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Abstract. A wind-driven numerical model of the In-
dian Ocean is used to examine the horizontal statistics
of hundreds of passive tracers spread evenly over the
model domain. The distribution covers several dynami-
cally distinct regions, revealing a variety of Lagrangian
behaviors associated with different geographic locations.
In particular, a cluster of trajectories with scaling di-
mension as large as 1.3 exists throughout the equatorial
zone. Spectral analysis of trajectory displacements in-
dicates mixed Rossby-gravity waves are involved in the
production of some fractal trajectories.

1 Introduction

Of recent interest in oceanography have been develop-
ments in physics and mathematics known as dynamical
systems (Guckenheimer and Holmes, 1983; Lichtenberg
and Lieberman, 1983) and fractal geometry (Mandel-
brot, 1983). Attempts at using these concepts to further
the understanding of oceanic behavior have been con-
strained for two reasons. The first being the simplifica-
tions (sometimes severe) required for analytical studies
of nonlinear ocean dynamics that make direct compari-
son to the real ocean difficult. The second, and perhaps
more important, is the lack of extensive field measure-
ments. Oceans are so complex in structure and behav-
ior that without good observational motivation, sophis-
‘ticated theoretical studies are of limited use. Though
application of these ideas to the analysis of atmospheric
observations has met with some success, e.g., Zeng et al.
(1991), there have been few clear oceanic results.

For example, drifter trajectories in the IKuroshio and
Gulf Stream extensions have been shown to have fractal
properties, with correlation dimension » =~ 1.3 (Osborne
et al., 1986; Brown and Smith, 1991). Those investiga-
tions were in dynamically similar regions, both being ex-
tensions of mid-latitude western boundary currents. Ad-
ditional studies by Sanderson and Booth (1991) showed
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similar results. The physical mechanism responsible for
the fractal structure of the trajectories remains unclear,
but may be related to geostrophic turbulence as dis-
cussed in Osborne et al. (1989) and Provenzale et al.
(1991). Dynamically dissimilar regions would probably
give rise to different trajectory statistics.

Studying fractal dimension alone does not generally
yield the underlying physics. However, the two-point
correlation dimension » does indicate how well a trajec-
tory covers the plane and yields a quantitative charac-
teristic that analytical models of oceanic transport must
explain. For example, the colored noise model of surface
oceanic motions proposed by Osborne et al. (1986) and
Osborne and Caponio (1990) reproduces the fractal and
spectral properties in the aforementioned studies.

Here, trajectories from a numerical model of the In-
dian Ocean are used to study the spatial distribution of
the scaling dimension (described below). Four trajec-
tories are highlighted and their dimension and Fourier
spectrum are examined. Equatorial regions of high di-
mension are shown to be associated with Yanai waves
which leads to the conclusion that the noninteger di-
mensions are produced by a mechanism different from
colored noise.

2 Trajectory Generation and Analysis

In place of extensive observational information, a multi-
layer reduced gravity model driven by climatological
winds is used to generate trajectories. The spacing be-
tween like-variables on the model C-grid is 1/6° with a
model time step of 15 minutes. Twenty model years are
used for spin-up, after which the model currents and
mesoscale structure have been validated to be consis-
tent with the horizontal circulation in the Indian Ocean
(Jensen, 1990). After spin-up, passive tracers (drifters)
are initialized over the basin with a meridional and zonal
spacing of 3°. At each time step the drifters are trans-



46

220 T T T T T 3 T T T r T

-23.0F

2351

latitude

-24.01

2451

-25.0 L
45 50

L ) 2 ) -8 N L . ) L
55 €0 65 70 75 40 45 50 55 60 65 70
fongitude

© T3
15 T T T T

latitude
«

=4

sl o 15 bt 2
44 46 48 50 52 654 56 58 94.70 94.80 94.90 95.00 95.10 95.20 95.30
longitude longitude

1 L 1 L

Fig. 1. Four typical trajectories. (a) T1 is smooth. D ~ 1.02. (b)
T2 has oscillations in the meridional direction but has a relatively
steady zonal motion. D =~ 1.11 (c¢) T3 appears to hop between
vortices. D =~ 1.22 (d) T4 is convoluted, possibly chaotic. D ~
1.16. Each point is separated by 12 model hours and the initial
point is marked with an X. The paths are for one model year.

lated according to a predictor-corrector scheme and their
positions are recorded every 12 hours for one model year.
Due to its restricted vertical structure the model cannot
generate vertical mixing and only the horizontal compo-
nent of tracer trajectories can be examined.

Some typical trajectories are shown in Fig. 1 and rep-
resent the four generic trajectory types identified in the
model. Most trajectories have characteristics in com-
mon with more than one of these four, probably because
they pass through regions with differing dynamics. The
path statistics are now examined. In all the calculations
of dimension the raw data is used without any filtering.

2.1 Dimension

"The scaling dimension, H, of a scalar time series X (¢;)
is found by examining displacements at various time in-
tervals:

|X(t + AAt) — X(t)] = AH]AX], (1)

where there overline represents a time average. If such
an exponent exists, then X (¢) is said to be self-affine. H
is related to the Hausdorff fractal dimensionas D = 1/H

(Mandelbrot, 1983). Measurements of H for the () and -

y(t) associated with each trajectory are computed sepa-
rately, as in Fig. 2. Since these trajectories are finite in
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Fig. 2. The scaling function from Eq.(1) for trajectory T4 for
(a) x displacements (b) y displacements. The line is a linear (95%
confidence) fit and the vertical lines demark the limits of the scal-
ing region. The limits can change depending on the accuracy of
the fit demanded. The slope of the line is the scaling dimension,
H.

length and temporal resolution, upper and lower cutoff
scales for self-similarity exist. These cutoffs may also
be physically significant as discussed in Provenzale et
al. (1991). The average (H, + Hy)/2 for each trajec-
tory is used for the values in Fig. 3. Another method
for characterizing the fractality of a trajectory is to find
its correlation dimension (Grassberger and Procaccia,
1983), which yields very similar values.

The v of a time series X (¢;) is found from the correla-
tion integral (Grassberger and Procaccia, 1983). Straight-
forward measurements of v often result in estimates that
are biased low, typically due to unevenly distributed

" data. This bias is overcome by “time-delay embedding”

the data into a higher dimension by creating the N-
vector XV (t;) = (X (), X(ti +7), ..., X(ti + (N = 1)7),
and finding the correlation integral in N-space

M
CN(e) = (M? = M)™' > H(e— || XN (t:) - XV (t5) )

i,j=1
~ e¥N, (2)

The dimension is then v = limy_,o Vn. Here, the time-
delay 7 is chosen to be the typical time for the first
zero-crossing of the trajectory autocorrelation function
(10 days). A standard analysis is performed on all the
trajectories (due to their large number) using N = 20.
Most measurements have converged before N = 13. We
have measured both D and v for all the trajectories in
this study and found virtually identical values for both
dimensions.

Fig. 3 shows that trajectories along the equator have
relatively high dimension and the dimensions generally
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Fig. 8. Trajectories from two model
years colored according to their corre-
lation dimension. (a) The first model
year. (b) The third model year. The
colors range from dark blue (D = 1.0)
to bright red (D = 1.3).
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decrease away from the equator. This is unexpected
since the generation of fractal trajectories is associated
with nonlinear phenomenon and with few exceptions
(e.g., Ripa, 1983; Boyd, 1991) studies of equatorial dy-
namics rest on the assumption of linearity and a variety
of measurements (e.g., Tsai et al, 1992; Weisberg, 1987)
indicate behavior that is consistent with linear theory.

Within the equatorial wave-guide the highest dimen-
sions are found in the western half of the basin. Thereis
also a meridional extension of high dimension along the
coast of Somalia to roughly 10°N, clearly seen in Fig. 3b.
This is well outside the wave-guide where the trajecto-
ries are influenced by a western boundary current and
eddies. Elsewhere the dimension of the trajectories are
close to one and the drifters follow very smooth paths
through the ocean. In these regions the currents are
slow and steady with little seasonal variation.

2.2 Spectral Analysis

Clues to the underlying dynamics are found in the Fourier
spectrum of the trajectory increments v(t;) = x(ti41)
—x(t;). Analysis of T1 through T4 yields spectra that
do not correspond to colored noise. The variance spec-
tra V(w) = ||wG(w)]], where G(w) is the raw spectrum,
in Fig. 4 are peaked at a period of roughly 30 days,
which is the period found in observations of Yanai waves
(mixed Rossby-gravity waves) (Tsai et al, 1992; Weis-
berg, 1987). It therefore appears Yanai waves are in-
volved in the production of some fractal trajectories,
perhaps through a mechanism that is similar to wave-
induced chaotic mixing in kinematic models of geophys-
ical fluids (Weiss and Knobloch, 1989; Behringer et al.,

1991; Pierrehumbert, 1991). Under this conceptual model,

Yanai waves can produce erratic trajectories because
they are dispersive and induce meridional motion. In
contrast, Kelvin waves have neither of these properties
(Pedlosky, 1982) and therefore cannot create fractal tra-
jectories. Gravity waves have insufficient scale to gener-
ate the large-scale excursions seen in Fig. 2 and Rossby
waves do not exist at frequencies near 30 days.

Examination of the phase spectrum and power spec-
trum P(w) = ||G(w)]||? of the trajectories in Fig. 1 also
indicate the velocity is not well-described as colored
noise. See Fig. 5. Though the energy spectrum has
a rough power-law dependence at high frequency, there
is a dominant peak in roughly the 25-35 day range. Ad-
ditionally, the phases for the trajectories do not appear
to be random.

3 Discussion

Lagrangian trajectories from a high-resolution numeri-
cal model of the Indian Ocean forced by climatological
winds have statistics that are geographically dependent.
In particular, their fractal dimension ranges between 1.0
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Fig. 4. The variance-preserving spectrum for the trajectory in-
crements. (a) T1 shows broad structure. (b) The variance of T2
peaks at 25 and 30 days for the zonal and meridional spectrum
respectively. (c) The variance of T3 peaks at 18 days for both
the zonal and meridional motions. (d) The variance of T4 peaks
at 27.7 and 25.7 days for the zonal and meridional spectrum re-
spectively. The spectrum have been smoothed with forward and
backward Hanning filters. The heavy lines are meridional vari-
ance and the lines lines are zonal variance. Linear trends and
mean were removed before analysis.
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and 1.3, with values greater than about 1.1 occuring al-
most exclusively within the equatorial wave-guide and
along the western boundary. The scaling and correla-
tion dimension of the trajectories were calculated and
found to be virtually identical and consistent with each
other.

The western domain of the model is a region of intense
eddy activity as discussed in Jensen (1990). The eddies
produce loops and swirls in the trajectories that result
in the development of fractal structure (e.g, T3 in Fig. 1
where D =~ 1.22). Within the wave guide the dynamics
are linear and large-scale wave activity is prevalent. The
trajectories have statistical properties that differ from
those found originally by Osborne et al. (1986). Power
and variance spectra of trajectory increments from this
region have peaked amplitude at frequencies character-
istic of mixed Rossby-gravity waves. It may be that
the action of these waves produce fractal trajectories
with relatively high dimensions by chaotic advection, as
occurs in Hamiltonian models of Rossby waves. This
is very different from the stochastic mechanism in the
colored-noise model.

Unlike the oceanic or model trajectories, in typical
Hamiltonian systems the Lagrangian paths are gener-
ally believed to have integer dimension. However, this
idealized result is not necessarily attainable in realis-
tic calculations (Benetti et al., 1980). Finding D < 2
might be related to the finite sampling time rendering
the trajectories too short for accurate determination of
dimension. Moreover, dynamical regions in the ocean
are not isolated but are directly coupled to other regions
with different dynamics. Drifters can wander freely from
one region to another. Therefore, erroneous Lagrangian
statistics might result not from a measurement time that
is too short, but from one that is too long. It is still not
possible to discern from this study whether Lagrangian
paths in the ocean are best described with Hamiltonian
dynamics or with a dissipative dynamical model which
itself might be either of low or high dimension. Future
studies are planned that will focus on this issue by com-
paring the above results to statistics of trajectories from
different known systems and to real buoy trajectories.

Assuming the fractal trajectories are generated by
chaotic advection implies that regions of high dimension
are regions of low predictability. This is supported by
the fact that the first zero-crossing of the autocorrelation
function for the trajectory increments are much smaller
for the higher dimension trajectories than for the lower
dimension trajectories. For example, the zero-crossing
for T1 is 140 days for v, and 50 days for vy; for T2 its
110 days for v, and 10 days for vy; for T3 its 7 days for
both v, and vy; for T4 its 10 days for both v, and v,.
More formal investigations of Eulerian preditability in
this model are in progress.

The mechanisms for the production of “fractal” tra-
Jectories suggested above are general in nature and do
not rely on specific features found in the numerical model
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used for this study. It is therefore anticipated that sim-
ilar trajectories will be found in the Atlantic and Pa-
cific equatorial oceans. However, this is a complicated
problem due to the presence of equatorial waves, cur-
rents, seasonal variations and continental boundaries,
each acting and interacting with the others. It may be
that some previously unexplored mechanism for gener-
ating disorder is operating. One possibility currently
under investigation is wave-breaking resulting from the
interaction of planetary-scale equatorial waves and the
continental boundaries.

The model structure limits which generating mech-
anisms can be examined. For example, wind forcing
frequencies faster than 60 days are eliminated by the
month-to-month interpolation of the climatological wind
It is likely that in regions where direct wind forcing is
dominant, our estimate of dimension is too low. Addi-
tionally, the model is exclusively baroclinic, excluding
fast barotropic modes from influencing the trajectory.

The limited horizontal resolution of the model im-
poses an artificial lower limit on the scales forcing the
fluid parcel motion. Inclusion of smaller scales (via
increased horizontal resolution) may produce an addi-
tional scaling region at smaller A than found in Fig. 2.
Alternatively, the chaotic nature of the Lagrangian mo-
tion may cause a significant response to these higher
frequencies, generating substantially different trajectory
statistics. How small-scale structures in the ocean affect
the trajectory statistics in the presence of large-scale
planetary waves might be studied by examining trajec-
tories from a simple chaotic advection model with ad-
ditional spatially correlated noise. This remains a topic
for future investigation.
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