N

N

Nonlinear dynamics of wind waves: multifractal
phase/time effects
R. H. Mellen, I. A. Leykin

» To cite this version:

R. H. Mellen, I. A. Leykin. Nonlinear dynamics of wind waves: multifractal phase/time effects.
Nonlinear Processes in Geophysics, 1994, 1 (1), pp.51-56. hal-00301722

HAL Id: hal-00301722
https://hal.science/hal-00301722
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00301722
https://hal.archives-ouvertes.fr

Nonlinear Processes in Geophysics (1994) 1:51 - 56

Nonlinear Processes
in Geophysics

© European Geophysical Society 1994

Nonlinear dynamics of wind waves: multifractal phase/time effects

R.H. Mellen** and I.A. Leykin'

! Marine Sciences Institute, University of Connecticut, Groton CT 06340, USA

* Kildare Corp., 95 Trumbull St., New London CT 06320, USA

Received 15 November 1993 - Accepted 14 March 1994 - Communicated by A.R.Osborne

Abstract. In addition to the bispectral coherence method,
phase/time analysis of analytic signals is another promising
avenue for the investigation of phase effects in wind waves.
Frequency spectra of phase fluctuations obtained from both
sea and laboratory experiments follow an F-P power law
over several decades, suggesting that a fractal description is
appropriate. However, many similar natural phenomena
have been shown to be multifractal. Universal multifractals
are quantified by two additional parameters: the Lévy index
0<a<2 for the type of multifractal and the co-dimension
0<C1<1 for intermittence. The three parameters are a full
statistical measure the nonlinear dynamics. Analysis of
laboratory flume data is reported here and the results indicate
that the phase fluctuations are ‘hard multifractal’ (o>1). The
actual estimate is close to the limiting value o=2, which is
consistent with Kolmogorov's lognormal model for
turbulent fluctuations. Implications for radar and sonar
backscattering from the sea surface are briefly considered.

1 Introduction

Analysis of radar and sonar backscattering from the sea
surface requires a model of the wave dynamics (Bass and
Fuchs, 1979). Linear theory is often used and suffers from
neglect of important nonlinear features of wind waves. Two
of these are wavefront steepening and instability.

Wavefront steepness means that harmonics tend to be

“locked together so that their average phase speeds are the
same. Doppler shifts in high-frequency backscatter
experiments should therefore not be expected to follow
linear dispersion theory (Mellen, 1991). Also, skewness of
the waveforms causes an up/downwind asymmetry in
Ipackscatter strength (Chen and Fung, 1990).

Instability is the basic mechanism for wave growth
(Phillips, 1966) and also appears to be responsible for the
breakup into sporadic wave-groups. It should not be too
surprising if the associated phase fluctuations turn out to be
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fractal. Bragg-scatter theory is based on a random-phase
approximation and fractal statistics can be quite different.

Wave groups observed in flume and ocean experiments
appear to be similar. Huang (1991) examined wave-buoy
data by phase/time analysis of the analytic signal and found
evidence of groups. He also found that the frequency
spectrum of the phase fluctuations follows an F-P power
law over several decades and the lack of a characteristic scale
suggested a simple fractal description involving a single
dimension. Laboratory measurements reported here support
Huang’s resuits in some detail and this agreement gives
hope that our extended results may also be representative of
the open ocean.

Simple scaling implies linearity. Natural phenomena are
generally nonlinear and also multifractal; i.e., they have a
spectrum of dimensions and not simply one. It is the
generic 'L/F noise' problem, wherein incoming low-
frequency energy is pumped up to ever higher frequencies
and ultimately dissipated, yielding an equilibrium FP
spectrum in the mid-range. Sporadic properties or
intermittence show up as a high upper tail in the
probability density (PD).

For ‘universal' multifractals, the scaling is quantified by
two additional parameters: the Lévy index 0<a<2 for the
type of multifractal and the co-dimension 0<C<1 for the
intermittence (Schertzer and Lovejoy, 1988). The three
parameters are then a full statistical measure of the
nonlinear cascade and details of the underlying dynamics
need not be considered. The results presented here indicate
that the phase fluctuations of wind-generated waves are also
muitifractal.

2 Flume experiment

Figure 1 shows a sketch of the wave flume and the
experimental configuration. The length and depth of the
flume are approximately 4 m and 40 cm, respectively, and
the water depth 30 cm. The wave height measurements were
made at fetch of about 3 m and wind speed of about 7 m/s.
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Vertical displacement vs. time was measured by means of a

simple conductance wavegauge. Signal voltage was recorded
digitally at 128/sec for a total period of 64 sec. and the data

filed for later analysis.
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IFig. 1. Wave flume and experimental configuration.

o NA aa A NN ]
* CARUTALLE

0 sec. 1 2 3 4
Fig. 2, Portion of the record of waveheight {(t).

A portion of a wave record is shown in Fig. 2. The rms
waveheight is roughly 3 mm and maximum peak-to-trough
amplitude is roughly 1 cm. The waveforms clearly show
steepening of the wavefronts, particularly for the higher
amplitudes. There is also evidence of sporadic groups that
consist of only a few cycles and highly irregular behavior
between groups.

3 Spectrum analysis

Frequency spectra were obtained by fast fourier transform
(FFT) at 256 points per sample using a Hanning window
and averaging over 60 samples. The maximum usable
frequency Fyax is taken as 50 Hz.

The power spectrum in Fig. 3 has a center frequency near
" 4 Hz and a rather narrow bandwidth. The small bump at 8
Hz is the only evidence of harmonics associated with the
steep wavefronts.

The bispectrum is also useful for examining nonlinear
phenomena in wind waves (Hasselmann et al., 1963). The:
bispectrum is a measure of third moments, which involves
sum and difference frequencies. However, the relations are
given simply by the product of Fourier coefficients of the
frequencies Fy, Fo times coefficients of the sum frequency
F1+Fs.

Bispectral coherence is better suited for examining the
phase relations between harmonics and is obtained simply
normalizing the bispectrum.
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Fig. 3. Frequency spectrum of the wave record.
"The bicoherence formula used here is:

_ (S(F, )S(F,)S*(F;+F,)) {
= ([SF)SE)S*F,+Fp T 0

P+iQ

where S(F) is a complex Fourier coefficient, S*(F) is the
conjugate, bars indicate absolute values and the brackets
indicate expectations. Bicoherence is real for waves that are
spatially symmetric to time reversal and imaginary for
antisymmetric
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Fig. 4. Bicoherence spectrum of the wave record, showing
the symmetric and antisymmetric components.




Since Fy and F; are interchangeable and Fy +Fp<F,., all
the non-redundant values of P and Q are contained in
triangles with baseline on either frequency axis.

The 2-D bicoherence frequency-spectrum of the wave data
is shown in Fig. 4. The gray scale corresponds to 9 linear
steps covering the range 0 to 0.5. Spatial skewness clearly
dominates and harmonic coherence is rather high, both of
which are consistent with steep wavefronts. Fluctuations
are evident in the frequency spreads and this suggests an
underlying stochastic modulation process.

4 Analytic signal

While the Fourier methods measure only time-average
properties of a signal, the analytic-signal method is useful
for examining ‘instantaneous’ behavior in terms of envelope
and phase. The analytic signal is given by:

Z=C()+HE() , V)]
where {(t) is a real signal and E(t) is its Hilbert transform,

which is obtained here by the usual FFT/invFFT method.
The phase @(t) and envelope E(t) are given by:

B(t)=arctan[EWV/L V)], EO={{(®>+E®2]1/2, 3
'Then @Xt) is approximated as:
B(H=wot +dA(t) , @

where g is the mean angular frequency and dXt) is phase
deviation.

In most of the early work, @(t) was confined to the range
0<9<2xw (Melville, 1983). Huang ‘unwrapped’ his data and
detrended to remove the wot term. The frequency spectrum
of the phase fluctuations showed no characteristic scale and

this suggested a fractal description.
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Fig. 5. Phase and envelope by the phase/time method.

Piots of phase and envelope of the flume data are shown in
Fig.5. For clarity, the envelope was smoothed slightly by
low-pass filtering to better illustrate the sporadic nature of
group structure.

Figure 6 are the phase fluctuations obtained by detrending
the phase in Fig. 5. 'Unwrapping' is potentially ambiguous
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for noise-like signals; however, two different algorithms
were used and there were no significant changes in the
results.

48 |CYCLES DETRENDED PHASE
3L
21
1
oL w‘r‘$
-1L
-2

0 sec. 8 16 24 52 40 4@ % 6a
Fig. 6. Detrended phase fluctuations.

§ Fractal analysis

For frequency spectra following an FP power law, the
simple fractal dimension is given by D=(5-8)/2 (Berry and
Lewis, 1990).
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Fig. 7. Frequency spectrumn of phase fluctuations.

The frequency spectrum of the phase fluctuations 3@(t) is
shown in Fig. 7. Note there is no apparent characteristic
scale in this frequency range. The dashed line is the fit with
(3=2.3 and therefore D~1.35. Huang's value was §=2.2, for
which D=1.4.

Alternative methods of calculating a fractal dimension are
the ‘coastline' and 'box count' methods (Feder, 1988). The
first measures chord length of the data set vs. resolution.
The second counts the number of data points falling within
boxes as a function of box size. The sampling intervals are
taken here as ™=T/2™, where m=1,2,, T is the total time
of the data set and n(m) is the result of the respective
calculations.

The respective analyses of the phase data are shown in
Fig. 8. The slopes k of M=logs|n(m)] vs. m are obtained
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by linear regression (dashed lines). The fractal dimensions
are D=1+k for the 'coastline' method and D=k for the ‘box
count’ method; therefore, D~1.34 for both cases.
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Fig. 8. Fractal analysis of the phase fluctuations.

6 Multifractal analysis

For simple scaling, the moments have specific relations
analogous to a gaussian distribution. Systematic deviation
from these relations reflect the sporadic properties or
‘intermittence’ of a multifractal process. The analysis
method of Lardner et al. (1992) is used here because of its
relative simplicity.

The theory treats the series A(t) as a random walk (RW),
where (/2 is fractional order of integration (Feder, 1988). In
general, the qth moments of increments vs. resolution
should scale as:

) AALIB=(] Ay-Ae) | Yy o <@, 5

where q is any moment, including non-integral values.

Figure 9 illustrates the method, where T=N/n, N is the
total number of data points in the set and sampled points in
the example are indicated by the solid circles. As before, T
is decreased sequentially by factors of two.

Some insight into the method is gained by considering
. the second moment of Eq. 5. For a frequency spectrum
ia) 2«F-B in the range Fy<F<Fj:

F2
{aalD & F[dF FB [l-cos(27rFT)] &Pl y1-,  (p)

Then p=1+k(2), where k(2) is measured in a corresponding
range of v. The accuracy of approximation depends on both
B and bandwidth.

The mmitifractal measure is K(q) where:

C
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The limiting multifractal types are monofractal (0=0) and
lognormal (0=2).
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Fig. 9. Example of the multifractal sampling procedure.
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t.amplmg frequency v is preferred in order to show results
as frequency spectra. The moment values are summed over

the data set and averaged as follows:
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Fig. 10. Multifractal moment analysis.

Plots of M vs. m for the 5 data are shown in Fig. 10.
Deviation from linearity in the lower range apparently
reflects an outer scale, which is not seen in the spectra of
Fig. 7 because only about 8 octaves were covered. Only the
7 highest points were used in the regressions in Fig. 10.

The dashed lines are the regression fits and k(q) estimates
for the selected q's are shown at the right. The estimated
value B=1+k(2)=2.2, which is slightly lower than the FFT
estimate §=2.3.

Estimation of parameters « and Cy is shown in Fig. 11.
The solid circles are the phase data and the dashed curve is
the formula fit with o=2, C{=0.06.



According to theory, a=2 is consistent with a lognormal
PD of the increments. Since C{<<1, the process is quite
homogeneous; i.e., not highly intermittent.
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¥ig. 11. Multifractal parameter analyses.

For the special case =2, the RW becomes equivalent to a
summation of independent impulses whose strength
statistics depend on the type of process. For comparison
purposes, a lognormal RW realization was generated using
a gaussian number-generator with variance 02=1 and then
exponentiating and summing the increments with random
signs. Since f=0 for the increments, §=2 for the RW. The
open circles in Fig. 11 are the results of the analysis. Note
that C120.06 here also, which is evidently fortuitous.

The squares in Fig. 11 represent results of analysis of a
‘Weierstrass-Mandelbrot fractal generated with D=1.5, which
effectively gives =2 (Berry and Lewis, 1980). For simple-
scaling, C1=0 and agreement with theory is good

7 Probability density

Figure 12 compares logarithmic PD's of the phasc data
(solid circles) with the lognormal RW case (open circles).
The abscissa is In|A|, where the |Al's are finite differences
{absolute values) measured at the highest resolution. Since
the data sets were adjusted in amplitude to set the peaks
close to zero, the scale is arbitrary. The solid curve is the
lognormal case with unit variance.

The main problem with the phase PD is the high lower
tail. To examine this, the lognormal RW case is further
analyzed via the PD vs. step-size.

The sampling increments for a RW are:

n
‘&1=21Al ’ (9)
=
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where 1 is the number of steps in the samples. In Fig. 9,
n=4. Moment expectations then scale as nk(4), where k(g)
depends on the PD of A. The method of calculation PD vs.
n is outlined in Appendix A. Since no solution is known
for n>1, the PD's were calculated numerically.

PD
® 34 data

e Lognormal Rw
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KFig. 12. Logarithmic probability density plots.
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Fig. 13.Lognormal PD vs. step size n.

Figure 13 shows the logarithmic PD's for unit variance
calculated numerically by the PD method vs. step size n.

A similar plot for the phase can also be obtained by direct
sampling of the data set. Figure 14 shows the logarithmic
PD of the phase data for the same n range as in Fig. 13.
The solid curve is lognormal with unit variance. While the
trends are similar, the n=1 case is more consistent with the
n=2 case in Fig. 13, which suggests that the logarithmic
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'singularities’ are not fully developed or the measurement
resolution is too low to see them.

PD

A4

-4 1nlal
Fig. 14. Log PD of 3D data vs. step size n.

8 Conclusion

Lévy index a>1 is classed as hard multifractal' and the
limiting value a=2 is lognormal. The present results
indicate that the phase fluctuations of wind waves are, to
good approximation, lognormal. Significance of these
results to the backscattering problem probably lies mainly
in the fluctuation statistics, which can be expected to have
more extreme variability than the conventional gaussian
madel predicts.

It is interesting to note that recent investigations of
Kolmogorov's model (Kolmogorov, 1962) gave rise to
'universal' multifractal theory. Lognormal statistics are
common to a broad range of phenomena in many different
disciplines (Aitchison and Brown, 1957) and therefore
might well be expected to apply to the present case as well
as to other kinds of similar fluctuations.

Appendix A

Consider a normal RW where the PD of increments A is:

, 212
p(A)=°—’:§‘ﬂ%2ﬁ7—2)=P(Ao. =1, (1A)

The joint PD is integrated iteratively as follows:

P(An+1)= ‘ldAn P(An)p(An+1-Ap), A)

and the simple result is:

P(Ap)= . GA)

For the lognormal RW, the PD of increments A is:

expl(n|A|)2262)
A= Al no2) 12

-00<A<oo, (4A)

1t is useful to transform to the variable x=InjA}. Then:

exp(-x121202)

P(x1)= (27[02) 12

P(xp+1)= [dxnP(x) x

‘ 2 2
{exp[-(ln:)zﬂo 1, exp[-(ln:)Z/ZG I 5A)

where u=| exp(xp)-exp(xn+1) I v=exp(xp)+exp(xn+1).
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