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Abstract. Some of the largest mass movements in the Alpsslope deformations are induced by complex and polyphase
cluster spatially in the Tyrol (Austria). Fault-related valley interactions of lithological and structural parameters, mor-

deepening and coalescence of brittle discontinuities strucphological changes, subcritical fracture propagation, vari-
turally controlled the progressive failure and the kinemat- able seismic activity and climatically controlled groundwater

ics of several slopes. To evaluate the spatial and temporalows.

landslide distribution, a first comprehensive compilation of
dated mass movements in the Eastern Alps has been made.
At present, more than 480 different landslides in the Tyrol
and its surrounding areas, including some 120 fossil events,

are recorded in a GIS-linked geodatabase. These Compileﬁhe Quaternary Va”ey evo|uti0n in the Tyro'ean A|ps (Aus_
data show a rather continuous temporal distribution of land-ia) is characterised by the occurrence of several deep-seated
slide activities, with (i) some peaks of activity in the early mass movements, the velocities of which range from slowly
Holocene at about 10 500-9400 cal BP and (ii) in the Tyrol acreeping landslides to catastrophic rockslides and rockfalls.
significant increase of deep-seated rockslides in the Subbogased on morphological and lithostratigraphical field crite-
real at about 4200-3000 cal BP. The majority of Holocenerig, the ages of failure initiation have long been subject to in-
mass movements were not directly triggered by deglaciatense debate. Generally, late-Pleistocene glacier withdrawal,
tion processes, but clearly took a preparation of some 100@aysing an unbalanced relief and thus increasing the stresses
years, after ice withdrawal, until slopes collapsed. In view of yithin the over-steepened slopes (cf. Ballantyne, 2002; Cos-
this, several processes that may promote rock strength degraart et al., 2008), was assumed to be the most dominant land-
dation are discussed. After the Late-Glacial, slope stabil-gjige trigger. In addition, many rockslide deposits in the Alps
ities were affected by stress redistribution and by subcriti-are characterised by pronounced moraine-like debris ridges
cal crack growth. Fracture propagating processes may havgnd are occasionally covered by relicts of Pleistocene fluvio-
been favoured by glacial loading and unloading, by earth-gjacial deposits. Since both features were believed to indi-
quakes and by pore pressure fluctuations. Repeated dynamigte a contact with late-glacial ice, and since some events ac-
|0ading, even if at subcritical energy |eVe|S, initiates brittle cumulated on g|acia| t|||, many landslides were S|mp|y cate-
fracture propagation and thus substantially promotes slopgorised as late-glacial to early post-glacial events (e.g. Abele,
instabilities. Compiled age dating shows that several land-1969, 1974: Seijmonsbergen et al., 2005).

slides in the Tyrol coincide temporally with the progradation Byt in the majority of cases, radiometric dating of land-
of some larger debris flows in the nearby main valleys andsjides in the Alps clearly yielded Holocene ages of failure,
partially, with glacier advances in the Austrian Central Alps, jndicating that slope failures were not directly controlled by
indicating climatic phases of increased water supply. Thisgeglaciation processes. One of the first mass movements
gives evidence of elevated pore pressures within the intenselysted in the Alps is the Molveno rockslide (Trentino, Italy),
fractured rock masses. As a result, deep-seated gravitation%aturing a Holocene age of about 299€ yrs BP (Abele,
1974). Also the largest Alpine mass movement in metamor-
phic bedrock units, the prominentdifels rockslide (Tyrol,

Correspondence tcC. Prager Austria), was dated as an early post-glacial event at around
m (prager@alps-gmbh.com) 8710%C yrs BP (Heuberger, 1966). Regardless of these case
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Fernpass ! A fluctugtiqns. In view of these facts, a f!rst comprehensive
region/ }’ /Ggmisch compilation of dated mass movements in the Eastern Alps
. has been made. It provides insights into potential causes and
L Loisach - Fernpass rock strength-degrading mechanisms that may have favoured
| fault system slope failures during the Holocene.
‘ Nappe

Lermoos

o/

Lechtal -

2 Geological setting

The Eastern Alps are made up of complex fold and thrust
, belts of different nappe units, which were deformed polypha-
7777777777 & s sically and heteroaxially. The main geological structures
were formed by Cretaceous to Tertiary thrust and exten-
sion tectonics (Eisbacher and Brandner, 1995; Schmid et al.,
2004). In the Tyrol, the majority of the dated mass move-
ments are situated in the polymetamorpbiztal basement
complex and in detached Mesozoic cover units of the North-
ern Calcareous Alps. Rock units affected by rapid failure
events are here predominantly competent orthogneisses, am-
phibolites and thick carbonate successions such as the Wet-
terstein and Hauptdolomit Formation (both Triassic). Incom-
petent bedrock units, e.g. paragneisses, phyllites and marl-
rich successions, are generally characterised by lower slope
deformation rates of some centimetres to metres per year.
Recent field studies at several unstable slopes in the Tyrol
and at adjacent sites yielded evidence that fault-related valley
deepening and the coalescence of brittle discontinuities con-
trol progressive failure and landslide kinematics (see Sect. 4).
Fig. 1. Main geological structures of the Fernpass region (Tyrol, |ntensive cataclasis along large-scale brittle fracture zones
Austria) showing thrust sheet units of the Northern Calcareous Alpsas the prominent Inntal and Loisach fault systems (Fig. 1)
(Lechtal- and Inntal-Nappe), tr@tztal Basement complex (Brand- %nabled substantial fluvio-glacial erosion and valley deepen-
ner, 1980, modified) and deep-seated rockslide deposits (shade . . SN
dark grey). ing. This morphological change caused stress rgdlstrlbut_lon
of the valley slopes and uncovered favourably oriented slid-
ing planes.

studies, only further dating of mass movements in the Eastern
Alps, especially in the 1990's, caused a definitive change of3  pata compilation
the paradigm, according to which late-glacial ice withdrawal
should have triggered slope collapses (see also discussion® evaluate the spatial and temporal distribution of landslides
by Abele, 1997a; Poschinger, 2002). Based on further in-in the Eastern Alps, a GIS-linked geodatabase has been set
vestigations, a dependency of Holocene landslide-activitiesip, At present this includes various data of more than 480
on climatic fluctuations was assumed (e.g. Raetzafnrt,  different mass movements in the Tyrol and its surroundings,
1997; Matthews et al., 1997; Dapples et al., 2003; Soldati etanging from late-glacial to modern failure ages. Out of
al., 2004). these, approx. 220 events feature unknown ages of failures
This paper deals with the temporal distribution of datedand/or unknown activities. About 140 post-medieval to re-
mass movements in the Tyrol (Austria) and its surroundingcently active landslides were compiled for the Tyrol but not
areas. Here, several deep-seated landslides rank among thensidered in this study. Dated fossil (i.e. pre-historic and
largest events in the Alps and show a close spatial distribuancient historic) mass movements from adjacent areas such
tion. One of them, the Holocene Fernpass rockslide, was reas southern Germany, northern Italy and eastern Switzerland
cently dated and was found to form a temporal cluster with itswere also included and presently comprise about 120 events.
adjacent mass movements (Prager et al., 2006a, 2007). Alsbhese are about 60 debris flows and about 60 rock slope fail-
current field studies (Prager et al., 2006b, 2006c; Zangerl etires, which are mainly rapid events such as rockfalls and
al., 2007, 2008) yielded evidence that both the unsmoothedockslides. Slow slope-movements, characterised by defor-
rough scarps and the morphologically structured accumulamation rates of millimetres to metres per year, can hardly be
tion areas of many landslides were not glacially overprinteddated as representative single-events, but rather reflect activ-
and thus not directly induced by Late-Pleistocene glacierities over certain time spans (“rock slope failures” in general
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with a “range” of activities, see Table Al). This may also clude the prominent Eibsee, Fernpass, Tschirgant, Tumpen
be the case for debris flows, but compiled datél§11995)  and Kofels rockslides (Sect. 4.1 to 4.8, Fig. 1). Deep-seated
and detailed site investigations (e.g. Irmler, 2003; Weberrock slope failures that have been radiometrically dated are
2003) yielded evidence that larger debris fans are characalso encountered nearby at Gepatsch/Hochmais (Kauner val-
terised by pulsed, precipitation-controlled activities of sev-ley; Sect. 4.9) and, further away, at Pletzachkogel (Inn valley;
eral sub-events. Dated debris flows have been compiled irsect. 4.10). Scarp structures, run-out paths and sedimentary
this landslides-study because i) Cruden (1991), Cruden anéhbrics of these landslides indicate, in the majority of cases,
Varnes (1996) and the UNESCO Working Party on World rapid failure event such as rock slides and rock avalanches
Landslide Inventory define landslides as “a movement of a(Sturzstbme).
mass of rock, earth and debris down a slope” and ii) because
gsrk]);is flows may yield information on paleo-climatic condi- 41 Eibsee rockslide

Age determination of landslides is, most commonly, car- . . .
ried out by!4C-dating of organic remnants that are present inClose to the Tyrolean-Bavarian border, the Eibsee rockslide

sediments overridden by the mass movement (maximum agé'9- 1) broke off the north-face of the Zugspitze massif
of the event), and/or are entrapped within the landslide de{2961m), the highest mlguntam in Germany, and mobilized
bris (proxy for event age), and/or accumulated in Iandslide—abouF 400-600 million m of accumulated debris (Abele,
dammed backwater deposits or lakes situated atop the mad®74: Golas, 1996). It originated from a subvertical cliff,
movement (minimum age of the event). In the majority of which is severa_l hundred metres high and built up by mainly
cases, not the rock slope failure itself has been used for datéll-bedded Triassic carbonates of the Muschelkalk Group
ing but material underlying and/or overlying the failed rock (Anisian) and thg Wetters;eln Formation (Ladinian-Carnian).
masses. Thereby, the time-lag between failure event and ad-N€ latter, a main rock unit of the Northern Calcareous Alps,
cumulation of the dated material can hardly be quantified. InCOMPrises here stacked limestones of lagoonal cycles up to
view of this and because the exact stratigraphic relation be1000m in thickness. Due to Paleogene compression, this
tween landslide deposits and dated samples is often IOO0r|§,‘0mpetent Triassic platform was thrust over several hundred
documented in the available data sources. some compile@etre thick, incompetent Jurassic-Cretaceous limestones and
data of this paper provide only indirect information about the Marls.  Structurally the Zugspitze massif features an open
age of fossil mass movements. Concerning the basic datirst-order syncline with a fold axes dipping moderately to
quality, some events such as younger and larger mass mov&2€ €ast (Eisbacher and Brandner, 1995). Therefore, the dis-
ments may be over-emphasized due to outcrop condition<ontinuities which were of relevance for the Eibsee rockslide
sampling bias, inhomogeneities of records and statistical ervere not the bedding planes, dipping moderately SE into the
rors. slope, but the NW- and above all the NE-trending subvertical
However, the available radiocarbon laboratory dates 0ffault and fracture systems. Some of these separation planes

14C_dated mass movements were calibrated to calendar daté¥® intgrsected by.tqnnels ,Of the German rack railwgy to the
(quoted 0 BP=1950 AD) using the OxCal software versionz_ugSp'tze and exhibit openings of several metres Whlch occa-
3.10 (Bronk Ramsey, 2005) and its implemented calibrationSionally extend to the surface (Knauer, 1933). Field evidence

curve IntCal04. The ranges of the arithmetic mean ages argr:c intense brittle ;‘]aulting can be qlgservedbat the Il\IW—flace ?J
based on the statistical @-standard deviation (correspond- € Zugspitze, where NE-SW-striking, subvertical faults an

ing to 95.4% probability). For mass movements featuringassociated discontinuities are part of the large-scale sinistral
more than one dated sample, a mean and its standard deJi©iSach shear system (Fig. 1). This system caused deep-
ation was calculated by applying the Gaussian error propa_seated intensive fracturing of the folded carbonates and iso-
gation law for linear cases on to the individual sample dat-'ated blocks in precipitous rock walls. The resulting slope
ing. For some roughly or indirectly dated events, the rangeé“”emat'cs’ favoured by the lithological conditions of the

of standard deviations had to be estimated in order not t(;ugspitze massif, i..e. competent car.bonates fes““g upon in-
lose any information, when visualised in graphs. To ensurecompetent rock units, was characterised by a combination of

proper comprehensibility, all compiled data including refer- rock SPread Processes (Cruder_l and Varnes, 1996) and step-
ences have been included in the Appendix (Table Al). path failures with internal shearing.
Based on morphological field criteria, the Eibsee rock-

slide deposits were formerly interpreted as a “late-glacial
4 Geology and ages of selected landslides rockslide-moraine” (Vidal, 1953), but several wood sam-

ples gained in drillings yielded a mean age of around 3700
Some of the largest fossil mass movement deposits in thé*C yrs BP (Jerz and Poschinger, 1995). Six samples of
Alps cluster spatially in the Fernpass — northétz valley  similar age, which were presumably not redeposited, were
region (Tyrol, Austria). In an area of less thand®D km, at  calibrated to calendar years and show an arithmetic mean
least 13 individual failure events are encountered which in-age of 4181627 cal BP. Based on the age of the youngest
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and heteroaxial deformations generated fold and fracture sys-
tems of varying orientation (Eisbacher and Brandner, 1995).
Thus, the failure zones of the Fernpass rockslide and of its
juxtaposed slopes developed by the stepwise coalescence
of brittle discontinuities. Both the lithological predisposi-
tion and the complex brittle deformations define the sliding
planes as well as the block-size distributions of the rockslide
debris.

Field data and results of hybrid seismic measurements near
the apex of the present Fernpass point to a deep-seated cat-
aclasis along the NE-orientated Loisach-Fernpass fault sys-

Fig. 2. View towards northwest to the wedge-shaped scarp of thetem (Fig. 1). This indicates a steep pre-failure topography

Fernpass rockslide and its associated mass movements (rockslid the valley flanks and a quvio—quciaIIy undercut toe of the
“Am Saum” AS, instable slope “Hohler Stein” HS). slope. Here the top of the bedrock is covered by approx. 500—

600 m thick soft rock deposits, which decrease significantly
in thickness laterally and are assumed to originate mainly

Kreuzjoch (2231 m) Gartnerwand (2377m)

wood fragment, the Eibsee event has a minimum age o

3935+215 cal BP (Table Al). from the F_ernp_ass rockslide (P.ra.geret al., unpubl. dat_a). Due
to the oblique impact of the sliding rock masses against the
4.2 Ehrwald rockslide opposite mountain slope, they were proximally piled up as a

remarkably thick debris ridge and split into two Sturzstrom
At the western base of the Zugspitze massif, the carbonat@ranches. Their run-out was favoured by the large rockslide
Ehrwald rockslide deposits cover an area of about 2&nd ~ volume, channelling effects in the narrow valley, dynamic
an average run-out distance of about 3.5km (Abele, 197Aisintegration and, crucially, by an undrained dynamic load-
including references). Assuming a thickness of about 5-ng of the water-saturated substrate (Prager et al., 2006b,
20 m, the accumulated volume varies about some 10—-40 mil2006c).
lion m3. The lithological and structural predisposition cor-  Formerly, morphological and lithostratigraphical field cri-
responds with that of the adjacent Eibsee rockslide, i.e. botfieria, such as moraine-like debris ridges, funnel-shaped
failures were clearly controlled by brittle faulting along the “dead-ice” sink holes and the spatial distribution of Pleis-
NE-orientated Loisach fault system (Fig. 1). tocene cover rocks, were used to differentiate between a late-

The Ehrwald deposits form a scenic hilly landscape withglacial main event and a succeeding post-glacial collapse

several pronounced ridges and, thus, were morphologicallfAbele, 1964, 1974). But now field investigations show that
classified as “late-glacial rockslide moraine” (Abele, 1964, neither the rough scarp nor the intensely structured accumu-
1974). But the internal structure of these sediments, whicHation area features any signs of a smooth morphology, which
so far have not been dated radiometrically, is characterised b§Peaks against glacial overprinting.
an unstratified, coarsening-upward facies with several shat- This field evidence was confirmed by the application of
tered clasts featuring a jig-saw-fit of grain-boundaries. Thesdhree different radiometric dating methods on individual
sedimentary features have not been observed in glacially desampling sites (Prager et al., 2006a, in press). Close to
rived deposits and may only be attributed to dynamically dis-the scarp area, rockslide-dammed torrent deposits yielded a
integrated rockslide masses. This and the lack of Quaternary'C minimum age of 33803080 cal BP. So far, the chronos-
cover as well as the absence of glacial smoothing of the totratigraphic base of this at least 15m thick backwater se-
pography suggest a Holocene age for the Ehrwald rockslideduence has not yet been dated. However, two cosmogenic

radionuclide®®Cl exposure ages of large-scale sliding planes
4.3 Fernpass rockslide at the scarp, where the sampled platy dolomites indicate

a mean age of 41@01300yrs for the failure event. Fur-
The Fernpass rockslide in the western Northern Calcareouther data were gained from the curiously, strongly deflected
Alps is characterised by two channelled Sturzstrom branchessouthern rockslide branch, where post-depositional carbon-
which contain a rock mass volume of about 1%amd cover  ate cements are encountered. They were dated using the
excess run-out distances up to at least 10.8 and 15.5 km re&30Th/234U-disequilibrium method and yielded a minimum
spectively. This large-scale event was followed by a smallerage of 415@-100yrs for the accumulation of the rockslide
rockslide of unknown age and the development of a deeplydebris (Ostermann et al., 2007). Based on these data, a tem-
fractured slope that has not yet failed (Fig. 2). poral differentiation between two failure events, one mak-

The rockslide debris originated from a well exposed anding up the northern rockslide branch, and another, making

exceptionally deeply incised niche, which is made up of platyup the southern branch, is not yet possible. All dates coin-
dolomites, limestones and marls of the several hundred metreide well and indicate that the Fernpass rockslide occurred
thick Seefeld Formation (Norian, Upper Triassic). Polyphase4200—4100 yrs ago.

Nat. Hazards Earth Syst. Sci., 8, 34D% 2008 www.nhat-hazards-earth-syst-sci.net/8/377/2008/
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4.4 Tschirgant rockslide

From the steep and rugged Tschirgant massif (2370 m), two
deep-seated rockslides travelled down to the river Inn at [l
approx. 700m a.s.l.: the prominent Tschirgant rockslide
(180-240 miIIion n; Abele 1974) in the southwest and the

(Figs. 1, 3). Both slope failures are encountered at the struc
turally complex southern margin of the Inntal thrust sheet
(Northern Calcareous Alps), which in this area is made up
of folded and faulted Middle- to Upper-Triassic carbonates &
(Eisbacher and Brandner, 1995). Brittle deformation and [
deep-seated cataclasis associated with the NE-trending Innta

fault system enabled a substantial fluvio-glacial deepening of Sgig‘,’,’qemmp,ex
the Inn valley between the Northern Calcareous Alps and the
southerly adjacer®tztal basement unit.

The widely and deeply fractured scarp area of theFig. 3. Oblique view to the norther®tz- and Inn-valley: scarp
Tschirgant rockslide, also referred to as “Weildwand”, is (black stippled) and accumulation areas (white stippled) of the
mainly composed of obscurely bedded dolomites and lime-Tschirgant and Haiming rockslides (photo courtesy of M. Schus-
stones of the Wetterstein Formation (Ladinian-Carnian),ter 2007).
here predominantly featuring reef- and peri-reef facies,
and by well-bedded carbonates, siliciclastics and evaporites
(Rauhwacken) of the Raibl Group (Carnain). Structurally, able run-out of approx. 6.2km (Fig. 3) and a travel angle
the scarp area is characterised by intensely folded and faultedFahrbdschungswinkel”) of about £3
bedrock units. Due to thrust tectonics and the resulting Based on morphological and lithostratigraphical criteria,
nappe-piling (Pagliarini, in preparation), the sediments of theHeuberger (1975) assumed an interaction of the carbonate
Raibl Group are encountered at both the hanging wall and thd schirgant rockslide with late-glaciétztal ice, but radio-
foot wall of the Wetterstein-Formation, i.e. at the top and themetric dating established a coherent Holocene age of around
toe of the slope. As a result of the polyphase and heteroaxia?9004C yrs BP (1050 cal BC; Patzelt and Poscher, 1993)
deformation, the slope failure was controlled by a step-wisefor the main event. Further investigations showed evidence
coalescence of NE-trending, frequently overturned, beddinghat the widespread Tschirgant deposits were made up by at
and fault planes with NW-trending dextral fracture systems.least two failure events, which occurred at 3331 cal BP
In the scarp area, the competent carbonates of the Wetterste@ind at 3153191 cal BP (Patzelt, 2004a).

Formation exhibit bedding planes and several extensive frac-

ture systems, which dip out of the slope and form preferably4.5 Haiming rockslide

oriented sliding planes. The slope collapse was furthermore

favoured by karst structures in the Wetterstein Formation andAbout three kilometres northeast of the Tschirgant scarp, the
by the occurrence of Rauhwacken with a thickness of sevinn valley floor is covered by of 25-34 million ¥Abele,

eral tens of metres at the toe of the slope. In the Tschirgani974) relatively finely-ground carbonate deposits of the
area, some intensely mineralised springs are a sign of hydradslaiming rockslide (Fig. 3). The average thickness is as-
chemical evaporite leaching. In the long run, this processsumed to be about 5-20 m, with some local maxima being
could have led to increased bedrock porosities and to a reapprox. 40 m. At the unusually rough and stepped, wedge-
duced thickness of the evaporite strata, which would haveshaped scarp the bedding planes dip into the slope and no
resulted in gravitational deformations of the brittle dolomites distinct large-scale sliding planes are observable. This indi-
in hanging wall position. cates that the failure was clearly structurally controlled by the

The descending Tschirgant rockslide buried the Inn val-complex coalescence of differentially orientated and densely,
ley and entered the mouth of the north€tz valley, where  i.e. meter-size, spaced discontinuities.
the contact of basal slide deposits and their substrate are The accumulated debris, i.e. karstified and often brec-
naturally exposed. These contact zones display a complegiated dolomites of the topmost Wetterstein Fm (M- to U-
geometry, where in the course of the rockslide event pre-Triassic), indicates that the main slide detached from lower
sumably water-saturated valley floor sediments were injectegbarts of the slope. It covers a run-out length of about 2.5 km
into the rockslide masses filling up steep extension strucand features a low run-out travel angle of about.1The
tures (Patzelt and Poscher, 1993; Abele, 1997b) and wherexposure of higher regions of the present-day scarp, which
diamicts were created by a mingling with the rockslide. show a several hundred metre thick, well-bedded succes-
The undrained loading of the substrate caused a considesion of the lithologically inhomogeneous Raibl Group and

www.nat-hazards-earth-syst-sci.net/8/377/2008/ Nat. Hazards Earth Syst. Sci.,4)B32008
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to Kéfels (ca. 9750 cal BP) lapping sediments, estimations of the volumes and run-out
distances of the rockslide events are here hardly possible.
The Piburg and Habichen rockslide deposits (Figs. 1, 4),
Plbary. Which are both si_tuated close to the distal deposits of the
N Habichen Tschirgant rockslide, dammed the southern edge of Lake
(> 10.000 yrs) Piburg. 14¢c analyses on lacustrine deposits, gained from
; drillings in the central part of the lake, yielded an age of
at least 11500cal BP for the onset of the sedimentation
‘ . ~ (WahImiller, unpubl. data) and indicate a similar minimum
: % A Tschirgant 3 age for the Piburg rockslide barrier.
- { : 3 In the southerly adjacent Tumpen area, sinkhole collapses
in rockslide-dammed backwater sediments have repeatedly
w been documented over the last 300 years and have led to ex-
,g tensive ground reconnaissance surveys. According to these
PN surveys, a differentiation is to be made in this area between
at least four different slide masses, which were transgressed
Fig. 4. View from the Tschirgant massif (Northern Calcareous by at least two fluvio-lacustrine deposition sequences with
Alps) towards southeast to the rockslide deposits and adjacent scag minimum total thickness of 60 m. The younger succes-
areas in the northem@tztal basement complex. sion provided a minimum age of about 33880 14C yrs BP
(Poscher and Patzelt, 2000), i.e. 3640 cal BP, for the
damming rockslide event. Depth extrapolations of the ex-
the Hauptdolomit Formation (both U-Triassic), may be at- isting dating results suggest that the older sequence and its
tributed to secondary erosion processes such as rockfalls an@ckslide barrier date to about 6000 cal BP (Patzelt, personal
debris slides. communication).
Based on field surveys and several radiocarbon dates,
Patzelt (2004a) differentiated three failure events, which oc4.8 Kofels rockslide
curred at 353595 and at 3065145 cal BP plus a smaller

/
* rockslide deposits

““River 6tz €
2

(ca.3750 and 3150 cal BP) .

rockfall event at 1688140 cal BP (Table Al). To the sout_h, the Tumpen backwa_lter deposits b_order on the
largest Alpine mass movements in metamorphic bedrocks,
4.6 Sbitlbach landslide the famous Kfels rockslide. The failing bedrock units,

predominantly granitic augen- and flaser-gneisses and some
About 10 km to the northeast of the Haiming scarp paragneisses, detached from an east-facing slope and buried
the Sbtttbach landslide deposits (Fig. 1) form an ap- both theOtz valley and the opposing mouth of the Horlach

prox. 2.8 kn? wide lobe and cover a run-out distance of about Valley (Fig. 5). The several hundred metre thick rockslide
4.5km. Its average thickness strongly varies between apgebris blocked the riveDtz and caused the accumulation of

prox. 5-35m and the mean volume most probably rangeéhe up to 100 m thick fluvio-lacustrine backwater deposits of
from 2030 million n?. The debris is made up of limestones the Langenfeld basin (Heuberger, 1966, 1975). According
of the Wetterstein Group (M- to U-Triassic), with only a few to reflectlor} seismic measurements, the top of the compact
siliciclastic components of the Raibl Group (U-Triassic) in- P€drock units plunges from approx. 50-80 m below ground
volved. These hummocky-shaped deposits were formerhyn the Langenfeld basin steeply northwards to approx. 400m
interpreted as glacially derived moraines, but have recenthyP€loW ground at the paleo-slope toe. This significant valley-
been dated. Preliminar}fCl exposure ages of limestone step presumably caused substantial stress concentrations at
boulders of the Wetterstein Group indicate a failure eventth€ to€ of the slope and thus favoured the massive failed vol-

in the range of 3.5-4ky (Kerschner and Ivy-Ochs, personal“me of about 3.2 kéh(Briickl et al., 2001). These data and

communication 2006; Westreicher, in press). the presence of preferably orientated, east-dipping sliding
planes, which are encountered between the villageddéls
4.7 Piburg-Tumpen rockslides and the present-day head-scarp, clearly point to a structural

predisposition of this large-scale rock slope collapse.
The N-trendingOtz valley, one of the main side valleys of Radiocarbon dating of buried wood and surface exposure
the Inn valley, is deeply incised in the metamorpBitztal dating _of rockslide boulders (lvy-Ochs et al., 1998), mor-
basement complex. Its Quaternary valley filling is charac-Phological features (Hermanns et al., 2006) and the spatial
terised by significant valley steps and flat upstream Va”eydlstnbutlon of ortho- and paragneissic rockslide debris in the
floors, which genetically may be attributed to multi-phase Kofels area indicate that a well established major slide event

landslide events and thus to associated backwater sedimeng§curred in the early Holocene at about 9800 cal BP and was
(Heuberger, 1975 including references). Due to these onsSucceeded by at least one secondary rockslide event (Fig. 5).
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widespread and thick rockslide deposits.

4.10 Pletzachkogel rockslides

4.9 Hochmais rockslide . .
The Pletzachkogel in the Lower Inn valley is a steep south-

, d east-facing rock slope (Fig. 6), with80 million m3

Approx. 20 km southwest of #fels, both flanks of the up- an . D :

per Kauner valley have been affected by deep-seated rocf(a‘bEIe’ 1974) of spatially complex distributed rockslide de-
posits at its base. The scarp region consists of a succession of

slope deformations. Due to the construction of a hy- icb X hich i | hundred metres thick and
dropowerplantreservoirnearthetoeoftheseslopes,detailel!iurasfs'C reccias, which IS several hundred metres thick an
contains characteristic red internal sediments. These compe-

field surveys, drilling campaigns, geodetic-, seismic- and t rock Wi ¢ t the Obeitkalk f
INSAR-measurements were carried out and yielded evidenc SNt rocks overly imestones of the N as wet as
imestones and marls of the incompeteritd§éen Formation

of the geometry, structure and long-term slope-behaviou L .
(Tentschert, 1998 and references therein). According to(bOth Upper Triassic). Comparable to the Tschirgant mas-

these findings, the deep-seated Atemkopf-Hochmais creepsiif (Fig. 3_), the Pletzachkogel scarp is situated at the south-
ing landslide, which is situated at an east-facing slope in°M Tac;gé)n c:jfthe Nortthderg _ilalc?re(t)us Alps and éhus &.“3”0
folded and jointed paragneisses, comprises an area of abo?ﬁeq e€d by deep-seated brittie Iracture zones.  Especially
2.8 kn? and a volume of about 300 million‘m Lower parts aulting along the Inntal fault system caused a substantial
of the slope, i.e. the Hochmais rockslide, failed post-glacially_rtc_)Ck fr;?megtam:ntancti genderatedl NE-'E;_endlng discontinu-
and slid over 400 m on top of till and talus deposits. Within iues with moderate o steep down slope dips.

these till deposits, intersected at depth by an investigationt. Basfe?hon morphcl)l?g(ljczl %”.te”?hand fth? spatial ?lstnl_)u_-
adit, a significant 4-5m thick sliding zone is encountered lon ot Ihe accumulated debrs, three failure events ongl-

(Briickl et al., 2004; Zangerl et al., 2007) nating from different source areas are to be differentiated

. . . Fig. 6). The youngest of these events was a highly mo-
Extensive drilling campaigns at the lowermost slope areas . .
) ile rock avalanche (Sturzstrom), which travelled from a
and in the former valley floor, now flooded by the Gepatsch

. . ell-exposed scarp down to the river Inn, covering a run-
hydropower reservoir, revealed wood-bearing sands an .
. . . out distance of approx. 3.5km and a run-out travel angle
gravels, which both underlie and lap-on the displaced

of 15°. Detailed field investigations and numerous radiocar-

H°°h“."a'.s S slope toe, the S.Ohd bedrock units a%on dating clearly indicate that the Pletzachkogel rockslides
overlain firstly by a 26 m thick succession of sands and grav-

els. with wood-findinas near the top. secondly by 4 m thick occurred firstly in the Late-Glacial, secondly in the middle
o ; ing P, y by . Holocene at about 3910 and thirdly at about 1735 cal BP
till deposits and thirdly by the at least 30 m thick Hochmais i .

. : Patzelt, 2004b; Table Al). At least one minor rockfall event
slab. These wood fragments yielded a maximum age for th‘:i()ccurred in the 20th centur
rockslide of 7216-140 BC, i.e. 916150 cal BP. A mini- Y-
mum age of 6340 BC (i.e. 8295.05 cal BP) was provided
by other wood-bearing sands and gravels, which lap-on th&  Seismicity of the Fernpass region
Hochmais slab (Schmidegg, 1966). Considering thestan-
dard deviations of these dated samples, the Hochmais rockn the Fernpass region, some of the largest rockslides in the
slide occurred between 9310 and 8190 cal BP, at about thélps not only cluster spatially but also show similar ages
arithmetic mean of 8750560 cal BP (Table Al). of failure. In addition, this region as well as some major
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fault zones nearby, e.g. close to the NE- trending Inntal and (Fig. 7). According to the ZAMG data, some of these
Engadin Line, show increased earthquake activity (Drimmel, seismic events show low magnitudes M=1.2-1.8, but
1980; Reiter et al., 2003). Earthquake-related slope instabili-  nevertheless pronounced epicentral intensitigs3.0—
ties in different geological settings have been inferred by sev-  4.0° MSK due to their shallow-seated focal depths. Pro-
eral (paleo-)seimological studies (e.g. Keefer, 1984; Jibson, jected into a structural transect (Eisbacher et al., 1990),
1996; Becker et al., 2005; Monecke et al., 2006). In view these earthquakes indicate active tectonics in the thrust
of these findings, and with the objective of studying possi- sheets of the Northern Calcareous Alps near the base
ble predisposing and (paleo-)trigger mechanisms, the recent  thrust of the Inntal nappe.
seismicity of the Fernpass region was evaluated.
Close to the Fernpass, epicentral foci at the villages of
Nassereith and Namlos (Schorn, 1911, 1922; Kraus, 19316 Synopsis of data compilation
Fig. 7) show clear evidence of neotectonic movements. Some
strong earthquakes with magnitudes<Bl3 and EMS-98 Dating data of about 60 rock slope failures and about 60 de-
epicentral intensitiedp<7.5° MSK rank here among the bris flows in the Tyrol and its surroundings have been com-
most intense ones ever measured in Austria (Table 1; Drimpiled in a geodatabase and visualised in maps and graphs (Ta-
mel, 1980). One of these major events occurred in 1930 &le Al, Figs. 8, 9, 10). As a first result, these data show
few kilometres west of the Fernpass, near the small village ot rather continuous temporal distribution of events in the
Namlos. At least 16 main shocks and numerous aftershockblolocene, without longer time gaps. However, there is no
were recorded and subjectively registered even at distancegvidence for increased landslide activities due to deglacia-
of about 200-400 km. Locally, this earthquake changed thdion processes during the Late-Glacial and early Holocene.
hydraulic flow field by dislocating springs, it opened ground In Austria, late-glacial ages have only been established for a
clefts and triggered several rockfall events nearby (Klebelsfew rock slope failures, e.g. the large Almtal rockslide (Up-
berg, 1930). per Austria; Van Husen et al., 2007a) and a failure event at
Compiled earthquake data indicate, that, in western Austhe Pletzachkogel (Tyrol; Patzelt, 2004b). The accumulation
tria, the effective horizontal ground acceleration shows sig-0f major debris flows in the Tyrolean Inn valley dates back to
nificant maxima of about 1 mdsn the middle Inn valley and ~ at least 13 40&600*“C yrs BP (Weber, 2003).
the Fernpass regiotO(NORM B4015, 2007). With respect ~ As a second result, slope collapses in the early Post-
to the latter, the available earthquake records show: Glacial, at about 10500-9400 cal BP, are only indicated by
a few dates, but they comprise some of the largest failure
— Strong intensities: several severe shocks with magnievents in the Alps. Among these are the deep-seated rock-
tudes M<5.3 and epicentral intensitie<7.5° MSK  sjides at Flims (volume at least 8000 milliorPnPoschinger
are spatially clustered in the Lechtal Alps and areet al., 2006) and Kandertal (approx. 800 millior?;nTin-
among the most intense ever measured in Austria (Taner et al., 2005) in Switzerland as well as abf&ls (ap-
ble 1). For one of these major events, a focal depthprox. 3200 million n¥; Briickl et al., 2001) and Hochmais
of 8km was determined macroseismically (Franke and(approx. 30 million m; Zangerl et al., 2007) in the Ty-
Gutdeutsch, 1973), which —when projected into a struc-ro| (Austria). Before and after these events, the compiled
tural transect — points to active tectonics somewheregata show a lower frequency of dated landslides. Sub-
below the base of the Northern Calcareous Alps (Eis-sequent to 7500cal BP, several smaller events, but also
bacher et al., 1990). the huge Wildalpen rockslide (Styria, Austria; volume ap-
_ Swarm-like earthauakes: h h - JRrox. 1400 million n¥; Van Husen and Fritsch, 2007b) took
quakes: here characteristic sequences

of earthquakes without significant fore- and aftershocksplace'

cluster both in time and space. These events, e.g. those As a third result, numerous landslides were found to cu-

: : ; late in the middle Holocene, with a significant emphasis
registered in May and June 2005, were characterised b u '
low to moderate magnitudes M=1.3-3.0 but clearly felt?; the Subboreal at about 4200-3000 cal BP (Prager et al.,

with epicentral intensities ofg=3—% MSK (ZAMG, 2007). This_temporal cluster, in graphs indicated by a less
2005a). steep trend line of dated events (Figs. 9, 10), comprises some

of the largest rockslides in the Tyrol. Among these are the
— Shallow-seated focal depths: according to both nationaldeep-seated events at the Fernpass, Eibsee, Tschirgant and

(ZAMG, 2005b; Lenhardt et al.,, 2007) and foreign Tumpen, which also cluster spatially (“Fernpass cluster”), as
(USGS/NEIC, 2005) seismic records, the Fernpass rewell as those at the Hintersee and Pletzachkogel (Figs. 1, 8).
gion is affected by earthquakes with hypocentres lo- Periods of increased slope deformations in the early and
cated clearly above 6 km. The most shallow-seated fo-middle Holocene were also established in adjacent regions of
cal depths reach down to only approx. 3—4 km and, re-Austria (Figs. 8, 10). In central Switzerland two clusters of
markably, cluster near the Tschirgant massif, which wasraised landslide activity were observed at about 10 000-9000
affected by polyphase and deep-seated slope failureand 5200-1500 cal BP (Raetzotfrart, 1997). In eastern
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Fig. 7. Earthquake epicentres and landslides in the Fernpass region (cf. Fig. 1). Data courtesy of ZAMG (2005b) and downloaded from
USGS/NEIC (2005) (Remark: some locations of coeval earthquakes may differ between these databases and thus may mistakenly sugge:
an increased earthquake activity when plotted together in maps).

Table 1. Basic parameters of strong earthquakes in the Fernpass region, Tyrol (Drimmel, 1980).

Date Long? Lat®  Depth M2 12 Epicentre

1886-11-28 10.8 47.3 8-12km 5.2 7.5  Nassereith

1910-07-13 10.9 47.3 8-12km 4.8 7 Nassereith-Silz
1930-10-08 10.7 4735 8-12km 5.3 7.5 Namlos

1933-11-08 10.7 4735 8-12km 4.6 6.5 Namlos

1958-09-30 10.6 47.2 8-12km 4.5 6.5 Lechtal Alps near Landeck

@ Longitude, Latitude: Decimal Geographic Coordinates (Date ED80Magnitude M,® epicentral intensity,, (based on the 12-point
macroseismic scale by Medvedev-Sponheuarmik MSK).

Switzerland, five temporal pulses of slope instabilities were6500, 4700, 2200 and 1000 cal BP (Bassetti and Borsato,
detected between 11500-10250, 6250-4800, 3500-210@007). Data from outer-Alpine regions in Europe have not
1700-1150 and 750-300cal BP (Dapples et al., 2003). Irbeen compiled in this study, but they also point to a temporal
the Italian Dolomites two striking age-clusters were iden- clustering of slope instabilities e.g. in the early and middle

tified, one early Post-Glacial at about 13 000-9000 cal BPHolocene (e.g. Matthews et al., 1997; Bertolini, 2007).

and the other one in the Subboreal at about 6500-2300cal As a fourth result, dated debris flows, ranging from smaller
BP (Soldati et al., 2004). In the Trentino (ltaly), different |ocal events to larger alluvial fans in the main valleys, also in-

phases of rock slope failures have been determined at aboulicate periods of fluctuating accumulation activity (Fig. 9).
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Fig. 8. Spatial and temporal distribution of mass movements in the Tyrol (Austria) and its surrounding areas. Beyond Tyrol only dated fossil
landslides are shown. Temporally and spatially clustered landslides in the Fernpass region indicated by black rectangle (centre of the figure,
cf. Fig. 1). Do: Dolomites rock slope failures, Fa: Farchant debris flow, Fb: Frauenbach debris flows, Fl: Flims rockslide, Ga: Gadria river,
Hi: Hintersee rockslide, Hm: Hochmais rockslide, Is: Isel river, Ma: Marocche di Dro, Mo: Molveno rockslide, Me: Melach river, Pg:
Prattigau rock slope failures, Pk: Pletzachkogel rockslides, Si: Sill river, Wb: Weif3enbach river.

With respect to the Tyrolean Inn valley and its tributary and Wildscldnauer Ache show significantly increased accu-
rivers, Patzelt (1987) established phases of raised accumumulation between approx. 17 000—-14 000 cal BP and mainly
lation, firstly at about 9408“C yrs BP (approx. 10630cal between approx. 7600—-6000 cal BP; after a period of fluvial
BP), secondly between 7500-6000 (approx. 8350-6840 catrosion, a second phase of increased debris accumulation oc-
BP) and thirdly at about 3508C yrs BP (approx. 3780cal curred between approx. 4500(?) cal BP and the 19th century.
BP). According to this, some of the largest alluvial fans in Some minor debris flows in this region are characterised by
Northern and Southern Tyrol, e.g. those of the rivers Gadridluctuating activity between approx. 12500 and 2050 cal BP
and WeilRenbach, show significantly increased activity at(Weber, 2003; Table Al).
about 7900-7100 cal BP. Other major debris flows accumu-
lated considerably in the Subboreal, e.g. the rivers Sill and Increased fluvial dynamics and debris accumulations in
Melach at about 3700-3600 cal BP. In between these period$he middle to younger Holocene have also been established
at about 6000—-4508'C yrs BP (approx. 6840-5170 cal BP) at other sites in the Tyrol and have recently been incorpo-
the Inn valley was affected by a distinctive phase of fluvial rated into a geodatabase (Figs. 8, 9). These records com-
erosion (Patzelt, 1987). prise the large Farchant debris flow (Fernpass region, dated
4340 and 3180cal BP), the main river Isel (dated 5700—
In the Lower Inn valley, two major phases of increased 2600 cal BP) and local events at Gepatsch/Kaunertal (dated
fluvial debris accumulation have recently been determined3990 cal BP), as well as data about sedimentological changes
(Weber, 2003): within the first phase, the main rivers Innfrom fine to coarse deposits. The latter indicate phases of

Nat. Hazards Earth Syst. Sci., 8, 34D% 2008 www.nhat-hazards-earth-syst-sci.net/8/377/2008/



C. Prager et al.: Process-based analyses of compiled dating data

387

cal yrs BP
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
0

Hochmais

Almtal

i S——

i
5

—_—

Wildalpen

Kofels
-

i,

|

Chironico

ﬂiE
1

e

Flims

5

“Fernpass cluster” I

EE{
e
g

Valley floors < 1200 m asl ice-free (Central Eastern Alps)
Wildschonauer
Ache 1

Frauenbach 1

-—

Glaciers at modern extent (Central Eastern Alps) ()

Wattenbach
Klammbach 1

Klammbach 2
~—— Gadria

%t ~——  Weissenbach
z ~—— Sulzenbach
lzﬁ%{
} Farchant 1
5y — T
~—

Sill
—<—— Melach

<=
Voldertal

“Ixx

e 3

(@)

cal yrs BP
— 17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

§ Rock slope failures

¢ Volume > 100 mill.m3

E Debris flows a) Ivy-Ochs et al. (2005)

gMMnMMWMhns b) Patzelt (1977)

3) Soldati et al.(2004)

1) Raetzo-Brilhart (1997)
2) Dapples et al.(2003)
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some nearby torrents in the period between 3560-2590 cal
BP (Mignon, 1971; Patzelt, 1987, 1999; Geitner, 1999; Veit,

As a fifth result, some radiometric data, which are not
spatially attributable when depicted in graphs (Figs. 9, 10),
prove polyphase reactivations of predisposed vulnerabilities
and multiphase slope failures in different geological settings,

— Fernpass (Fig. 2): a main event dating into the Subbo-
real, associated with a secondary rockslide and an un-

— Tschirgant, Haiming (Fig. 3) and Pletzachkogel (Fig. 6):
multiple, but clearly differentiable rockslide events,

calyrs BP —— : = cal yrs BP
5500 -| E . ﬁ L 5500
el I . 2002; Table A1).
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Fig. 10. Temporal distribution of middle Holocene landslides in the

with intense slope activities in the Subboreal (Patzelt,

2004a, b),

Tyrol and its surrounding areas (zoom-in of Fig. 9, modified).

— Tumpen (Fig. 4): several failure events, at least two of
them being roughly dated, occurring within a relative
small area (Poscher and Patzelt, 2000),

increased fluvial dynamics, which were observed e.g. in the

northernOtz valley at the &ngenfeld basin (starting at ap-
prox. 3400*C yrs BP, i.e. approx. 3650 cal BP), in the Stubai
valley (prior to 1275cal. BP; Bittler et al., 1995) and at

www.nat-hazards-earth-syst-sci.net/8/377/2008/

— Kofels (Fig. 5):

one well established main event
(Heuberger, 1966), succeeded by a secondary rockslide
(lvy-Ochs et al., 1998; Hermanns et al., 2006),
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— Several presently active landslides: pre-historical and/omunstable slopes, especially when east- and/or southward ex-
historical precursory events documented at several acposed as at &fels, Fernpass and Tschirgant, bordered on thin
tive creeping slopes, e.g. at Gepatsch-Hochmais (Ausdead-ice or even ice-free valley-floors and were not glacially
tria; Schmidegg, 1966), Heinzenberg (Switzerland; buttressed at least since the Younger Dryas. Subsequently,
Weidner, 2000), La Clapre (France; Bigot-Cormier et late-Pleistocene glaciers suffered a rapid further meltdown
al., 2005) and some catastrophic events, e.g. at Vajontntil at about 9500C yrs BP (i.e. approx. 10850 cal BP)
(Italy; e.g. Hendron and Patton, 1987; Kilburn and Pet- they reached for the first time modern extents (Patzelt, 1972,
ley, 2003), Val Pola (Italy; e.g. Costa, 1991; Azzoni et 1977). Reforestation of valley slopes in the central Stubai
al., 1992) and Randa (Switzerland; e.g. Sartori et al.,and presumably also in th®tztal Alps (both Tyrol, Aus-
2003; Eberhardt et al., 2004). tria) at elevations of approx. 2100 m a.s.l. was already in full

swing at about 9608*C yrs BP (Weirich and Bortenschlager,
1980; Bortenschlager, 1984), i.e. approx. 10950 cal BP.
7 Discussion Concerning these data, even the early post-glacial land-
slides, among them some of the largest Alpine events
Deep-seated gravitational slope deformation is controlled bye.g. Kofels, Kandertal, Flims and Hochmais did not fail im-
lithological, structural and morphological predisposition, by mediately after glacier retreat and unloading, but occurred
different time-depended long-term rock strength degradingseveral 1000 years later (Fig. 9). This delay indicates that
processes and by shorter termed variable triggering factorgime-dependent rock strength degradation is controlled by
Detailed field studies of fossil and active landslides in thebasic parameters such as lithological, structural and mor-
Tyrol indicate that these failures can basically be attributedphological dispositions, and by variable processes such as
to the complex intersection and coalescence of bedding andynamic loading and pore-pressure fluctuations. In combi-
schistosity planes and brittle fault and joint systems, resultnation, these factors promote progressive fracturing and can
ing in a substantial rock strength reduction extending to conthus both prepare and trigger slope instabilities (Fig. 13).
siderable depths (Bckl et al., 2004; Prager et al., 2006b,
2006c¢; Zangerl et al., 2007, 2008). Several of these deep7.2 Subcritical fracture propagation
seated gravitational slope deformations are encountered in
seismically active regions and coincide temporally with pe- Compiled landslide-dating shows a rather continuous tempo-
riods of increased debris flow accumulations in the nearbyral distribution in the Holocene and thus yields evidence that
main valleys. In view of these findings, rock strength de- glacial decompression is not the only trigger. If this were the
grading processes and parameters, which control slope inst&ase, the majority of deep-seated slope failures would cluster

bilities in the Holocene, will subsequently be discussed. immediately after late-glacial deglaciation, but this is not the
case. This indicates a gradual reduction in slope stability af-
7.1 Glacial loading and unloading ter the glacier’s retreat, continuously, by progressive failure,

i.e. a long-term process resulting from stress redistributions

In the Eastern Alps, the stabilities of polyphasically and at the oversteepened valley flanks. As a result, the general
heteroaxially fractured rock units were fundamentally influ- rock strength is intensively affected by fracture propagation
enced by morphological changes in the Quaternary. In parand by a stepwise coalescence of pre-existing brittle discon-
ticular, repeated glacier advances and isostatic rebounds itinuities (e.g. Eberhardt et al., 2004), which both strongly
the Pleistocene caused local stress perturbations (e.g. Grotlepend on the existing stress field as well as on the fracture
limund and Zoback, 2000, Cossart et al., 2008) and thus regeometry and the joint network. Field investigations and sub-
activations of pre-existing discontinuities as well as initia- crop data in the polymetamorphic rock units of the Gotthard
tions of loading fractures in the bedrock units. Subsequentlymassif (Switzerland) furthermore show that the joint densi-
fluvio-glacial erosion, valley-deepening and postglacial de-ties increase significantly from deeper lying to higher lying
compression (cf. Ballantyne, 2002) uncovered favourablybedrock units, and they also indicate a progressive occur-
oriented sliding planes and caused substantial stress redistnience of unloading fractures which are mainly oriented par-
butions in the undercut and oversteepened slopes. Thereforallel to the slope (Zangerl, 2003). The coalescence of such
the high and unbalanced relief since the early Post-Glaciatliscontinuities may initiate both the internal disintegration of
is certainly a main factor contributing to Alpine mass move- rock masses and the development of potential sliding planes
ments. Consequently, a few slopes, which were characterisedue to local stress concentrations.
by critical fracture densities and thus close to their stability Concerning the long-term behaviour of fractured rock
limit equilibrium, failed after the late-\Wmian ice retreat. masses, there are complex physical-chemical processes in

The late-glacial Gschnitz valley glaciers advanced, at thefractures that enable slow crack propagation even below a
type locality in the central Eastern Alps, down to altitudes of critical stress-intensity factor threshol® (¢, Fig. 11). Ac-
about 1200 m asl not later than 15 460D400yrs ago (lvy-  cording to the model of sub-critical crack growth (Atkinson,
Ochs et al., 2005). This indicates that the toes of severall984, 1987), crack propagation may be caused by different
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parameters (e.g. interactions of pore water pressure, stres Failure

corrosion, dissolution, diffusion, ion exchange and micro- e -

plasticity). The processes involved, e.g. the weakening of _ Cracfgfjﬂ'ﬁ ar

crystal bonds through chemical pore-fluid activities in the § : §; - N

crack tip, start when driving forces exceed a threshiid © 5k AQ"%V
(e.g. stress corrosion limit). At the critical lev&l;¢ (frac- § § L A/ Couartzirs
ture toughness), cracks propagate dynamically and acceler g 3 rif'i’;’e N
ate up to a velocity close to the speed of sound in the rocks.§ 5L / /7
The application of this fracture mechanical model to unsta- 5 o/ ;Aam_ﬁ
ble slopes would mean that fracture density and persistence ‘ = 7885i20cksc‘
continuously increase over a longer period of time. This i ocks/ ™ 1L

in turn would lead to a continuous decrease in slope stabil- Stress intensity (Kj) 02 OE‘ P 06 0810
ity and result in a slope failure, when a strength threshold 1R

IS resched.tthhe gegeraltlr): C'Ot[nple?proc;cesses cif SUb_Crlilcall—'ig. 11. Schematic illustrations showing (on the left) crack growth
crack growth depend on the Interaction ot several parame er%/elocity versus stress intensity factor,(K subcritical crack growth

€.g. In-situ stresses, bedr(_)ck mlnerf'ilogy, frf’i_cture geometriega s when driving forces exceed a threshojd Kpproaching to a

and pore water characteristics. Being significantly favouredcitical level K, ¢, cracks propagate dynamically to near the veloc-

by high pore water pressures, lower bounds of fracture propity of sound in the rocks. Note that increasing pore pressuresQ)(H

agation velocities vary between a few centimetres and severahay significantly accelerate crack propagation velocities. On the

decimetres per 1000 years (Fig. 11; Atkinson, 1984; Atkin-right, variations of subcritical tensile crack growth in different rock

son and Meredith, 1987). types are shown (log/log plot; arrows indicate range of experimen-
tally obtained data; modified after Atkinson, 1984, 1987).

7.3 Dynamic loading

Historically documented case studies indicate that landslidegnabled fluvio-glacial valley deepening in the vicinity of sev-
are predominantly triggered by heavy precipitation or by eral failed slopes, e.g. at Fernpass, Eibsee, Ehrwald, Tschir-
earthquakes, with large rock avalanches mostly being regant and Pletzachkogel. Regional seismic data show that
leased by seismic events with magnitudes 8/(Eisbacher earthquakes close to the Fernpass feature epicentral intensi-
and Clague, 1984). According to ®Btthal et al. (1998), tieslp<7.5> and rank among the strongest ever measured in
earthquakes with EMS-98 epicentral intensitigs-5 can  Austria (Drimmel, 1980). The fact that some of these earth-
release smaller and relatively shallow-seated slope failuresjuakes triggered rockfalls and changed the hydraulic flow
such as earthslides and minor rockfalls, whereas larger, deefiield locally (Schorn, 1911, 1922, Klebelsberg, 1930) sug-
seated rock slope failures such as landslides and massive mgests that the release of fossil rockslides of similar ages could
jor rockfalls require intensitie§>7 as a trigger. have been essentially favoured by seismic shaking. Concern-
General evidence of (paleo-)seismically triggered slopeing the Tyrol, maximum earthquake magnitudesd\46.1
failures may be given by the coincidence of neotectoni-(+0.4) for the Inn valley and 5.6 (+0.4) for the West Tyrol
cally active fault systems and age-clustered landslide dis{incl. Fernpass region) have been modelled (Lenhardt et al.,
tribution (Keefer, 1984; Jibson, 1996). Based on the spa2007). Considering the ranges of the calibraté@-dating
tial and temporal correlation of active faults, lacustrine mass(Fig. 10, Table Al), some of the spatially clustered rock-
flow deposits, subaerial rockfall deposits and speloethemsslides in the Eibsee, Fernpass, Tschirgangttiach and
several major paleo-earthquakes in central Switzerland werdumpen region may be of the same age and may thus si-
recorded. These earthquakes, which occurred during the lagaultaneously have been triggered by earthquakes. But with
15000yrs in the late Pleistocene and Holocene and clearlghe exception of the prominent Dobratsch rockslide 1348
affected larger regions, were characterised by magnitudedD in Carinthia/Austria (Eisbacher and Clague, 1984), a
M=>6.5-7.0 (Becker et al., 2005; Strasser et al., 2006). Corfew (paleo-)seismic records from Switzerland (Becker et al.,
responding studies yielded evidence that paleo-earthquakg005) and some events triggered by the 1998-earthquake in
frequency in central Switzerland was increased in the lateNW-Slovenia (Vidrih et al., 2001), seismically induced slope
Pleisctocene — early Holocene, due to isostatic rebound aftefiailures documented in Central Europe tend to be of minor
glacier retreat, and also in the last 4000 yrs, due to seismi¢limensions.
activations of brittle fault systems (Monecke et al., 2006). Yet, active fault systems can not only trigger mass move-
This may also be the case in the Fernpass region, wherments, but can produce intensely fractured rock masses
several fossil landslides cluster spatially and temporally ancextending to substantial depths, including potential slid-
are also situated closely to seismically active master faultsing planes. Some regions in the Tyrol are characterised
e.g. the NE-trending brittle Inntal fault system (Fig. 7). by high ground accelerations of up to 1 A/ENORM
These systems caused deep-seated rock fragmentation aBd015, 2007), others are affected by less energetic, but
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shallow-seated earthquakes with foci at depths of only 3-and were consequently less effective. Recent permafrost con-
4km (Fig. 7). These earthquake intensities are below anyditions, at least in the upper third of the Zugspitze massif, are
threshold likely to trigger deeper-seated landslides, but evelindicated by metre-sized ice-filled clefts and joints (Knauer,
subcritical dynamic loading may accelerate progressive frac1933; Korner and Ulrich, 1965; Gude and Barsch, 2005).
ture propagation within the affected rock units. Comparable

load tests show that samples with discontinuities are not sub?.5 Climate changes

ject to any further fracture propagation under static loading

conditions below their critical failure load. Contrary to this, Central Greenland ice cores and Lake Ammersee (Bavaria,
dynamic loading initiates fracture propagation at values farGermany) isotope records show rapid climate shifts be-
below the critical load (Gross, 1996). Such a fatigue cracktween 15 and 5ky, with significant warming at about 14.5ky
growth, resulting from the interaction of tension and pressure(transition Oldest Dryas—Bglling) and 11.5ky (transition
stresses (Chernyshev and Dearman, 1991), can step by st&gunger Dryas—Preboreal; Grafenstein et al., 1999). Af-
weaken intact rock bridges and raise the effective joint poroster the Younger Dryas cold period, glaciers in the Central
ity. Applying these findings to unstable slopes gives evidenceEastern Alps rapidly retreated to modern extents. Subse-
that repeated seismic shaking can encourage landslides by rguently, several smaller but nevertheless significant glacier-

ducing rock strengths and changing hydraulic conductivities.and forest-line fluctuations indicate considerable changes of
the Holocene climate. Glaciers varied in size around modern

7.4 Fault healing and fracture cementation extents, yet were smaller for longer periods in the middle and
early Holocene (Patzelt, 1977, 2005). The Lake Ammersee
Fault models indicate that during interseismic periods pro-records clearly show the cold incursion of the 8.2 ky event
cesses of fault healing and sealing, i.e. rock strength recovand a plateau-like temperature trend with only minor fluctu-
ery due to compaction and cementation of fractures relateditions in the middle to younger Holocene (Grafenstein et al.,
to active faults, occur. Thus, in calcitic environments, at 1998, 1999).
depths between 2 and 5 km, micro-fracture porosities may be Glacier studies in the Central Eastern Alps show that long
closed in about 1000yrs (Renard et al., 2000). With respecperiods in the Holocene were characterised by favourable cli-
to subaerially exposed rock units this implies that meteoricmatic conditions with average summer temperatures slightly
cementation of brittle discontinuities may continuously in- higher than at present. These periods were repeatedly in-
crease slope stability (Fig. 13). terrupted by relatively short, but pronounced deteriorations
But the well exposed scarp areas of the Eibsee and Tschimwith multiple glacier advances, like thedbben advance at
gant carbonate rockslides, and especially the deeply incisedbout 3750-3250 cal BP (Patzelt and Bortenschlager, 1973;
niche at the Fernpass show intense deformation along brittl€ig. 12). In line with this, Austria’s largest glaciers, the
fault and fracture zones with kakirites and uncemented, thu$asterze and the Gepatschferner, were on several occasions
open, discontinuities extending to substantial depths. Meteand even for longer phases between 10450 and 3650 cal BP
oric cementation, in general terms of efficiency and extent,smaller than at present and experienced several minor fluctu-
strongly depends on the climate, i.e. humidity and circulat-ations between 3650 cal BP and the waning Roman age, until
ing pore-water, as well as on bedrock mineralogy. In mostthey reached their modern dimensions (Nicolussi and Patzelt,
meteoric diagenetic environments, calcium carbonate is th&000, 2001).
most wide-spread type of cement (Tucker and Wright, 1990). Also in the Central Swiss Alps, unstable Holocene cli-
Field observations revealed that in limestone terrains, probamatic conditions are indicated by glacier fluctuations featur-
bly due to the availability of nucleation sites, veins and jointsing at least eight phases of significant glacier recession with
filled by calcium carbonate cements are widespread. Conseveral cold-wet periods in between. In the middle Holocene,
trary to this, in dolomite and crystalline bedrock units, openin the period between 5290-3870 and 3640-3360 cal BP,
fractures devoid of cement are frequently encountered. Thugjlaciers were smaller than at present due to moderate cli-
the thick dolomitic successions of the Wetterstein and Hauptmatic conditions (Hormes et al., 2001). Except for the
dolomit Formation, which form the Fernpass and Tschirgantnon-correlating, but significantly high lake levels at 3500—
scarp, exhibit less active cementation processes. This, i8100cal BP, younger Holocene lake level maxima in the
turn, favours the coalescence of brittle discontinuities andSwiss Alps coincide with glacier advances. Thus these pe-
provides potential sliding planes. riods were characterised by a general drop in winter tem-
As far as fracture healing is concerned, the scarp areaperatures and an increase in summer moisture, controlled by
of the Eibsee and Ehrwald rockslides (see Sects. 4.1, 4.2juctuations in solar activity (Holzhauser et al., 2005).
appear to represent special cases. Situated at north- and Compiled data of several sub-regions in Europe and of
west-exposed cliffs of the Zugspitze massif (2961 m a.s.l.)a few deep-seated landslides in the Alps suggest an in-
and reaching elevations of up to 2600-2800 m a.s.l., vadoserease in all types of rapid mass movements (i.e. land-
cementation processes of Wetterstein Formation limestoneslides, debris flows, snow avalanches) in the middle and late
seem to have been retarded by the occurrence of permafrostolocene, i.e. approx. after 5000 cal BP. Since this positively
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correlates with major phases of solifluction and glacier ad-

vances, landslides may contain proxy data on |onger term Humidity index | Solifluctuation Glacier Summertemp.erature Chrono-
.. .. . , (inferred from phases fluctuations | (Western Austrian Alps) | zones
variations of paleo-precipitation (Berrisford and Matthews, | ci | cerensee | (Easter swiss | (swiss Alps) (Patzelt,2005)
1997; Matthews et al, 1997). yrsBP | lakeanalyses) | Alps riss00c
9 . . (D les et al., 2003) 3 o 5 2
In Switzerland, Raetzo-Bithart (1997) attributes two dis- 0 e - T

'E Younger

= Subatlantic

=

tinct clusters of raised landslide activity, at about 10 000—
9000 and 5200-1500cal BP, to warmer and/or more hu- | '
mid paleoclimatic conditions. Dapples et al. (2003) corre-
late five late-glacial to Holocene pulses of increased land-
slide dynamics with glacier advances, increased solifluction | .,
and sedimentary changes within lacustrine deposits (Fig. 12).
Based on this, climatic deteriorations such as colder and es-| 000 —
pecially more humid conditions controlled slope instabilities
at about 11 500-10 250, 6250-4800, 3500—2100, 1700-115Q 500 — E
and 750-300 cal BP. Major landslide activities in the latest R
Pleistocene were succeeded by fluctuating activities due to| *®° | ]
variable climatic conditions, until approx. around 3800—
3400 cal BP a climatic shift towards colder and wetter condi-
tions led to another significant rise in slope activities (Dap- | g0 |
ples et al., 2003; Raetzo and Lateltin, 2003). Regionally, this iy SR
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climatic influence may have been further intensified by an- | sooo 5 C ==t
thropogenic influences on vegetation (e.g. by forest clearing), £ |3 L2 Boreal
which were indicated by significantly increased landslide ac- |'%°® 5| 5 <J Schiaten

tivities in the Western Swiss Alps from 3650 cal BP onwards
(Dapples et al., 2002).

In the Italian Dolomites, Soldati et al. (2004) also differ- | 1,000
entiated between two striking age clusters of landslides: an
early post-glacial one at about 13 000—-9000 cal BP, which is | 13000
due to deglaciation processes and was probably favoured by / Alerod
increased precipitation and/or permafrost meltdown, and a **®
younger one, at about 6500-2300 cal BP in the Subboreal,
which is again assumed to correlate with an increase in preFig. 12. Comparison of Late-glacial to Holocene paleoclimatic in-
cipitation. In the Northern Apennines (ltaly), the majority dicators of lake Gerzensee (-1: dry, 0: normal, +1: wet, +2: very
of dated landslides yielded ages younger than 5000 cal Blyvet), sol!fluctuathn actwﬂy and gIaC|erquc.tuat|ons (Dapp!es etal,
and were assumed to correlate with climatic deteriorations?20) With combined glacier- and forest-line data featuring some

- . significant glacier advances in the Austrian Central Alps (Patzelt,
(Bertolini, 2007; Bertolini et al., 2004). 2005).

However, several rockslides in higher Alpine environ-
ments occurred in periods of above-average temperature,
when slope stabilities have been decreased by glacial de- _ )
buttressing and/or thawing of permafrost (e.g. GeertsemaSOme deep-seated rockslides in the early Holocene (e.g. at
2007). On according slopes, permafrost degradation may<0fels, Kandertal, Flims and Hochmais) coincide with an
generally contribute to slope instabilities (Davies et al., 2001;82rly phase of increased, precipitation-controlled, raised de-
Ballantyne, 2002; Gude and Barsch, 2005). Warming per-b”S flow activities in the Tyrolean Inn valley, occurring at

. ; 4 ;
mafrost may be attributed to heat conduction and water per@bout 9400“C yrs BP (Patzelt, 1987), i.e. approx. 10630 cal
colation in fractures, i.e. crucial factors promoting failure in BP.
steep bedrock slopes (Gruber and Haberli, 2007). In view Compiled dating data also indicate a significantly height-
of these findings, thawing permafrost might have played aened landslide activity in the Subboreal at about 4200-
role during warmer periods in the Holocene, especially in3000 BP, which is clearly not directly linked to deglaciation
the early Postglacial. Based on the radiometric dating ofprocesses. Several of these events, amongst them some of
the Kandertal rockslide (Switzerland), Tinner et al. (2005) the largest rockslides in the Alps, are encountered in the
supposed that increased slope instabilities during the earl{fyrol. They cluster both temporally and spatially (“Fern-
Holocene were climatically controlled by a rise in precipi- pass cluster”; Figs. 8, 10) and correlate with the activities
tation and mainly by above-average (summer-)temperaturef several large-scale debris flows in nearby major valleys.
which might have caused a withdrawal of permafrost due toA phase of increased alluvial accumulation in the Inn val-
a post-glacial climatic optimum. Temporally, the failures of ley, at about 3503“C yrs BP (approx. 3780 cal BP), was
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A also yielded evidence of coupled hydro-mechanical destabil-
Glacial loading \; el ising processes. Here a test drill, at the base of the Haim-
Degtacton Porepresureincesse 7 faulthesling ing scarp, penetrated approx. 670 m subhorizontally to the

\ north and proved the existence of an effective water table. In

T the heavily fractured and thus highly permeable dolomites,

N e SIBIE | ndislides cluster 1 dammed to the south by low permeable siliciclastics of the
Vo T e Raibl Group, steeply inclined hydraulic gradients and high
¢ Pan. Failure without significant trigger pore pressures of up to 43 bar were measured (personal com-
L A munication, Intergeo Consultants, Salzburg, Austria, 2005).
Landslides cluster2 2% AN These data suggest that here deep-seated slope deformations
Fatre roserr Nowager could have been favoured by climatically controlled ground-
Time water level fluctuations.

>
T

Earthquakes

Stability

Fig. 13. Conceptual model for rock strength degrading processes ir]8 C Ui
the Post-Glacial versus time (dimensionless). onclusions

In the Tyrolean Eastern Alps, several well-exposed scarp ar-
as show that slope failures were clearly structurally con-
rolled by fracture propagation and the coalescence of brit-

tle fault and joint systems. Morphological changes, due to

fluvio-glacial valley deepening in the Pleistocene, uncovered
preferentially orientated sliding planes and caused substan-

RN tial stress redistributions in the undercut slopes. Since then,

Another coherent proxy for paleo-precipitation in the East- ;o mplex and time-dependent processes of subcritical fracture
ern Alps has not been established yet. In the MedlterraneaBropagation have affected slope stabilities.

area, speleothem isotope records from central Italy coincide |, order to identify potential causes and triggers of land-

with a time of significant sapropel deposition and suggeslyjijes 4 first comprehensive compilation of dated mass
enhanced regional rainfall between ca 8.9 and 7.3ky, with g4 ements in the Tyrol and its surroundings has been made.
maximum between 7.9 and 7.4 ky (Zanchetta et al., 2007). ¢ reveals that the majority of Holocene mass movements
However, historica”y documented case studies show thaWere evidenﬂy not direct|y triggered by deg|aciation pro-
increased precipitation is generally the dominant landslidecesses, but needed a preparation time of some 1000 years,
trigger (Eisbacher and Clague, 1984; Gruner, 2006). Highekfter the ice withdrawal, until the slopes collapsed. Some
pore pressures favour large slope movements by increasingf the largest landslides in the Alps occurred in the early
seepage forces and lowering the effective stresses respegiplocene, at about 10500-9400 cal BP. Remarkably, sev-
tively (e.g. Bonzanigo et al., 2000). They also accelerate thesra| deep-seated rockslides in the Tyrol were found to cluster
velocity of subcritical crack growth (Atkinson and Meredith, temporally, at about 4200-3000 cal BP, and some of them
1987) and reduce the friction angle of weathered and waterg|so cluster spatially. This indicates striking environmental
saturated rock surfaces, which is generally lower than that Of:hanges in this region in the middle Holocene.
dry and unweathered ones (e.g. Barton and Choubey, 1977). | the Tyrol, several large rockslides are encountered near
Recent field studies in the Central Swiss Alps suggest thateismically active fault systems. Regional earthquake data
natural variations in groundwater pressure directly controlrecord seismic events with comparatively high magnitudes
seasonal slope deformations. The collected geodetic moniv <5.3 and epicentral intensitie<7.5° as well as oth-
toring results show significant valley closures in the spring-ers, which are characterised by lower intensities but fea-
time, which are characterised by horizontal deformations ofture shallow-seated hypocentres located at depths of only 3-4
about 10-16mm and by vertical uplifts of about 10 mm. km. Active faults can not only directly trigger mass move-
These elastic, reversible deformations normal to the valleyments, but they can also produce intensely fractured and un-
axes correlate positively with groundwater recharge ratesemented rock masses. Thus, repeated dynamic loading,
(Low et al., 2007). In the long run, such annual openingseven if at subcritical energy levels, initiates brittle fracture
and closures of valleys may, comparable to dynamic loadingpropagation and promotes slope instabilities.
by subcritical earthquakes, promote material fatigue due to  Temporally, quite a few rock slope failures coincide with
brittle fracture propagation and may thus favour progressivej) dated landslides in the surrounding regions, (ii) increased
failure of predisposed slopes. debris flow activities and, partially, with (iii) glacier fluctu-
Structural field investigations and subsurface data obtaine@tions in the Austrian Central Alps. In combination, these
at the basal Tschirgant massif (Tyrol, Austria), which is char-data may be proxy of paleoclimatic conditions and may in-
acterised by polyphase rockslide events (Sects. 4.4, 4.5)icate periods of raised precipitation and groundwater flows.

established for some main tributaries such as the rivers Sil
and Melach (Patzelt, 1987). This and the activities of local
torrents and debris flows (Table Al) as well as glacier ad-
vances in the Austrian Central Alps (Fig. 12) indicate periods
of greater water supply in the catchment areas.
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This in turn, controls the pore pressure within fractured rockunloading, (b) subcritical crack growth, (c) seismic activity

masses and favours progressive failure. Thus, structuralland (d) climatically controlled pore pressure changes. Any
and morphologically predisposed mass movements were presf these destabilising mechanisms, even if only at subcriti-
pared and triggered not just by a single cause, but by the comeal thresholds, can trigger a failure event if slope stability is
plex and polyphase interactions of several rock strength dealready close to its limit equilibrium.

grading processes. Deep-seated slope deformations may be

attributed to critical fracture densities due to the propagation )

and coalescence of brittle discontinuities. This is favoured™PPendix

by different time-dependent and interacting processes which

comprise (a) stress redistributions due to glacial loading and™0SSil mass movements in the Tyrol (Austria) and
its surrounding areas: chronology of dated events, listed

from old to young
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