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Abstract. Some of the largest mass movements in the Alps
cluster spatially in the Tyrol (Austria). Fault-related valley
deepening and coalescence of brittle discontinuities struc-
turally controlled the progressive failure and the kinemat-
ics of several slopes. To evaluate the spatial and temporal
landslide distribution, a first comprehensive compilation of
dated mass movements in the Eastern Alps has been made.
At present, more than 480 different landslides in the Tyrol
and its surrounding areas, including some 120 fossil events,
are recorded in a GIS-linked geodatabase. These compiled
data show a rather continuous temporal distribution of land-
slide activities, with (i) some peaks of activity in the early
Holocene at about 10 500–9400 cal BP and (ii) in the Tyrol a
significant increase of deep-seated rockslides in the Subbo-
real at about 4200–3000 cal BP. The majority of Holocene
mass movements were not directly triggered by deglacia-
tion processes, but clearly took a preparation of some 1000
years, after ice withdrawal, until slopes collapsed. In view of
this, several processes that may promote rock strength degra-
dation are discussed. After the Late-Glacial, slope stabil-
ities were affected by stress redistribution and by subcriti-
cal crack growth. Fracture propagating processes may have
been favoured by glacial loading and unloading, by earth-
quakes and by pore pressure fluctuations. Repeated dynamic
loading, even if at subcritical energy levels, initiates brittle
fracture propagation and thus substantially promotes slope
instabilities. Compiled age dating shows that several land-
slides in the Tyrol coincide temporally with the progradation
of some larger debris flows in the nearby main valleys and,
partially, with glacier advances in the Austrian Central Alps,
indicating climatic phases of increased water supply. This
gives evidence of elevated pore pressures within the intensely
fractured rock masses. As a result, deep-seated gravitational
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slope deformations are induced by complex and polyphase
interactions of lithological and structural parameters, mor-
phological changes, subcritical fracture propagation, vari-
able seismic activity and climatically controlled groundwater
flows.

1 Introduction

The Quaternary valley evolution in the Tyrolean Alps (Aus-
tria) is characterised by the occurrence of several deep-seated
mass movements, the velocities of which range from slowly
creeping landslides to catastrophic rockslides and rockfalls.
Based on morphological and lithostratigraphical field crite-
ria, the ages of failure initiation have long been subject to in-
tense debate. Generally, late-Pleistocene glacier withdrawal,
causing an unbalanced relief and thus increasing the stresses
within the over-steepened slopes (cf. Ballantyne, 2002; Cos-
sart et al., 2008), was assumed to be the most dominant land-
slide trigger. In addition, many rockslide deposits in the Alps
are characterised by pronounced moraine-like debris ridges
and are occasionally covered by relicts of Pleistocene fluvio-
glacial deposits. Since both features were believed to indi-
cate a contact with late-glacial ice, and since some events ac-
cumulated on glacial till, many landslides were simply cate-
gorised as late-glacial to early post-glacial events (e.g. Abele,
1969, 1974; Seijmonsbergen et al., 2005).

But in the majority of cases, radiometric dating of land-
slides in the Alps clearly yielded Holocene ages of failure,
indicating that slope failures were not directly controlled by
deglaciation processes. One of the first mass movements
dated in the Alps is the Molveno rockslide (Trentino, Italy),
featuring a Holocene age of about 290814C yrs BP (Abele,
1974). Also the largest Alpine mass movement in metamor-
phic bedrock units, the prominent Köfels rockslide (Tyrol,
Austria), was dated as an early post-glacial event at around
871014C yrs BP (Heuberger, 1966). Regardless of these case
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Fig. 1. Main geological structures of the Fernpass region (Tyrol,
Austria) showing thrust sheet units of the Northern Calcareous Alps
(Lechtal- and Inntal-Nappe), thëOtztal Basement complex (Brand-
ner, 1980, modified) and deep-seated rockslide deposits (shaded
dark grey).

studies, only further dating of mass movements in the Eastern
Alps, especially in the 1990’s, caused a definitive change of
the paradigm, according to which late-glacial ice withdrawal
should have triggered slope collapses (see also discussions
by Abele, 1997a; Poschinger, 2002). Based on further in-
vestigations, a dependency of Holocene landslide-activities
on climatic fluctuations was assumed (e.g. Raetzo-Brülhart,
1997; Matthews et al., 1997; Dapples et al., 2003; Soldati et
al., 2004).

This paper deals with the temporal distribution of dated
mass movements in the Tyrol (Austria) and its surrounding
areas. Here, several deep-seated landslides rank among the
largest events in the Alps and show a close spatial distribu-
tion. One of them, the Holocene Fernpass rockslide, was re-
cently dated and was found to form a temporal cluster with its
adjacent mass movements (Prager et al., 2006a, 2007). Also
current field studies (Prager et al., 2006b, 2006c; Zangerl et
al., 2007, 2008) yielded evidence that both the unsmoothed
rough scarps and the morphologically structured accumula-
tion areas of many landslides were not glacially overprinted
and thus not directly induced by Late-Pleistocene glacier

fluctuations. In view of these facts, a first comprehensive
compilation of dated mass movements in the Eastern Alps
has been made. It provides insights into potential causes and
rock strength-degrading mechanisms that may have favoured
slope failures during the Holocene.

2 Geological setting

The Eastern Alps are made up of complex fold and thrust
belts of different nappe units, which were deformed polypha-
sically and heteroaxially. The main geological structures
were formed by Cretaceous to Tertiary thrust and exten-
sion tectonics (Eisbacher and Brandner, 1995; Schmid et al.,
2004). In the Tyrol, the majority of the dated mass move-
ments are situated in the polymetamorphicÖtztal basement
complex and in detached Mesozoic cover units of the North-
ern Calcareous Alps. Rock units affected by rapid failure
events are here predominantly competent orthogneisses, am-
phibolites and thick carbonate successions such as the Wet-
terstein and Hauptdolomit Formation (both Triassic). Incom-
petent bedrock units, e.g. paragneisses, phyllites and marl-
rich successions, are generally characterised by lower slope
deformation rates of some centimetres to metres per year.

Recent field studies at several unstable slopes in the Tyrol
and at adjacent sites yielded evidence that fault-related valley
deepening and the coalescence of brittle discontinuities con-
trol progressive failure and landslide kinematics (see Sect. 4).
Intensive cataclasis along large-scale brittle fracture zones
as the prominent Inntal and Loisach fault systems (Fig. 1)
enabled substantial fluvio-glacial erosion and valley deepen-
ing. This morphological change caused stress redistribution
of the valley slopes and uncovered favourably oriented slid-
ing planes.

3 Data compilation

To evaluate the spatial and temporal distribution of landslides
in the Eastern Alps, a GIS-linked geodatabase has been set
up. At present this includes various data of more than 480
different mass movements in the Tyrol and its surroundings,
ranging from late-glacial to modern failure ages. Out of
these, approx. 220 events feature unknown ages of failures
and/or unknown activities. About 140 post-medieval to re-
cently active landslides were compiled for the Tyrol but not
considered in this study. Dated fossil (i.e. pre-historic and
ancient historic) mass movements from adjacent areas such
as southern Germany, northern Italy and eastern Switzerland
were also included and presently comprise about 120 events.
These are about 60 debris flows and about 60 rock slope fail-
ures, which are mainly rapid events such as rockfalls and
rockslides. Slow slope-movements, characterised by defor-
mation rates of millimetres to metres per year, can hardly be
dated as representative single-events, but rather reflect activ-
ities over certain time spans (“rock slope failures” in general
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with a “range” of activities, see Table A1). This may also
be the case for debris flows, but compiled data (Hübl, 1995)
and detailed site investigations (e.g. Irmler, 2003; Weber,
2003) yielded evidence that larger debris fans are charac-
terised by pulsed, precipitation-controlled activities of sev-
eral sub-events. Dated debris flows have been compiled in
this landslides-study because i) Cruden (1991), Cruden and
Varnes (1996) and the UNESCO Working Party on World
Landslide Inventory define landslides as “a movement of a
mass of rock, earth and debris down a slope” and ii) because
debris flows may yield information on paleo-climatic condi-
tions.

Age determination of landslides is, most commonly, car-
ried out by14C-dating of organic remnants that are present in
sediments overridden by the mass movement (maximum age
of the event), and/or are entrapped within the landslide de-
bris (proxy for event age), and/or accumulated in landslide-
dammed backwater deposits or lakes situated atop the mass
movement (minimum age of the event). In the majority of
cases, not the rock slope failure itself has been used for dat-
ing but material underlying and/or overlying the failed rock
masses. Thereby, the time-lag between failure event and ac-
cumulation of the dated material can hardly be quantified. In
view of this and because the exact stratigraphic relation be-
tween landslide deposits and dated samples is often poorly
documented in the available data sources, some compiled
data of this paper provide only indirect information about the
age of fossil mass movements. Concerning the basic data
quality, some events such as younger and larger mass move-
ments may be over-emphasized due to outcrop conditions,
sampling bias, inhomogeneities of records and statistical er-
rors.

However, the available radiocarbon laboratory dates of
14C-dated mass movements were calibrated to calendar dates
(quoted 0 BP=1950 AD) using the OxCal software version
3.10 (Bronk Ramsey, 2005) and its implemented calibration
curve IntCal04. The ranges of the arithmetic mean ages are
based on the statistical 2-σ standard deviation (correspond-
ing to 95.4% probability). For mass movements featuring
more than one dated sample, a mean and its standard devi-
ation was calculated by applying the Gaussian error propa-
gation law for linear cases on to the individual sample dat-
ing. For some roughly or indirectly dated events, the ranges
of standard deviations had to be estimated in order not to
lose any information, when visualised in graphs. To ensure
proper comprehensibility, all compiled data including refer-
ences have been included in the Appendix (Table A1).

4 Geology and ages of selected landslides

Some of the largest fossil mass movement deposits in the
Alps cluster spatially in the Fernpass – northernÖtz valley
region (Tyrol, Austria). In an area of less than 40×20 km, at
least 13 individual failure events are encountered which in-

clude the prominent Eibsee, Fernpass, Tschirgant, Tumpen
and Köfels rockslides (Sect. 4.1 to 4.8, Fig. 1). Deep-seated
rock slope failures that have been radiometrically dated are
also encountered nearby at Gepatsch/Hochmais (Kauner val-
ley; Sect. 4.9) and, further away, at Pletzachkogel (Inn valley;
Sect. 4.10). Scarp structures, run-out paths and sedimentary
fabrics of these landslides indicate, in the majority of cases,
rapid failure event such as rock slides and rock avalanches
(Sturzstr̈ome).

4.1 Eibsee rockslide

Close to the Tyrolean-Bavarian border, the Eibsee rockslide
(Fig. 1) broke off the north-face of the Zugspitze massif
(2961 m), the highest mountain in Germany, and mobilized
about 400–600 million m3 of accumulated debris (Abele,
1974; Golas, 1996). It originated from a subvertical cliff,
which is several hundred metres high and built up by mainly
well-bedded Triassic carbonates of the Muschelkalk Group
(Anisian) and the Wetterstein Formation (Ladinian-Carnian).
The latter, a main rock unit of the Northern Calcareous Alps,
comprises here stacked limestones of lagoonal cycles up to
1000 m in thickness. Due to Paleogene compression, this
competent Triassic platform was thrust over several hundred
metre thick, incompetent Jurassic-Cretaceous limestones and
marls. Structurally the Zugspitze massif features an open
first-order syncline with a fold axes dipping moderately to
the east (Eisbacher and Brandner, 1995). Therefore, the dis-
continuities which were of relevance for the Eibsee rockslide
were not the bedding planes, dipping moderately SE into the
slope, but the NW- and above all the NE-trending subvertical
fault and fracture systems. Some of these separation planes
are intersected by tunnels of the German rack railway to the
Zugspitze and exhibit openings of several metres which occa-
sionally extend to the surface (Knauer, 1933). Field evidence
of intense brittle faulting can be observed at the NW-face of
the Zugspitze, where NE-SW-striking, subvertical faults and
associated discontinuities are part of the large-scale sinistral
Loisach shear system (Fig. 1). This system caused deep-
seated intensive fracturing of the folded carbonates and iso-
lated blocks in precipitous rock walls. The resulting slope
kinematics, favoured by the lithological conditions of the
Zugspitze massif, i.e. competent carbonates resting upon in-
competent rock units, was characterised by a combination of
rock spread processes (Cruden and Varnes, 1996) and step-
path failures with internal shearing.

Based on morphological field criteria, the Eibsee rock-
slide deposits were formerly interpreted as a “late-glacial
rockslide-moraine” (Vidal, 1953), but several wood sam-
ples gained in drillings yielded a mean age of around 3700
14C yrs BP (Jerz and Poschinger, 1995). Six samples of
similar age, which were presumably not redeposited, were
calibrated to calendar years and show an arithmetic mean
age of 4181±627 cal BP. Based on the age of the youngest
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Fig. 2. View towards northwest to the wedge-shaped scarp of the
Fernpass rockslide and its associated mass movements (rockslide
“Am Saum” AS, instable slope “Hohler Stein” HS).

wood fragment, the Eibsee event has a minimum age of
3935±215 cal BP (Table A1).

4.2 Ehrwald rockslide

At the western base of the Zugspitze massif, the carbonate
Ehrwald rockslide deposits cover an area of about 2 km2 and
an average run-out distance of about 3.5 km (Abele, 1974
including references). Assuming a thickness of about 5–
20 m, the accumulated volume varies about some 10–40 mil-
lion m3. The lithological and structural predisposition cor-
responds with that of the adjacent Eibsee rockslide, i.e. both
failures were clearly controlled by brittle faulting along the
NE-orientated Loisach fault system (Fig. 1).

The Ehrwald deposits form a scenic hilly landscape with
several pronounced ridges and, thus, were morphologically
classified as “late-glacial rockslide moraine” (Abele, 1964,
1974). But the internal structure of these sediments, which
so far have not been dated radiometrically, is characterised by
an unstratified, coarsening-upward facies with several shat-
tered clasts featuring a jig-saw-fit of grain-boundaries. These
sedimentary features have not been observed in glacially de-
rived deposits and may only be attributed to dynamically dis-
integrated rockslide masses. This and the lack of Quaternary
cover as well as the absence of glacial smoothing of the to-
pography suggest a Holocene age for the Ehrwald rockslide.

4.3 Fernpass rockslide

The Fernpass rockslide in the western Northern Calcareous
Alps is characterised by two channelled Sturzstrom branches,
which contain a rock mass volume of about 1 km3 and cover
excess run-out distances up to at least 10.8 and 15.5 km re-
spectively. This large-scale event was followed by a smaller
rockslide of unknown age and the development of a deeply
fractured slope that has not yet failed (Fig. 2).

The rockslide debris originated from a well exposed and
exceptionally deeply incised niche, which is made up of platy
dolomites, limestones and marls of the several hundred metre
thick Seefeld Formation (Norian, Upper Triassic). Polyphase

and heteroaxial deformations generated fold and fracture sys-
tems of varying orientation (Eisbacher and Brandner, 1995).
Thus, the failure zones of the Fernpass rockslide and of its
juxtaposed slopes developed by the stepwise coalescence
of brittle discontinuities. Both the lithological predisposi-
tion and the complex brittle deformations define the sliding
planes as well as the block-size distributions of the rockslide
debris.

Field data and results of hybrid seismic measurements near
the apex of the present Fernpass point to a deep-seated cat-
aclasis along the NE-orientated Loisach-Fernpass fault sys-
tem (Fig. 1). This indicates a steep pre-failure topography
of the valley flanks and a fluvio-glacially undercut toe of the
slope. Here the top of the bedrock is covered by approx. 500–
600 m thick soft rock deposits, which decrease significantly
in thickness laterally and are assumed to originate mainly
from the Fernpass rockslide (Prager et al., unpubl. data). Due
to the oblique impact of the sliding rock masses against the
opposite mountain slope, they were proximally piled up as a
remarkably thick debris ridge and split into two Sturzstrom
branches. Their run-out was favoured by the large rockslide
volume, channelling effects in the narrow valley, dynamic
disintegration and, crucially, by an undrained dynamic load-
ing of the water-saturated substrate (Prager et al., 2006b,
2006c).

Formerly, morphological and lithostratigraphical field cri-
teria, such as moraine-like debris ridges, funnel-shaped
“dead-ice” sink holes and the spatial distribution of Pleis-
tocene cover rocks, were used to differentiate between a late-
glacial main event and a succeeding post-glacial collapse
(Abele, 1964, 1974). But now field investigations show that
neither the rough scarp nor the intensely structured accumu-
lation area features any signs of a smooth morphology, which
speaks against glacial overprinting.

This field evidence was confirmed by the application of
three different radiometric dating methods on individual
sampling sites (Prager et al., 2006a, in press). Close to
the scarp area, rockslide-dammed torrent deposits yielded a
14C minimum age of 3380–3080 cal BP. So far, the chronos-
tratigraphic base of this at least 15 m thick backwater se-
quence has not yet been dated. However, two cosmogenic
radionuclide36Cl exposure ages of large-scale sliding planes
at the scarp, where the sampled platy dolomites indicate
a mean age of 4100±1300 yrs for the failure event. Fur-
ther data were gained from the curiously, strongly deflected
southern rockslide branch, where post-depositional carbon-
ate cements are encountered. They were dated using the
230Th/234U-disequilibrium method and yielded a minimum
age of 4150±100 yrs for the accumulation of the rockslide
debris (Ostermann et al., 2007). Based on these data, a tem-
poral differentiation between two failure events, one mak-
ing up the northern rockslide branch, and another, making
up the southern branch, is not yet possible. All dates coin-
cide well and indicate that the Fernpass rockslide occurred
4200–4100 yrs ago.
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4.4 Tschirgant rockslide

From the steep and rugged Tschirgant massif (2370 m), two
deep-seated rockslides travelled down to the river Inn at
approx. 700 m a.s.l.: the prominent Tschirgant rockslide
(180–240 million m3; Abele, 1974) in the southwest and the
smaller Haiming rockslide (see Sect. 4.5) in the northeast
(Figs. 1, 3). Both slope failures are encountered at the struc-
turally complex southern margin of the Inntal thrust sheet
(Northern Calcareous Alps), which in this area is made up
of folded and faulted Middle- to Upper-Triassic carbonates
(Eisbacher and Brandner, 1995). Brittle deformation and
deep-seated cataclasis associated with the NE-trending Inntal
fault system enabled a substantial fluvio-glacial deepening of
the Inn valley between the Northern Calcareous Alps and the
southerly adjacenẗOtztal basement unit.

The widely and deeply fractured scarp area of the
Tschirgant rockslide, also referred to as “Weißwand”, is
mainly composed of obscurely bedded dolomites and lime-
stones of the Wetterstein Formation (Ladinian-Carnian),
here predominantly featuring reef- and peri-reef facies,
and by well-bedded carbonates, siliciclastics and evaporites
(Rauhwacken) of the Raibl Group (Carnain). Structurally,
the scarp area is characterised by intensely folded and faulted
bedrock units. Due to thrust tectonics and the resulting
nappe-piling (Pagliarini, in preparation), the sediments of the
Raibl Group are encountered at both the hanging wall and the
foot wall of the Wetterstein-Formation, i.e. at the top and the
toe of the slope. As a result of the polyphase and heteroaxial
deformation, the slope failure was controlled by a step-wise
coalescence of NE-trending, frequently overturned, bedding
and fault planes with NW-trending dextral fracture systems.
In the scarp area, the competent carbonates of the Wetterstein
Formation exhibit bedding planes and several extensive frac-
ture systems, which dip out of the slope and form preferably
oriented sliding planes. The slope collapse was furthermore
favoured by karst structures in the Wetterstein Formation and
by the occurrence of Rauhwacken with a thickness of sev-
eral tens of metres at the toe of the slope. In the Tschirgant
area, some intensely mineralised springs are a sign of hydro-
chemical evaporite leaching. In the long run, this process
could have led to increased bedrock porosities and to a re-
duced thickness of the evaporite strata, which would have
resulted in gravitational deformations of the brittle dolomites
in hanging wall position.

The descending Tschirgant rockslide buried the Inn val-
ley and entered the mouth of the northernÖtz valley, where
the contact of basal slide deposits and their substrate are
naturally exposed. These contact zones display a complex
geometry, where in the course of the rockslide event pre-
sumably water-saturated valley floor sediments were injected
into the rockslide masses filling up steep extension struc-
tures (Patzelt and Poscher, 1993; Abele, 1997b) and where
diamicts were created by a mingling with the rockslide.
The undrained loading of the substrate caused a consider-
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Fig. 3. Oblique view to the northern̈Otz- and Inn-valley: scarp
(black stippled) and accumulation areas (white stippled) of the
Tschirgant and Haiming rockslides (photo courtesy of M. Schus-
ter 2007).

able run-out of approx. 6.2 km (Fig. 3) and a travel angle
(“Fahrb̈oschungswinkel”) of about 13◦.

Based on morphological and lithostratigraphical criteria,
Heuberger (1975) assumed an interaction of the carbonate
Tschirgant rockslide with late-glacial̈Otztal ice, but radio-
metric dating established a coherent Holocene age of around
290014C yrs BP (1050 cal BC; Patzelt and Poscher, 1993)
for the main event. Further investigations showed evidence
that the widespread Tschirgant deposits were made up by at
least two failure events, which occurred at 3753±191 cal BP
and at 3151±191 cal BP (Patzelt, 2004a).

4.5 Haiming rockslide

About three kilometres northeast of the Tschirgant scarp, the
Inn valley floor is covered by of 25–34 million m3(Abele,
1974) relatively finely-ground carbonate deposits of the
Haiming rockslide (Fig. 3). The average thickness is as-
sumed to be about 5–20 m, with some local maxima being
approx. 40 m. At the unusually rough and stepped, wedge-
shaped scarp the bedding planes dip into the slope and no
distinct large-scale sliding planes are observable. This indi-
cates that the failure was clearly structurally controlled by the
complex coalescence of differentially orientated and densely,
i.e. meter-size, spaced discontinuities.

The accumulated debris, i.e. karstified and often brec-
ciated dolomites of the topmost Wetterstein Fm (M- to U-
Triassic), indicates that the main slide detached from lower
parts of the slope. It covers a run-out length of about 2.5 km
and features a low run-out travel angle of about 11◦. The
exposure of higher regions of the present-day scarp, which
show a several hundred metre thick, well-bedded succes-
sion of the lithologically inhomogeneous Raibl Group and
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the Hauptdolomit Formation (both U-Triassic), may be at-
tributed to secondary erosion processes such as rockfalls and
debris slides.

Based on field surveys and several radiocarbon dates,
Patzelt (2004a) differentiated three failure events, which oc-
curred at 3535±95 and at 3065±145 cal BP plus a smaller
rockfall event at 1680±140 cal BP (Table A1).

4.6 Sẗottlbach landslide

About 10 km to the northeast of the Haiming scarp,
the Sẗottlbach landslide deposits (Fig. 1) form an ap-
prox. 2.8 km2 wide lobe and cover a run-out distance of about
4.5 km. Its average thickness strongly varies between ap-
prox. 5–35 m and the mean volume most probably ranges
from 20–30 million m3. The debris is made up of limestones
of the Wetterstein Group (M- to U-Triassic), with only a few
siliciclastic components of the Raibl Group (U-Triassic) in-
volved. These hummocky-shaped deposits were formerly
interpreted as glacially derived moraines, but have recently
been dated. Preliminary36Cl exposure ages of limestone
boulders of the Wetterstein Group indicate a failure event
in the range of 3.5–4 ky (Kerschner and Ivy-Ochs, personal
communication 2006; Westreicher, in press).

4.7 Piburg-Tumpen rockslides

The N-trendingÖtz valley, one of the main side valleys of
the Inn valley, is deeply incised in the metamorphicÖtztal
basement complex. Its Quaternary valley filling is charac-
terised by significant valley steps and flat upstream valley
floors, which genetically may be attributed to multi-phase
landslide events and thus to associated backwater sediments
(Heuberger, 1975 including references). Due to these on-

lapping sediments, estimations of the volumes and run-out
distances of the rockslide events are here hardly possible.

The Piburg and Habichen rockslide deposits (Figs. 1, 4),
which are both situated close to the distal deposits of the
Tschirgant rockslide, dammed the southern edge of Lake
Piburg. 14C analyses on lacustrine deposits, gained from
drillings in the central part of the lake, yielded an age of
at least 11 500 cal BP for the onset of the sedimentation
(Wahlmüller, unpubl. data) and indicate a similar minimum
age for the Piburg rockslide barrier.

In the southerly adjacent Tumpen area, sinkhole collapses
in rockslide-dammed backwater sediments have repeatedly
been documented over the last 300 years and have led to ex-
tensive ground reconnaissance surveys. According to these
surveys, a differentiation is to be made in this area between
at least four different slide masses, which were transgressed
by at least two fluvio-lacustrine deposition sequences with
a minimum total thickness of 60 m. The younger succes-
sion provided a minimum age of about 3380±80 14C yrs BP
(Poscher and Patzelt, 2000), i.e. 3640±200 cal BP, for the
damming rockslide event. Depth extrapolations of the ex-
isting dating results suggest that the older sequence and its
rockslide barrier date to about 6000 cal BP (Patzelt, personal
communication).

4.8 Köfels rockslide

To the south, the Tumpen backwater deposits border on the
largest Alpine mass movements in metamorphic bedrocks,
the famous K̈ofels rockslide. The failing bedrock units,
predominantly granitic augen- and flaser-gneisses and some
paragneisses, detached from an east-facing slope and buried
both theÖtz valley and the opposing mouth of the Horlach
valley (Fig. 5). The several hundred metre thick rockslide
debris blocked the river̈Otz and caused the accumulation of
the up to 100 m thick fluvio-lacustrine backwater deposits of
the Längenfeld basin (Heuberger, 1966, 1975). According
to reflection seismic measurements, the top of the compact
bedrock units plunges from approx. 50–80 m below ground
in the Längenfeld basin steeply northwards to approx. 400 m
below ground at the paleo-slope toe. This significant valley-
step presumably caused substantial stress concentrations at
the toe of the slope and thus favoured the massive failed vol-
ume of about 3.2 km3 (Brückl et al., 2001). These data and
the presence of preferably orientated, east-dipping sliding
planes, which are encountered between the village of Köfels
and the present-day head-scarp, clearly point to a structural
predisposition of this large-scale rock slope collapse.

Radiocarbon dating of buried wood and surface exposure
dating of rockslide boulders (Ivy-Ochs et al., 1998), mor-
phological features (Hermanns et al., 2006) and the spatial
distribution of ortho- and paragneissic rockslide debris in the
Köfels area indicate that a well established major slide event
occurred in the early Holocene at about 9800 cal BP and was
succeeded by at least one secondary rockslide event (Fig. 5).
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Fig. 5. View from the Köfels headscarp towards East to the
widespread and thick rockslide deposits.

4.9 Hochmais rockslide

Approx. 20 km southwest of K̈ofels, both flanks of the up-
per Kauner valley have been affected by deep-seated rock
slope deformations. Due to the construction of a hy-
dropower plant reservoir near the toe of these slopes, detailed
field surveys, drilling campaigns, geodetic-, seismic- and
InSAR-measurements were carried out and yielded evidence
of the geometry, structure and long-term slope-behaviour
(Tentschert, 1998 and references therein). According to
these findings, the deep-seated Atemkopf-Hochmais creep-
ing landslide, which is situated at an east-facing slope in
folded and jointed paragneisses, comprises an area of about
2.8 km2 and a volume of about 300 million m3. Lower parts
of the slope, i.e. the Hochmais rockslide, failed post-glacially
and slid over 400 m on top of till and talus deposits. Within
these till deposits, intersected at depth by an investigation
adit, a significant 4–5 m thick sliding zone is encountered
(Brückl et al., 2004; Zangerl et al., 2007).

Extensive drilling campaigns at the lowermost slope areas
and in the former valley floor, now flooded by the Gepatsch
hydropower reservoir, revealed wood-bearing sands and
gravels, which both underlie and lap-on the displaced
Hochmais slab. At the slope toe, the solid bedrock units are
overlain firstly by a 26 m thick succession of sands and grav-
els, with wood-findings near the top, secondly by 4 m thick
till deposits and thirdly by the at least 30 m thick Hochmais
slab. These wood fragments yielded a maximum age for the
rockslide of 7210±140 BC, i.e. 9160±150 cal BP. A mini-
mum age of 6340 BC (i.e. 8295±105 cal BP) was provided
by other wood-bearing sands and gravels, which lap-on the
Hochmais slab (Schmidegg, 1966). Considering the 2σ stan-
dard deviations of these dated samples, the Hochmais rock-
slide occurred between 9310 and 8190 cal BP, at about the
arithmetic mean of 8750±560 cal BP (Table A1).

Pletzachkogel (1549 m)

ca. 900 m

Event 3
(ca. 2150 cal BP)

Event 2
(ca. 3900 cal BP)

Event 1
(> 14 5000 cal BP)

Fig. 6. Pletzachkogel south- and southeast-face showing brittle
fracture systems and scarp areas of three dated failure events.

4.10 Pletzachkogel rockslides

The Pletzachkogel in the Lower Inn valley is a steep south-
and east-facing rock slope (Fig. 6), with>80 million m3

(Abele, 1974) of spatially complex distributed rockslide de-
posits at its base. The scarp region consists of a succession of
Jurassic breccias, which is several hundred metres thick and
contains characteristic red internal sediments. These compe-
tent rocks overly limestones of the Oberrhätkalk as well as
limestones and marls of the incompetent Kössen Formation
(both Upper Triassic). Comparable to the Tschirgant mas-
sif (Fig. 3), the Pletzachkogel scarp is situated at the south-
ern margin of the Northern Calcareous Alps and thus also
affected by deep-seated brittle fracture zones. Especially
faulting along the Inntal fault system caused a substantial
rock fragmentation and generated NE-trending discontinu-
ities with moderate to steep down slope dips.

Based on morphological criteria and the spatial distribu-
tion of the accumulated debris, three failure events origi-
nating from different source areas are to be differentiated
(Fig. 6). The youngest of these events was a highly mo-
bile rock avalanche (Sturzstrom), which travelled from a
well-exposed scarp down to the river Inn, covering a run-
out distance of approx. 3.5 km and a run-out travel angle
of 15◦. Detailed field investigations and numerous radiocar-
bon dating clearly indicate that the Pletzachkogel rockslides
occurred firstly in the Late-Glacial, secondly in the middle
Holocene at about 3910 and thirdly at about 1735 cal BP
(Patzelt, 2004b; Table A1). At least one minor rockfall event
occurred in the 20th century.

5 Seismicity of the Fernpass region

In the Fernpass region, some of the largest rockslides in the
Alps not only cluster spatially but also show similar ages
of failure. In addition, this region as well as some major

www.nat-hazards-earth-syst-sci.net/8/377/2008/ Nat. Hazards Earth Syst. Sci., 8, 377–407, 2008



384 C. Prager et al.: Process-based analyses of compiled dating data

fault zones nearby, e.g. close to the NE- trending Inntal and
Engadin Line, show increased earthquake activity (Drimmel,
1980; Reiter et al., 2003). Earthquake-related slope instabili-
ties in different geological settings have been inferred by sev-
eral (paleo-)seimological studies (e.g. Keefer, 1984; Jibson,
1996; Becker et al., 2005; Monecke et al., 2006). In view
of these findings, and with the objective of studying possi-
ble predisposing and (paleo-)trigger mechanisms, the recent
seismicity of the Fernpass region was evaluated.

Close to the Fernpass, epicentral foci at the villages of
Nassereith and Namlos (Schorn, 1911, 1922; Kraus, 1931;
Fig. 7) show clear evidence of neotectonic movements. Some
strong earthquakes with magnitudes M≤5.3 and EMS-98
epicentral intensitiesI0≤7.5◦ MSK rank here among the
most intense ones ever measured in Austria (Table 1; Drim-
mel, 1980). One of these major events occurred in 1930 a
few kilometres west of the Fernpass, near the small village of
Namlos. At least 16 main shocks and numerous aftershocks
were recorded and subjectively registered even at distances
of about 200–400 km. Locally, this earthquake changed the
hydraulic flow field by dislocating springs, it opened ground
clefts and triggered several rockfall events nearby (Klebels-
berg, 1930).

Compiled earthquake data indicate, that, in western Aus-
tria, the effective horizontal ground acceleration shows sig-
nificant maxima of about 1 m/s2 in the middle Inn valley and
the Fernpass region (ÖNORM B4015, 2007). With respect
to the latter, the available earthquake records show:

– Strong intensities: several severe shocks with magni-
tudes M≤5.3 and epicentral intensitiesI0≤7.5◦ MSK
are spatially clustered in the Lechtal Alps and are
among the most intense ever measured in Austria (Ta-
ble 1). For one of these major events, a focal depth
of 8 km was determined macroseismically (Franke and
Gutdeutsch, 1973), which – when projected into a struc-
tural transect – points to active tectonics somewhere
below the base of the Northern Calcareous Alps (Eis-
bacher et al., 1990).

– Swarm-like earthquakes: here characteristic sequences
of earthquakes without significant fore- and aftershocks
cluster both in time and space. These events, e.g. those
registered in May and June 2005, were characterised by
low to moderate magnitudes M=1.3–3.0 but clearly felt
with epicentral intensities ofI0=3–4◦ MSK (ZAMG,
2005a).

– Shallow-seated focal depths: according to both national
(ZAMG, 2005b; Lenhardt et al., 2007) and foreign
(USGS/NEIC, 2005) seismic records, the Fernpass re-
gion is affected by earthquakes with hypocentres lo-
cated clearly above 6 km. The most shallow-seated fo-
cal depths reach down to only approx. 3–4 km and, re-
markably, cluster near the Tschirgant massif, which was
affected by polyphase and deep-seated slope failures

(Fig. 7). According to the ZAMG data, some of these
seismic events show low magnitudes M=1.2–1.8, but
nevertheless pronounced epicentral intensitiesI0=3.0–
4.0◦ MSK due to their shallow-seated focal depths. Pro-
jected into a structural transect (Eisbacher et al., 1990),
these earthquakes indicate active tectonics in the thrust
sheets of the Northern Calcareous Alps near the base
thrust of the Inntal nappe.

6 Synopsis of data compilation

Dating data of about 60 rock slope failures and about 60 de-
bris flows in the Tyrol and its surroundings have been com-
piled in a geodatabase and visualised in maps and graphs (Ta-
ble A1, Figs. 8, 9, 10). As a first result, these data show
a rather continuous temporal distribution of events in the
Holocene, without longer time gaps. However, there is no
evidence for increased landslide activities due to deglacia-
tion processes during the Late-Glacial and early Holocene.
In Austria, late-glacial ages have only been established for a
few rock slope failures, e.g. the large Almtal rockslide (Up-
per Austria; Van Husen et al., 2007a) and a failure event at
the Pletzachkogel (Tyrol; Patzelt, 2004b). The accumulation
of major debris flows in the Tyrolean Inn valley dates back to
at least 13 400±60014C yrs BP (Weber, 2003).

As a second result, slope collapses in the early Post-
Glacial, at about 10 500–9400 cal BP, are only indicated by
a few dates, but they comprise some of the largest failure
events in the Alps. Among these are the deep-seated rock-
slides at Flims (volume at least 8000 million m3; Poschinger
et al., 2006) and Kandertal (approx. 800 million m3; Tin-
ner et al., 2005) in Switzerland as well as at Köfels (ap-
prox. 3200 million m3; Brückl et al., 2001) and Hochmais
(approx. 30 million m3; Zangerl et al., 2007) in the Ty-
rol (Austria). Before and after these events, the compiled
data show a lower frequency of dated landslides. Sub-
sequent to 7500 cal BP, several smaller events, but also
the huge Wildalpen rockslide (Styria, Austria; volume ap-
prox. 1400 million m3; Van Husen and Fritsch, 2007b) took
place.

As a third result, numerous landslides were found to cu-
mulate in the middle Holocene, with a significant emphasis
in the Subboreal at about 4200–3000 cal BP (Prager et al.,
2007). This temporal cluster, in graphs indicated by a less
steep trend line of dated events (Figs. 9, 10), comprises some
of the largest rockslides in the Tyrol. Among these are the
deep-seated events at the Fernpass, Eibsee, Tschirgant and
Tumpen, which also cluster spatially (“Fernpass cluster”), as
well as those at the Hintersee and Pletzachkogel (Figs. 1, 8).

Periods of increased slope deformations in the early and
middle Holocene were also established in adjacent regions of
Austria (Figs. 8, 10). In central Switzerland two clusters of
raised landslide activity were observed at about 10 000–9000
and 5200–1500 cal BP (Raetzo-Brülhart, 1997). In eastern
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Fig. 7. Earthquake epicentres and landslides in the Fernpass region (cf. Fig. 1). Data courtesy of ZAMG (2005b) and downloaded from
USGS/NEIC (2005) (Remark: some locations of coeval earthquakes may differ between these databases and thus may mistakenly suggest
an increased earthquake activity when plotted together in maps).

Table 1. Basic parameters of strong earthquakes in the Fernpass region, Tyrol (Drimmel, 1980).

Date Long.(1) Lat.(1) Depth M(2) I
(3)
o Epicentre

1886–11–28 10.8 47.3 8–12 km 5.2 7.5 Nassereith
1910–07–13 10.9 47.3 8–12 km 4.8 7 Nassereith–Silz
1930–10–08 10.7 47.35 8–12 km 5.3 7.5 Namlos
1933–11–08 10.7 47.35 8–12 km 4.6 6.5 Namlos
1958–09–30 10.6 47.2 8–12 km 4.5 6.5 Lechtal Alps near Landeck

(1) Longitude, Latitude: Decimal Geographic Coordinates (Date ED50),(2) Magnitude M,(3) epicentral intensityIo (based on the 12-point
macroseismic scale by Medvedev-Sponheuer-Kárǹık MSK).

Switzerland, five temporal pulses of slope instabilities were
detected between 11 500–10 250, 6250–4800, 3500–2100,
1700–1150 and 750–300 cal BP (Dapples et al., 2003). In
the Italian Dolomites two striking age-clusters were iden-
tified, one early Post-Glacial at about 13 000–9000 cal BP
and the other one in the Subboreal at about 6500–2300 cal
BP (Soldati et al., 2004). In the Trentino (Italy), different
phases of rock slope failures have been determined at about

6500, 4700, 2200 and 1000 cal BP (Bassetti and Borsato,
2007). Data from outer-Alpine regions in Europe have not
been compiled in this study, but they also point to a temporal
clustering of slope instabilities e.g. in the early and middle
Holocene (e.g. Matthews et al., 1997; Bertolini, 2007).

As a fourth result, dated debris flows, ranging from smaller
local events to larger alluvial fans in the main valleys, also in-
dicate periods of fluctuating accumulation activity (Fig. 9).
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Fig. 8. Spatial and temporal distribution of mass movements in the Tyrol (Austria) and its surrounding areas. Beyond Tyrol only dated fossil
landslides are shown. Temporally and spatially clustered landslides in the Fernpass region indicated by black rectangle (centre of the figure,
cf. Fig. 1). Do: Dolomites rock slope failures, Fa: Farchant debris flow, Fb: Frauenbach debris flows, Fl: Flims rockslide, Ga: Gadria river,
Hi: Hintersee rockslide, Hm: Hochmais rockslide, Is: Isel river, Ma: Marocche di Dro, Mo: Molveno rockslide, Me: Melach river, Pg:
Pr̈attigau rock slope failures, Pk: Pletzachkogel rockslides, Si: Sill river, Wb: Weißenbach river.

With respect to the Tyrolean Inn valley and its tributary
rivers, Patzelt (1987) established phases of raised accumu-
lation, firstly at about 940014C yrs BP (approx. 10 630 cal
BP), secondly between 7500–6000 (approx. 8350–6840 cal
BP) and thirdly at about 350014C yrs BP (approx. 3780 cal
BP). According to this, some of the largest alluvial fans in
Northern and Southern Tyrol, e.g. those of the rivers Gadria
and Weißenbach, show significantly increased activity at
about 7900–7100 cal BP. Other major debris flows accumu-
lated considerably in the Subboreal, e.g. the rivers Sill and
Melach at about 3700–3600 cal BP. In between these periods,
at about 6000–450014C yrs BP (approx. 6840–5170 cal BP)
the Inn valley was affected by a distinctive phase of fluvial
erosion (Patzelt, 1987).

In the Lower Inn valley, two major phases of increased
fluvial debris accumulation have recently been determined
(Weber, 2003): within the first phase, the main rivers Inn

and Wildscḧonauer Ache show significantly increased accu-
mulation between approx. 17 000–14 000 cal BP and mainly
between approx. 7600–6000 cal BP; after a period of fluvial
erosion, a second phase of increased debris accumulation oc-
curred between approx. 4500(?) cal BP and the 19th century.
Some minor debris flows in this region are characterised by
fluctuating activity between approx. 12500 and 2050 cal BP
(Weber, 2003; Table A1).

Increased fluvial dynamics and debris accumulations in
the middle to younger Holocene have also been established
at other sites in the Tyrol and have recently been incorpo-
rated into a geodatabase (Figs. 8, 9). These records com-
prise the large Farchant debris flow (Fernpass region, dated
4340 and 3180 cal BP), the main river Isel (dated 5700–
2600 cal BP) and local events at Gepatsch/Kaunertal (dated
3990 cal BP), as well as data about sedimentological changes
from fine to coarse deposits. The latter indicate phases of
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Fig. 10.Temporal distribution of middle Holocene landslides in the
Tyrol and its surrounding areas (zoom-in of Fig. 9, modified).

increased fluvial dynamics, which were observed e.g. in the
northernÖtz valley at the L̈angenfeld basin (starting at ap-
prox. 340014C yrs BP, i.e. approx. 3650 cal BP), in the Stubai
valley (prior to 1275 cal. BP; Blättler et al., 1995) and at

some nearby torrents in the period between 3560–2590 cal
BP (Mignon, 1971; Patzelt, 1987, 1999; Geitner, 1999; Veit,
2002; Table A1).

As a fifth result, some radiometric data, which are not
spatially attributable when depicted in graphs (Figs. 9, 10),
prove polyphase reactivations of predisposed vulnerabilities
and multiphase slope failures in different geological settings,
e.g. at:

– Fernpass (Fig. 2): a main event dating into the Subbo-
real, associated with a secondary rockslide and an un-
stable slope (Prager et al., 2006a, b),

– Tschirgant, Haiming (Fig. 3) and Pletzachkogel (Fig. 6):
multiple, but clearly differentiable rockslide events,
with intense slope activities in the Subboreal (Patzelt,
2004a, b),

– Tumpen (Fig. 4): several failure events, at least two of
them being roughly dated, occurring within a relative
small area (Poscher and Patzelt, 2000),

– Köfels (Fig. 5): one well established main event
(Heuberger, 1966), succeeded by a secondary rockslide
(Ivy-Ochs et al., 1998; Hermanns et al., 2006),
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– Several presently active landslides: pre-historical and/or
historical precursory events documented at several ac-
tive creeping slopes, e.g. at Gepatsch-Hochmais (Aus-
tria; Schmidegg, 1966), Heinzenberg (Switzerland;
Weidner, 2000), La Clapière (France; Bigot-Cormier et
al., 2005) and some catastrophic events, e.g. at Vajont
(Italy; e.g. Hendron and Patton, 1987; Kilburn and Pet-
ley, 2003), Val Pola (Italy; e.g. Costa, 1991; Azzoni et
al., 1992) and Randa (Switzerland; e.g. Sartori et al.,
2003; Eberhardt et al., 2004).

7 Discussion

Deep-seated gravitational slope deformation is controlled by
lithological, structural and morphological predisposition, by
different time-depended long-term rock strength degrading
processes and by shorter termed variable triggering factors.
Detailed field studies of fossil and active landslides in the
Tyrol indicate that these failures can basically be attributed
to the complex intersection and coalescence of bedding and
schistosity planes and brittle fault and joint systems, result-
ing in a substantial rock strength reduction extending to con-
siderable depths (Brückl et al., 2004; Prager et al., 2006b,
2006c; Zangerl et al., 2007, 2008). Several of these deep-
seated gravitational slope deformations are encountered in
seismically active regions and coincide temporally with pe-
riods of increased debris flow accumulations in the nearby
main valleys. In view of these findings, rock strength de-
grading processes and parameters, which control slope insta-
bilities in the Holocene, will subsequently be discussed.

7.1 Glacial loading and unloading

In the Eastern Alps, the stabilities of polyphasically and
heteroaxially fractured rock units were fundamentally influ-
enced by morphological changes in the Quaternary. In par-
ticular, repeated glacier advances and isostatic rebounds in
the Pleistocene caused local stress perturbations (e.g. Grol-
limund and Zoback, 2000, Cossart et al., 2008) and thus re-
activations of pre-existing discontinuities as well as initia-
tions of loading fractures in the bedrock units. Subsequently,
fluvio-glacial erosion, valley-deepening and postglacial de-
compression (cf. Ballantyne, 2002) uncovered favourably
oriented sliding planes and caused substantial stress redistri-
butions in the undercut and oversteepened slopes. Therefore,
the high and unbalanced relief since the early Post-Glacial
is certainly a main factor contributing to Alpine mass move-
ments. Consequently, a few slopes, which were characterised
by critical fracture densities and thus close to their stability
limit equilibrium, failed after the late-Ẅurmian ice retreat.

The late-glacial Gschnitz valley glaciers advanced, at the
type locality in the central Eastern Alps, down to altitudes of
about 1200 m asl not later than 15 400±1400 yrs ago (Ivy-
Ochs et al., 2005). This indicates that the toes of several

unstable slopes, especially when east- and/or southward ex-
posed as at K̈ofels, Fernpass and Tschirgant, bordered on thin
dead-ice or even ice-free valley-floors and were not glacially
buttressed at least since the Younger Dryas. Subsequently,
late-Pleistocene glaciers suffered a rapid further meltdown
until at about 950014C yrs BP (i.e. approx. 10 850 cal BP)
they reached for the first time modern extents (Patzelt, 1972,
1977). Reforestation of valley slopes in the central Stubai
and presumably also in thëOtztal Alps (both Tyrol, Aus-
tria) at elevations of approx. 2100 m a.s.l. was already in full
swing at about 960014C yrs BP (Weirich and Bortenschlager,
1980; Bortenschlager, 1984), i.e. approx. 10 950 cal BP.

Concerning these data, even the early post-glacial land-
slides, among them some of the largest Alpine events
e.g. Köfels, Kandertal, Flims and Hochmais did not fail im-
mediately after glacier retreat and unloading, but occurred
several 1000 years later (Fig. 9). This delay indicates that
time-dependent rock strength degradation is controlled by
basic parameters such as lithological, structural and mor-
phological dispositions, and by variable processes such as
dynamic loading and pore-pressure fluctuations. In combi-
nation, these factors promote progressive fracturing and can
thus both prepare and trigger slope instabilities (Fig. 13).

7.2 Subcritical fracture propagation

Compiled landslide-dating shows a rather continuous tempo-
ral distribution in the Holocene and thus yields evidence that
glacial decompression is not the only trigger. If this were the
case, the majority of deep-seated slope failures would cluster
immediately after late-glacial deglaciation, but this is not the
case. This indicates a gradual reduction in slope stability af-
ter the glacier’s retreat, continuously, by progressive failure,
i.e. a long-term process resulting from stress redistributions
at the oversteepened valley flanks. As a result, the general
rock strength is intensively affected by fracture propagation
and by a stepwise coalescence of pre-existing brittle discon-
tinuities (e.g. Eberhardt et al., 2004), which both strongly
depend on the existing stress field as well as on the fracture
geometry and the joint network. Field investigations and sub-
crop data in the polymetamorphic rock units of the Gotthard
massif (Switzerland) furthermore show that the joint densi-
ties increase significantly from deeper lying to higher lying
bedrock units, and they also indicate a progressive occur-
rence of unloading fractures which are mainly oriented par-
allel to the slope (Zangerl, 2003). The coalescence of such
discontinuities may initiate both the internal disintegration of
rock masses and the development of potential sliding planes
due to local stress concentrations.

Concerning the long-term behaviour of fractured rock
masses, there are complex physical-chemical processes in
fractures that enable slow crack propagation even below a
critical stress-intensity factor threshold (KIC , Fig. 11). Ac-
cording to the model of sub-critical crack growth (Atkinson,
1984, 1987), crack propagation may be caused by different
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parameters (e.g. interactions of pore water pressure, stress
corrosion, dissolution, diffusion, ion exchange and micro-
plasticity). The processes involved, e.g. the weakening of
crystal bonds through chemical pore-fluid activities in the
crack tip, start when driving forces exceed a thresholdK0
(e.g. stress corrosion limit). At the critical levelKIC (frac-
ture toughness), cracks propagate dynamically and acceler-
ate up to a velocity close to the speed of sound in the rocks.
The application of this fracture mechanical model to unsta-
ble slopes would mean that fracture density and persistence
continuously increase over a longer period of time. This
in turn would lead to a continuous decrease in slope stabil-
ity and result in a slope failure, when a strength threshold
is reached. The generally complex processes of sub-critical
crack growth depend on the interaction of several parameters,
e.g. in-situ stresses, bedrock mineralogy, fracture geometries
and pore water characteristics. Being significantly favoured
by high pore water pressures, lower bounds of fracture prop-
agation velocities vary between a few centimetres and several
decimetres per 1000 years (Fig. 11; Atkinson, 1984; Atkin-
son and Meredith, 1987).

7.3 Dynamic loading

Historically documented case studies indicate that landslides
are predominantly triggered by heavy precipitation or by
earthquakes, with large rock avalanches mostly being re-
leased by seismic events with magnitudes M≥6 (Eisbacher
and Clague, 1984). According to Grünthal et al. (1998),
earthquakes with EMS-98 epicentral intensitiesI0≥5 can
release smaller and relatively shallow-seated slope failures
such as earthslides and minor rockfalls, whereas larger, deep-
seated rock slope failures such as landslides and massive ma-
jor rockfalls require intensitiesI0≥7 as a trigger.

General evidence of (paleo-)seismically triggered slope
failures may be given by the coincidence of neotectoni-
cally active fault systems and age-clustered landslide dis-
tribution (Keefer, 1984; Jibson, 1996). Based on the spa-
tial and temporal correlation of active faults, lacustrine mass
flow deposits, subaerial rockfall deposits and speloethems,
several major paleo-earthquakes in central Switzerland were
recorded. These earthquakes, which occurred during the last
15 000 yrs in the late Pleistocene and Holocene and clearly
affected larger regions, were characterised by magnitudes
M>6.5–7.0 (Becker et al., 2005; Strasser et al., 2006). Cor-
responding studies yielded evidence that paleo-earthquake
frequency in central Switzerland was increased in the late
Pleisctocene – early Holocene, due to isostatic rebound after
glacier retreat, and also in the last 4000 yrs, due to seismic
activations of brittle fault systems (Monecke et al., 2006).

This may also be the case in the Fernpass region, where
several fossil landslides cluster spatially and temporally and
are also situated closely to seismically active master faults,
e.g. the NE-trending brittle Inntal fault system (Fig. 7).
These systems caused deep-seated rock fragmentation and
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enabled fluvio-glacial valley deepening in the vicinity of sev-
eral failed slopes, e.g. at Fernpass, Eibsee, Ehrwald, Tschir-
gant and Pletzachkogel. Regional seismic data show that
earthquakes close to the Fernpass feature epicentral intensi-
tiesI0≤7.5◦ and rank among the strongest ever measured in
Austria (Drimmel, 1980). The fact that some of these earth-
quakes triggered rockfalls and changed the hydraulic flow
field locally (Schorn, 1911, 1922, Klebelsberg, 1930) sug-
gests that the release of fossil rockslides of similar ages could
have been essentially favoured by seismic shaking. Concern-
ing the Tyrol, maximum earthquake magnitudes Mmax=6.1
(+0.4) for the Inn valley and 5.6 (+0.4) for the West Tyrol
(incl. Fernpass region) have been modelled (Lenhardt et al.,
2007). Considering the ranges of the calibrated14C-dating
(Fig. 10, Table A1), some of the spatially clustered rock-
slides in the Eibsee, Fernpass, Tschirgant, Stöttlbach and
Tumpen region may be of the same age and may thus si-
multaneously have been triggered by earthquakes. But with
the exception of the prominent Dobratsch rockslide 1348
AD in Carinthia/Austria (Eisbacher and Clague, 1984), a
few (paleo-)seismic records from Switzerland (Becker et al.,
2005) and some events triggered by the 1998-earthquake in
NW-Slovenia (Vidrih et al., 2001), seismically induced slope
failures documented in Central Europe tend to be of minor
dimensions.

Yet, active fault systems can not only trigger mass move-
ments, but can produce intensely fractured rock masses
extending to substantial depths, including potential slid-
ing planes. Some regions in the Tyrol are characterised
by high ground accelerations of up to 1 m/s2 (ÖNÖRM
B4015, 2007), others are affected by less energetic, but
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shallow-seated earthquakes with foci at depths of only 3–
4 km (Fig. 7). These earthquake intensities are below any
threshold likely to trigger deeper-seated landslides, but even
subcritical dynamic loading may accelerate progressive frac-
ture propagation within the affected rock units. Comparable
load tests show that samples with discontinuities are not sub-
ject to any further fracture propagation under static loading
conditions below their critical failure load. Contrary to this,
dynamic loading initiates fracture propagation at values far
below the critical load (Gross, 1996). Such a fatigue crack
growth, resulting from the interaction of tension and pressure
stresses (Chernyshev and Dearman, 1991), can step by step
weaken intact rock bridges and raise the effective joint poros-
ity. Applying these findings to unstable slopes gives evidence
that repeated seismic shaking can encourage landslides by re-
ducing rock strengths and changing hydraulic conductivities.

7.4 Fault healing and fracture cementation

Fault models indicate that during interseismic periods pro-
cesses of fault healing and sealing, i.e. rock strength recov-
ery due to compaction and cementation of fractures related
to active faults, occur. Thus, in calcitic environments, at
depths between 2 and 5 km, micro-fracture porosities may be
closed in about 1000 yrs (Renard et al., 2000). With respect
to subaerially exposed rock units this implies that meteoric
cementation of brittle discontinuities may continuously in-
crease slope stability (Fig. 13).

But the well exposed scarp areas of the Eibsee and Tschir-
gant carbonate rockslides, and especially the deeply incised
niche at the Fernpass show intense deformation along brittle
fault and fracture zones with kakirites and uncemented, thus
open, discontinuities extending to substantial depths. Mete-
oric cementation, in general terms of efficiency and extent,
strongly depends on the climate, i.e. humidity and circulat-
ing pore-water, as well as on bedrock mineralogy. In most
meteoric diagenetic environments, calcium carbonate is the
most wide-spread type of cement (Tucker and Wright, 1990).
Field observations revealed that in limestone terrains, proba-
bly due to the availability of nucleation sites, veins and joints
filled by calcium carbonate cements are widespread. Con-
trary to this, in dolomite and crystalline bedrock units, open
fractures devoid of cement are frequently encountered. Thus,
the thick dolomitic successions of the Wetterstein and Haupt-
dolomit Formation, which form the Fernpass and Tschirgant
scarp, exhibit less active cementation processes. This, in
turn, favours the coalescence of brittle discontinuities and
provides potential sliding planes.

As far as fracture healing is concerned, the scarp areas
of the Eibsee and Ehrwald rockslides (see Sects. 4.1, 4.2)
appear to represent special cases. Situated at north- and
west-exposed cliffs of the Zugspitze massif (2961 m a.s.l.)
and reaching elevations of up to 2600–2800 m a.s.l., vadose
cementation processes of Wetterstein Formation limestones
seem to have been retarded by the occurrence of permafrost

and were consequently less effective. Recent permafrost con-
ditions, at least in the upper third of the Zugspitze massif, are
indicated by metre-sized ice-filled clefts and joints (Knauer,
1933; Körner and Ulrich, 1965; Gude and Barsch, 2005).

7.5 Climate changes

Central Greenland ice cores and Lake Ammersee (Bavaria,
Germany) isotope records show rapid climate shifts be-
tween 15 and 5 ky, with significant warming at about 14.5 ky
(transition Oldest Dryas–Bølling) and 11.5 ky (transition
Younger Dryas–Preboreal; Grafenstein et al., 1999). Af-
ter the Younger Dryas cold period, glaciers in the Central
Eastern Alps rapidly retreated to modern extents. Subse-
quently, several smaller but nevertheless significant glacier-
and forest-line fluctuations indicate considerable changes of
the Holocene climate. Glaciers varied in size around modern
extents, yet were smaller for longer periods in the middle and
early Holocene (Patzelt, 1977, 2005). The Lake Ammersee
records clearly show the cold incursion of the 8.2 ky event
and a plateau-like temperature trend with only minor fluctu-
ations in the middle to younger Holocene (Grafenstein et al.,
1998, 1999).

Glacier studies in the Central Eastern Alps show that long
periods in the Holocene were characterised by favourable cli-
matic conditions with average summer temperatures slightly
higher than at present. These periods were repeatedly in-
terrupted by relatively short, but pronounced deteriorations
with multiple glacier advances, like the Löbben advance at
about 3750–3250 cal BP (Patzelt and Bortenschlager, 1973;
Fig. 12). In line with this, Austria’s largest glaciers, the
Pasterze and the Gepatschferner, were on several occasions
and even for longer phases between 10 450 and 3650 cal BP
smaller than at present and experienced several minor fluctu-
ations between 3650 cal BP and the waning Roman age, until
they reached their modern dimensions (Nicolussi and Patzelt,
2000, 2001).

Also in the Central Swiss Alps, unstable Holocene cli-
matic conditions are indicated by glacier fluctuations featur-
ing at least eight phases of significant glacier recession with
several cold-wet periods in between. In the middle Holocene,
in the period between 5290–3870 and 3640–3360 cal BP,
glaciers were smaller than at present due to moderate cli-
matic conditions (Hormes et al., 2001). Except for the
non-correlating, but significantly high lake levels at 3500–
3100 cal BP, younger Holocene lake level maxima in the
Swiss Alps coincide with glacier advances. Thus these pe-
riods were characterised by a general drop in winter tem-
peratures and an increase in summer moisture, controlled by
fluctuations in solar activity (Holzhauser et al., 2005).

Compiled data of several sub-regions in Europe and of
a few deep-seated landslides in the Alps suggest an in-
crease in all types of rapid mass movements (i.e. land-
slides, debris flows, snow avalanches) in the middle and late
Holocene, i.e. approx. after 5000 cal BP. Since this positively
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correlates with major phases of solifluction and glacier ad-
vances, landslides may contain proxy data on longer term
variations of paleo-precipitation (Berrisford and Matthews,
1997; Matthews et al, 1997).

In Switzerland, Raetzo-Brülhart (1997) attributes two dis-
tinct clusters of raised landslide activity, at about 10 000–
9000 and 5200–1500 cal BP, to warmer and/or more hu-
mid paleoclimatic conditions. Dapples et al. (2003) corre-
late five late-glacial to Holocene pulses of increased land-
slide dynamics with glacier advances, increased solifluction
and sedimentary changes within lacustrine deposits (Fig. 12).
Based on this, climatic deteriorations such as colder and es-
pecially more humid conditions controlled slope instabilities
at about 11 500–10 250, 6250–4800, 3500–2100, 1700–1150
and 750–300 cal BP. Major landslide activities in the latest
Pleistocene were succeeded by fluctuating activities due to
variable climatic conditions, until approx. around 3800–
3400 cal BP a climatic shift towards colder and wetter condi-
tions led to another significant rise in slope activities (Dap-
ples et al., 2003; Raetzo and Lateltin, 2003). Regionally, this
climatic influence may have been further intensified by an-
thropogenic influences on vegetation (e.g. by forest clearing),
which were indicated by significantly increased landslide ac-
tivities in the Western Swiss Alps from 3650 cal BP onwards
(Dapples et al., 2002).

In the Italian Dolomites, Soldati et al. (2004) also differ-
entiated between two striking age clusters of landslides: an
early post-glacial one at about 13 000–9000 cal BP, which is
due to deglaciation processes and was probably favoured by
increased precipitation and/or permafrost meltdown, and a
younger one, at about 6500–2300 cal BP in the Subboreal,
which is again assumed to correlate with an increase in pre-
cipitation. In the Northern Apennines (Italy), the majority
of dated landslides yielded ages younger than 5000 cal BP
and were assumed to correlate with climatic deteriorations
(Bertolini, 2007; Bertolini et al., 2004).

However, several rockslides in higher Alpine environ-
ments occurred in periods of above-average temperature,
when slope stabilities have been decreased by glacial de-
buttressing and/or thawing of permafrost (e.g. Geertsema,
2007). On according slopes, permafrost degradation may
generally contribute to slope instabilities (Davies et al., 2001;
Ballantyne, 2002; Gude and Barsch, 2005). Warming per-
mafrost may be attributed to heat conduction and water per-
colation in fractures, i.e. crucial factors promoting failure in
steep bedrock slopes (Gruber and Haberli, 2007). In view
of these findings, thawing permafrost might have played a
role during warmer periods in the Holocene, especially in
the early Postglacial. Based on the radiometric dating of
the Kandertal rockslide (Switzerland), Tinner et al. (2005)
supposed that increased slope instabilities during the early
Holocene were climatically controlled by a rise in precipi-
tation and mainly by above-average (summer-)temperatures,
which might have caused a withdrawal of permafrost due to
a post-glacial climatic optimum. Temporally, the failures of
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significant glacier advances in the Austrian Central Alps (Patzelt,
2005).

some deep-seated rockslides in the early Holocene (e.g. at
Köfels, Kandertal, Flims and Hochmais) coincide with an
early phase of increased, precipitation-controlled, raised de-
bris flow activities in the Tyrolean Inn valley, occurring at
about 940014C yrs BP (Patzelt, 1987), i.e. approx. 10 630 cal
BP.

Compiled dating data also indicate a significantly height-
ened landslide activity in the Subboreal at about 4200–
3000 BP, which is clearly not directly linked to deglaciation
processes. Several of these events, amongst them some of
the largest rockslides in the Alps, are encountered in the
Tyrol. They cluster both temporally and spatially (“Fern-
pass cluster”; Figs. 8, 10) and correlate with the activities
of several large-scale debris flows in nearby major valleys.
A phase of increased alluvial accumulation in the Inn val-
ley, at about 350014C yrs BP (approx. 3780 cal BP), was
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established for some main tributaries such as the rivers Sill
and Melach (Patzelt, 1987). This and the activities of local
torrents and debris flows (Table A1) as well as glacier ad-
vances in the Austrian Central Alps (Fig. 12) indicate periods
of greater water supply in the catchment areas.

Another coherent proxy for paleo-precipitation in the East-
ern Alps has not been established yet. In the Mediterranean
area, speleothem isotope records from central Italy coincide
with a time of significant sapropel deposition and suggest
enhanced regional rainfall between ca 8.9 and 7.3 ky, with a
maximum between 7.9 and 7.4 ky (Zanchetta et al., 2007).

However, historically documented case studies show that
increased precipitation is generally the dominant landslide
trigger (Eisbacher and Clague, 1984; Gruner, 2006). Higher
pore pressures favour large slope movements by increasing
seepage forces and lowering the effective stresses respec-
tively (e.g. Bonzanigo et al., 2000). They also accelerate the
velocity of subcritical crack growth (Atkinson and Meredith,
1987) and reduce the friction angle of weathered and water-
saturated rock surfaces, which is generally lower than that of
dry and unweathered ones (e.g. Barton and Choubey, 1977).

Recent field studies in the Central Swiss Alps suggest that
natural variations in groundwater pressure directly control
seasonal slope deformations. The collected geodetic moni-
toring results show significant valley closures in the spring-
time, which are characterised by horizontal deformations of
about 10–16 mm and by vertical uplifts of about 10 mm.
These elastic, reversible deformations normal to the valley
axes correlate positively with groundwater recharge rates
(Löw et al., 2007). In the long run, such annual openings
and closures of valleys may, comparable to dynamic loadings
by subcritical earthquakes, promote material fatigue due to
brittle fracture propagation and may thus favour progressive
failure of predisposed slopes.

Structural field investigations and subsurface data obtained
at the basal Tschirgant massif (Tyrol, Austria), which is char-
acterised by polyphase rockslide events (Sects. 4.4, 4.5),

also yielded evidence of coupled hydro-mechanical destabil-
ising processes. Here a test drill, at the base of the Haim-
ing scarp, penetrated approx. 670 m subhorizontally to the
north and proved the existence of an effective water table. In
the heavily fractured and thus highly permeable dolomites,
dammed to the south by low permeable siliciclastics of the
Raibl Group, steeply inclined hydraulic gradients and high
pore pressures of up to 43 bar were measured (personal com-
munication, Intergeo Consultants, Salzburg, Austria, 2005).
These data suggest that here deep-seated slope deformations
could have been favoured by climatically controlled ground-
water level fluctuations.

8 Conclusions

In the Tyrolean Eastern Alps, several well-exposed scarp ar-
eas show that slope failures were clearly structurally con-
trolled by fracture propagation and the coalescence of brit-
tle fault and joint systems. Morphological changes, due to
fluvio-glacial valley deepening in the Pleistocene, uncovered
preferentially orientated sliding planes and caused substan-
tial stress redistributions in the undercut slopes. Since then,
complex and time-dependent processes of subcritical fracture
propagation have affected slope stabilities.

In order to identify potential causes and triggers of land-
slides, a first comprehensive compilation of dated mass
movements in the Tyrol and its surroundings has been made.
It reveals that the majority of Holocene mass movements
were evidently not directly triggered by deglaciation pro-
cesses, but needed a preparation time of some 1000 years,
after the ice withdrawal, until the slopes collapsed. Some
of the largest landslides in the Alps occurred in the early
Holocene, at about 10 500–9400 cal BP. Remarkably, sev-
eral deep-seated rockslides in the Tyrol were found to cluster
temporally, at about 4200–3000 cal BP, and some of them
also cluster spatially. This indicates striking environmental
changes in this region in the middle Holocene.

In the Tyrol, several large rockslides are encountered near
seismically active fault systems. Regional earthquake data
record seismic events with comparatively high magnitudes
M≤5.3 and epicentral intensitiesI0≤7.5◦ as well as oth-
ers, which are characterised by lower intensities but fea-
ture shallow-seated hypocentres located at depths of only 3-4
km. Active faults can not only directly trigger mass move-
ments, but they can also produce intensely fractured and un-
cemented rock masses. Thus, repeated dynamic loading,
even if at subcritical energy levels, initiates brittle fracture
propagation and promotes slope instabilities.

Temporally, quite a few rock slope failures coincide with
(i) dated landslides in the surrounding regions, (ii) increased
debris flow activities and, partially, with (iii) glacier fluctu-
ations in the Austrian Central Alps. In combination, these
data may be proxy of paleoclimatic conditions and may in-
dicate periods of raised precipitation and groundwater flows.
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This in turn, controls the pore pressure within fractured rock
masses and favours progressive failure. Thus, structurally
and morphologically predisposed mass movements were pre-
pared and triggered not just by a single cause, but by the com-
plex and polyphase interactions of several rock strength de-
grading processes. Deep-seated slope deformations may be
attributed to critical fracture densities due to the propagation
and coalescence of brittle discontinuities. This is favoured
by different time-dependent and interacting processes which
comprise (a) stress redistributions due to glacial loading and

unloading, (b) subcritical crack growth, (c) seismic activity
and (d) climatically controlled pore pressure changes. Any
of these destabilising mechanisms, even if only at subcriti-
cal thresholds, can trigger a failure event if slope stability is
already close to its limit equilibrium.

Appendix

Fossil mass movements in the Tyrol (Austria) and
its surrounding areas: chronology of dated events, listed
from old to young
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Ö
tz

ta
l

D
F

+
V

R
I1

36
6

P
at

ze
lt,

pe
rs

on
al

co
m

m
un

ic
at

io
n

86
0

±
50

E
v

92
0

(9
5.

4%
)

68
0

80
0

±
12

0

E
pp

an
2

S
-T

yr
ol

,I
E

ts
ch

ta
l

D
F

–
K

ei
m

,p
er

so
na

lc
om

m
un

ic
at

io
n

20
04

84
0

±
68

E
v

?
92

0
(9

5.
4%

)
67

0
79

5
±

12
5

D
ob

ra
ts

ch
C

ar
in

th
ia

,A
G

ai
lta

l
R

S
–

E
is

ba
ch

er
an

d
C

la
gu

e,
19

84
13

48
A

D
E

v
60

2±
0

In
ns

br
uc

k
A

m
ra

se
r

S
ee

Ty
ro

l,
A

In
nt

al
D

F
V

R
I-

52
F

el
be

r,
19

69
(c

it.
in

:
P

at
ze

lt,
19

87
)

57
0

±
80

E
v

?
68

0
(9

5.
4%

)
49

0
58

5
±

95

P
r̈a

tti
ga

u
5

G
ra

ub̈u
nd

en
,C

H
P

r̈at
tig

au
R

S
F

S
ev

er
al14

C
da

tin
g

D
ap

pl
es

et
al

.,
20

03
75

0–
30

0
ca

l.
B

P
R

ge
75

0
to

30
0

P
as

so
S

.G
io

va
nn

i
T

re
nt

in
o,

I
Va

ld
’A

di
ge

R
S

–
G

ey
er

,1
99

3
14

57
A

D
E

v
49

3±
0

Ty
pe

A
ge

R
S

..
.

R
oc

ks
lid

e
R

S
F

..
.

R
oc

k
sl

op
e

fa
ilu

re
(u

nd
iff

er
en

tia
te

d)
*

N
ot

ra
di

om
et

ric
al

ly
da

te
d

R
F

..
.

R
oc

kf
al

l
D

F
..

..
D

eb
ris

flo
w

s
M

in
..

.
M

in
im

um
ag

e
E

v
..

..
E

ve
nt

ag
e

+
M

aj
or

ev
en

t(
R

S
,R

F,
R

S
F>
10

0
m

ill
m

3
,l

ar
ge

D
F

)
M

ax
..

.
M

ax
im

um
ag

e
R

ge
..

.
R

an
ge

(e
sp

ec
ia

lly
of

D
F

an
d

R
S

F
)

Nat. Hazards Earth Syst. Sci., 8, 377–407, 2008 www.nat-hazards-earth-syst-sci.net/8/377/2008/



C. Prager et al.: Process-based analyses of compiled dating data 403

Acknowledgements.C. Sp̈otl, H. Kerschner (both Univ. Inns-
bruck), A. Gruber (GBA) and G. Richter (ILF) are gratefully
acknowledged for fruitful discussions, as is G. Duma (ZAMG
Central Institute for Meteorology and Geodynamics, Vienna) for
the provision of unpublished earthquake data. Financially this study
was supported by ILF Consulting Engineers Ltd., TIWAG Tyrolean
Hydroelectric Power Company Ltd., p+w Baugrund+Wasser
Geo-ZT Ltd. and AlpECON Oeg. (all Tyrol, Austria).

Edited by: T. Glade
Reviewed by: M. Geertsema and another anonymous referee

References

Abele, G.: Die Fernpaßtalung und ihre morphologischen Probleme,
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Abele, G.: Bergsẗurze in den Alpen. Ihre Verbreitung, Morphologie
und Folgeerscheinungen, Wiss. Alpenvereinshefte, 25, 1–230,
München, 1974.

Abele, G.: Der Fernpaßbergsturz - Eine differentielle Felsgleitung,
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M., Pal̈aoklimaforschung 19, Spec. Iss., ESF project “European
palaeoclimate and man”, 1–6, Fischer, 1997a.

Abele, G.: Rockslide movement supported by the mobilization
of groundwater-saturated valley floor sediments, Zs. f. Geo-
morph. N. F., 41, 1–20, 1997b.

Antognigni, M. and Volpers, R.: A late Pleistocene age for the Chi-
ronico rockslide (Central Alps, Ticono, Switzerland), Bull. Appl.
Geol., 7/2, 113–125, 2002.

Atkinson, B. K.: Subcritical crack growth in geological materials,
J. Geophys. Res., 89(B6), 4077–4114, 1984.

Atkinson, B. K.: Introduction to fracture mechanics and its geo-
physical applications, In: Fracture mechanics of rock, edited by
Atkinson, B. K., 1–26, Academic Press, 1987.

Atkinson, B. K. and Meredith, P. G.: The theory of sub-critical
crack growth with applications to minerals and rocks, In: Frac-
ture mechanics of rock, edited by: Atkinson, B. K., 111–166,
Academic Press, 1987.

Azzoni, A., Chiesa, S., Frassoni, A., and Govi, M.: The Val Pola
landslide, Eng. Geology, 33, 59–70, 1992.

Ballantyne, C. K.: Paraglacial geomorphology, Quat. Sc. Rev., 21,
1935–2017, 2002.

Barton, N. and Choubey, V.: The shear strength of rock joints in
theory and practice, Rock Mech. Rock Eng., 10, 1–54, 1977.

Bassetti, M. and Borsato, A.: Evoluzione geomorpholigica della
Bassa Valle dell’ Adige dall’ Ultimo Massimo Glaciale: sintesi
delle conoscenze e riferimenti ad aree limitrophe, Stud. Trent.
Sci. Nat., Acta Geol., 82 (2005), 31–42, 2007.

Becker, A., Ferry, M., Monecke, K., Schnellmann, M., and Giardini,
D.: Multiarchive paleoseismic record of late Pleistocene and

Holocene strong earthquakes in Switzerland, Tectonophysics,
400, 153–177, 2005.

Berrisford, M. A. and Matthews, J. A.: Phases of enhanced rapid
mass movements and climatic variation during the Holocen: a
synthesis, In: Matthews, J. A., Brunsden, B., Frenzel, B., Gläser,
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a drainage adit in a deep creeping slide mass, In: Landslides,
Research, Theory and Practice, Proc. 8th Internat. Symp. Land-
slides, Cardiff, Wales, 151–156, 2000.
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slope collapses from K̈ofels (Ötz valley, Austria) and western
Norway, Eng. Geol., 83, 94–108, 2006.

Heuberger, H.: Gletschergeschichtliche Untersuchungen in den
Zentralalpen zwischen Sellrain und̈Otztal, Wiss. Alpenverein-
shefte, 20, 1–126, Innsbruck, 1966.

Heuberger, H.: Das̈Otztal. Bergsẗurze und alte Gletscherstände,
kulturgeographische Gliederung, Innsbrucker Geograph. Stud.,
2, 213–249, 1975.

Holzhauser, H., Magny, M., and Zumbühl, H. J.: Glacier and lake-
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tut, 61 pp., Wien, 2007.

Ostermann, M., Sanders, D., Prager, C., and Kramers, J.: Aragonite
and calcite cementation in “boulder-controlled” meteoric envi-
ronments on the Fern Pass rockslide (Austria): implications for
radiometric age-dating of catastrophic mass movements, Facies,
53, 189–208, 2007.

Pagliarini, L.: Lithostratigraphie und Strukturgeologie der Massen-
bewegungen des westlichen Tschirgant-Massivs, Dipl. Thesis,
Univ. Innsbruck, in preparation, 2008.

Patzelt, G.: Die sp̈atglazialen Stadien und postglazialen
Schwankungen von Ostalpengletschern, Ber. D. Dt. Bot. Ges.,
85, 47–57, 1972.

Patzelt, G.: Der zeitliche Ablauf und das Ausmass postglazialer
Klimaschwankungen in den Alpen, In: Dendrochronologie und
postglaziale Klimaschwankungen in Europa, edited by Frenzel,
B., 248–259, Steiner, Wiesbaden, 1977.

Patzelt, G.: Radiocarbondatierung Murschuttkegel Telfs, Unpubl.
Report on behalf of Amt f. Wildbach- u. Lawinenverbauung,
Innsbruck, 1982.

Patzelt, G.: Untersuchungen zur nacheiszeitlichen Schwemmkegel-
und Talentwicklung in Tirol, Ver̈off. Mus. Ferdinandeum Inns-
bruck, 67, 93–123, 1987.

Patzelt, G.: Arbeitsbereich Naturraumforschung - Untersuchun-
gen zur nacheiszeitlichen Talentwicklung, Bergstürze, In: Inst.
f. Hochgebirgsforschung: Jahresbericht 1997, 9–13, Institut für
Hochgebirgsforschung, Univ. Innsbruck, 1998.

Patzelt, G.: Arbeitsbereich Naturraumforschung - Untersuchun-
gen zur nacheiszeitlichen Talentwicklung, Bergstürze, In: Inst.
f. Hochgebirgsforschung, Jahresbericht 1998, 9–10, Univ. Inns-
bruck, 1999.

Patzelt, G.: Tschirgant-Haiming-Pletzachkogel. Datierte Bergsturz-
ereignisse im Inntal und ihre talgeschichtlichen Folgen, Presenta-
tion, alpS Symposium Naturgefahren Management 13.10.2004,
Galtür, 2004a.

Patzelt, G.: Die Bergstürze vom Pletzachkogel bei Kramsach
und ihre talgeschichtlichen Folgen, Presentation, Geokolloquium
11.03.2004, Inst. of Geology and Paleontology, Univ. Innsbruck,
2004b.

Patzelt, G.: Die nacheiszeitliche Temperaturentwicklung im
Ostalpenraum, abgeleitet aus Baumgrenz- und Gletscher-
schwankungen, Manuscript, Inst. f. Hochgebirgsforschung,
Univ. Innsbruck, 2005.

Patzelt, G. and Bortenschlager, S.: Die postglazialen Gletscher- und
Klimaschwankungen in der Venedigergruppe (Hohe Tauern, Os-
talpen), Zs. f. Geomorph. N. F., Suppl. 16, 25–72, 1973.

Patzelt, G. and Poscher, G.: Der Tschirgant-Bergsturz, Arbeitsta-
gung 1993 Geol. B.-A., Geologie des Oberinntaler Raumes -
Schwerpunkt Blatt 144 Landeck, Exkursion D: Bemerkenswerte
Geologische und Quartärgeologische Punkte im Oberinntal und
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