, maximum and minimum
length of replacement vectors alfowed, number of data
points; unstable estimates should not be trusted (Wolf
et al., 1985).

5 Data analysis

We analyse simultaneous observations of two daytime
pulsation events recorded at Niemegk {Germany) and
L’Aquila (Italy)

. April 26, 1991; 14.00 - 15.00 UT; sampling freq.:1s~; N = 3600.

. June 18, 1991; 08.00 - 09.00 UT; sampling freq.:1s~1; N = 3600.
5.1 FEvent of April 26,1991

Figure 2a shows the time series of the X component of
geomagnetic pulsation as it was recorded at L’Aquila
(L.AQ1). The profile of this time series reveals a sta-
tionary process. Figure 2b shows the time series of Y

Figure 6. Geomagnetic pulsation time series - event June 18,
1991 - with 1s time resolution; a L'Aquila {LAQ2), b Niemegk
(NGK2 )

component of the same event, but registered at Niemegk
{(NGK1). The X component of the NGK1 data is
weakly stationary only, this is why instead of it, the
more stationary Y component is used.

Figures 3a-d present the power spectral densities (log-
scale) and the ACF of the time series LAQ1 and
NGK]1, respectively. All the spectra shown in this pa-
per is smoothed by using a GEO (Goodman, Encchson,
Otnes) window. The power spectra in both cases reveal
Pc4 band activity (frequency range == 0.007 — .02H z;
period range == 50 — 150s), however, a local Pc3 band
activity (frequency range == 0.02 — 0.1 H z; period range
7z 10 — 50s) is present in NGK1 time series spectrum,
If we take the frequency interval from 0.006 to 0.01Hz
as a prevailing part of the spectra , then the char-
acteristic "period” is about of = 100 — 170s and the
optimal delay time interval is (pseudocyele method )
7= 026Tch ~ (26 — 43)s.

The delay times obhtained form the autocorrelation
functions (Figs. 3b,d) are (" ACF” method)

. T(LAQ1) % (ACF(1/e) = ACF(0))Lag1 & (20 — 60)s

. r(NGK1) = (ACF(1/e) — ACF(0))nGr1 = (4~ 30)s

On this basis, it seems to be reasonable to choose a
time delay from the interval r € (20 — 30)s. Using the
»ACM” method we have plotted Figs. 4a and b which
show no relevant interval (& (80 — 90)% of saturated
level) for time delay.

After these preparatory steps, we have computed
the correlation dimension for several values of time de-
lay 7 € (20,30)s ; and several realizations of cleaned
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Figure 7. a — d same plots as in Fig.3 for LAQ2 and NGK2 time series respectively.

data {NNR(k,p)LAQ1}; {NNR(k,p)NGK1}; k =
10,20,30 and p = 10,20,30,40,50 ( in units of the
measurements).  Independently on parameter values
(7, k, p ) and observatories (LAQ, NGK) no finite corre-
lation dimension was found. Figures 5a and b show two
examples for both time series with parameter values of
7= 30,k = 10, p = 30. We have introduced a correction
to spurious correlations by choosing W = 30 (see Eq.3).
The result is in good agreement with the indication of
the " ACM” method, namely, that the phase space por-
traits of both LAQ1 and NGK1 data are dominated by
noise for any value of 7. An additive noise is possible to
remove by using the NNR technique of the data clean-
ing, however, in our case the correlation dimension for
both cleaned time series was not altered significantiy.
The pulsation event under consideration is not finite
dimensional, therefore we do not compute the largest
Lyapunov exponent and do not make further tests or
examinations.

5.2 Event of June 18, 1991

Figures 6a and b show the stationary time
series of the X components of the event registered at
L’Aquila (LAQZ2) and Niemegk (NGK2). Figures
7a - d present the power spectral demsities and the
ACF for both time series. The global behaviour of
the pulsation activity was similar at the two stations
(the peak about 0.032Hz — 31s — Pc3 band), however,
local spectral pecularitics clearly emerged in the ex-
perimental observations. Significant peaks emerge at
0.056 — 0.074H z (13 — 185 — Pc3 band; LAQ2), and at
0.008 — 0.02H z(50 — 1255 — Ped band; NGK2).

If we take a common peak at = 0.032Hz as a char-

acteristic frequency for the event, then the pseudocy-
cle method gives a time delay of 7 = 8s. The delay
time intervals obtained from the autocorrelation func-
tions (Figs. Tb,d) are (" ACF” method)

. T(LAQ2) x (ACF(1/e) — ACF(0))page ~ (3 ~ 5)s

. T(NGK2) & (ACF(1/e) — ACF(0))ngra % (6 — 12)s

20 LAQZ

705 =0 40 80 B0 1f° 126 140 180
T [=

a
% 1051
1001
951
90 NGK2
854
801
751
70
&) 160 =200 300 400
b 7 [a]

Figure 8. Same plots as in Fig.1 for a LAQ2 , b NGK2 data
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Figure 9. Two dimensional phase space portraits of cleaned
LAQ2 data (k = 8,p = 60) witha 7 = 55, b 7 = 125 - a
spurious stretching and folding effect

The outputs of the " ACF” method are shown in Figs.
Ba and b. For LAQ2 (Fig.8a) the relevant values of time
delay are from the interval 7 € (1,7)s, and for NGK2
(Fig. 8b) from the interval r € (1, 20)s. For the smallest
values of r the phase portraits are squashed along the
phase space diagonal. Due to this insensitiveness of the
”ACF” method we use (as above) several methods to
choose an appropriate interval for time delay.

Figures 9a and b show two dimensional phase space
portraits of cleaned LAQ2 data (NNR(k = 8, p = 60))
for two values of time delay chosen within (7 == 5 s -
Fig.9a) and without (7 = 12 s - Fig 9b) the proper
interval for LAQ2. Figure 9b present a clear over-
folding (spurious stretching and folding) effect. Taking
into account the above indications, we have computed
the correlation dimension for the values of time delay
from the following intervals: 7(LAQ2) € (1,7)s and
r(NGK2) € (4,20)s. Several realizations of cleaned
data were also used: {NNZR(k,p)LAQ2} with & =
8,10,20 and p = 40,60,80 and {NNR(k,p)NGK2}
with & = 15,20,30 and p = 40,60,80. A correction
to spurious correlations was choosen to be equal to the
ACF(0).

Figures 10a and b show examples of the saturation of
correlation dimension estimates. As it can be seen the
scaling region is broader in the case of LAQ2 (Fig.10a )
In{g) = (-2) — b; while for NGK2 (Fig. 10b) it is
In{e) = 45— 6.8 .

14 NGK2

onkao

| =3 n(e)

Figure 10. Correlation dimension estimates as in Fig.5 for a
LAQ2 (r =5,k =8,p=20)and b NGK2 {r = 12,k = 20,p =
400)

Figures 11a (LAQ2) and 11b (NGK2) show the sta-
bility of the correlation dimension computation over
the choosen ranges of time delay 7 . In accordance
with previous expectations, the value of Dy is under-
estimated for smaller values of 7 , in both cases. The
saturated values are Dy(LAQ2) = 2.25 £ 0.05 and
Dy(NGK2) = 2.02 + 0.03. Using only the first 1000
points of LAQ2 or NGK2 data the dimension may be
estimated by an error of = 20% .

To exclude a pseudochaotic signal as a possible sto-

chastic source of low correlation dimension estimate, we
have tested our results (see Sect.4.3).
Figures 12a (LAQZ2) and 12b (NGK2) present two ex-
amples (from 2 x 5 realizations) of the surrogate data
test. It can be seen that the results are significantly
different (no saturation) than those of the original time
series.

The results of the fractal test are shown in Fig.
13a {LAQ2) and 13b (NGK2). No straight lines are
present in the log-log plots, therefore the data are not
self-affine.

On this basis we can make a statement: the event
represented by two observatory time series {LAQ2 and
NGK2) is not similar to a colored noise with power law
spectra.

The next step is the computation of largest Lyapunov
exponents from experimental data.

Figure 14a presents estimates of the A4, for the
LAQ2 time series as a function of time and evolution
time. Figure 14b shows the same, but for NGK2 data.
Stability of Lyapunov exponent estimation over changes
in time delay, evolution time, maximum and minimum
cutoff was examined, too. The estimates stabilize at
positive values
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Figure 11. Correlation dimension versus time delay a LAQ2, b
NGK2

Amas(LAQZ) = 0.055 £ 0.003bits/s

and
Amaz (NGK2) = 0.052 4 0.003bits/s

The predictability times or error doubling times (Eq.6 )
are

TrreprcT(LAQ2) = Terepicr(NGK2) = 13s

It is also important to test the temporal convergence of
Amar 28 a function of {he number of data points. The
obtained convergence rates indicate that it is sufficient
to have = 2000 data points in the case of LAQ2 data
and = 2500 data points in the case of NGK2 data to
estimate a saturated value of A, ;..

6 Summary and discussion

In this paper we applied a nonlinear time series analysis
to geomagnetic pulsation data.

In the case of the April 26, 1991 event, no finite cor-
relation dimensions were found for LAQ1 and NGK1
time series, Therefore, our conclusion is that this event
is probably due to incoherent waves (stochastic process).
We have not computed the largest Lyapunov exponent
for this event.

It has been shown (Anderson , 1993) that incoher-
ent waves comprise a significant fraction of observed
fluctuations, and are associated with increased geomag-
netic activity for both daytime and nighttime events.
In fact, the event represented by LAQ1 and NGK1
time series appeared during a geomagnetic storm (sud-
den storm commencement on April 24). The average

Figure 12. Surrogate data test a LAQ2, b NGK2

Dst index was decreased significantly, too (Solar Geo-
physical Data, 1991, 1992). The mechanisms for inco-
herent waves have not been determined, however, it is
likely that they are related to magnetic reconfiguration
associated with substorms or/and to nonlinear genera-
tion and evolution of broadband instabilities.

Finite correlation dimensions were obtained in the
case of June 18, 1991 event; D(LAQ2) = 2.25 4+ 0.05
and Dy (NGK2) = 2.02+£0.03. The estimates have been
shown to be stabilized over a reasonable range of values
of time delay. Fractal and surrogate data tests have
shown that the low correlation dimensions do not arise
from colored noise with power law spectra, although
the debate about stochastic or deterministic nature of
geomagnetic pulsations with low correlation dimension
should not be entirely closed.

The largest Lyapunov exponents are equal at the two
stations within the error bars; Ane{LAQ2) = 0.055 +
0.003 bits/s and Amae{(NGK2) = 0.052 £ 0.003 bits/s.
It has alsc been shown that the estimales are stable
over changes in parameters such as time delay, evolution
time, maximum and minimum length of replacement
vector allowed, moreover, that the LAQ2 and NGK2
time series contain a sufficient number of data points to
insure a convergence of Ayaz.

The above results indicate that an appropriate low
dimensional nonlinear model may explain significant as-
pects of the analysed Pe3 — 4 pulsation event, however,
due to the sensitive dependence on initial conditions pre-
dictions will be affected by error’s exponential growth.
The characteristic predictability time is a2 13s.

It is intriguing that the second event (LAQ2, NGK2),
which also appeared during a geomagnetic storm (sud-
den storm commencement on June 17 - Solar Geophys-
ical Data 1991), shows a deterministically chaotic be-
haviour while the first event (LAQL, NGK1) does
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Figure 13. Sell-affinity {fractal) test a LAQZ2, b NGK2

not. A possible explanation of these results is that
emergence of coherent low-dimensional pulsations is re-
lated to the nonlinear evolution (competition) of cou-
pled macroscopic modes near eriticality. In such case of
self-organization, the state of a nonlinear high dimen-
sional system, close to an instability point (linear sta-
bility loss) , may be described by few degrees of freedom
only whose collective motions, depending on control pa-
rameters, give rise to macroscopic coherent structures
(Haken, 1983; Klimas et al., 1991) . Consequently, in-
coherent waves emerge when self-organization does not
take place. A similar reasoning was proposed for the
explanation of chaotic appearance of substorms (Vords,
1991; Klimas et al., 1981). At this stage, however, we
can not decide if salient features of chaotic character-
istics of the magnetosphere plasmas (coherent waves,
substorms, ete.) could be explained by common model.
Moreover, it is almost certainly impossible to obtain
the exact values of dimensions and Lyapunov exponents
with data obtained from large, essentially uncontrolled
magnetosphere - ionosphere open and dissipative sys-
tem. However, approximate estimates of dimensions
and characteristic predictability times may serve as use-
ful empirical measures complementing finear time series
analysis results.

Finally we note that much more work is needed to
prove the general usefulness of the concepts of deter-
ministic chaos for coherent pulsation aciivity analysis.
That knowledge would be especially important from the
point of view of more complex understanding of the solar
wind-magnetosphere , nonlinear input-output system.
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