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Abstract. Daily precipitation is recorded as the total amount itation, earthquakes, wind, eruptions, floods, fires, etc.) are
of water collected by a rain-gauge in 24 h. Events are mod-often modelled by marked Poisson processes: events are as-
elled as a Poisson process and the 24 h precipitation by aumed to occur as a point Poisson process in time, and mag-
Generalised Pareto Distribution (GPD) of excesses. Hazarditude of events is assumed to be random, independent from
assessment is complete when estimates of the Poisson ratfee time-occurrence process and from event to event.

and the distribution parameters, together with a measure of This simple model may be useful in situations when one is
their uncertainty, are obtained. The shape parameter of thinterested in rare but dangerous events. However, the scarcity
GPD determines the support of the variable: Weibull domainof data leads to highly uncertain parameter estimates, a prob-
of attraction (DA) corresponds to finite support variables aslem which can be overcome using Bayesian estimat@ei{
should be for natural phenomena. Howevegdhet DA has  man et al. 1995 Coles 200]) to account for uncertainty. A
been reported for daily precipitation, which implies an infi- standard model for large magnitude events is the Generalised
nite support and a heavy-tailed distribution. Bayesian tech-Pareto Distribution (GPD)Embrechts et 311997, leading
nigues are used to estimate the parameters. The approaed a global model with four parameters: the rate of the Pois-
is illustrated with precipitation data from the Eastern coastson process; the scale and shape for the GPD; and a reference
of the lberian Peninsula affected by severe convective prethreshold. The reference threshold is assessed empirically
cipitation. The estimated GPD is mainly in thesEhet DA,  and afterwards validated. This assessment is a key point of
something incompatible with the common sense assumptiofthe analysis because a trade-off must be made between a high
of that precipitation is a bounded phenomenon. The boundeghreshold, guaranteeing a better model fit, and the number of
character of precipitation is then taken as a priori hypothe-available data with magnitude over it. The other three param-
sis. Consistency of this hypothesis with the data is checkeaters are considered jointly distributed, and are estimated us-
in two cases: using the raw-data (in mm) and using log-ing Bayesian techniques. Prior information is obtained from
transformed data. As expected, a Bayesian model checkingxpert opinions or physical knowledge.

clearly rejects the model in the raw-data case. However, 10g- Thijs approach was used Bgozcue and Rami@001) to
transformed data seem to be consistent with the model. Thi%nalyse precipitation in Eastern Spain using a database cov-
fact may be due to the adequacy of the log-scale to represenring 30 yearsRomero et al.1998. Heavy precipitation is
positive measurements for which differences are better relag serious weather hazard in the Valencia region, especially in
tive than absolute. autumn. Every year several events exceeding 100 mm daily
precipitation occur. Strong convective systems are respon-
sible for it, and precipitation tends to discharge over short
periods. For example, in Gared on 3 November 1987,
more than 800 mm were recorded in 24h. Some of these

The goal of hazard assessment is to estimate the probabilitfvents produce floods and severe damage to properties, in-
of occurrence of large events in a given lifetime. Hazardous rastructure and agriculture, like the one that destroyed the

events due to natural or anthropogenic phenomena (preciptous dam (Valencia) on 20 October 1982. The main prob-
lem in the study performed bgozcue and Rami007)

Correspondence tal. J. Egozcue appeared to be that excesses exhibit a heavy, unbounded, up-
(juan.jose.egozcue@upc.edu) per tail, something contradictory with the naturally bounded

1 Introduction
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Vergel de Recons value is assumed unknown; b) large events occur in time as
a Poisson process; c¢) precipitation in 24 h is random and dis-

5 350 tributed GPD over a suitable threshold. Moreover, it is inde-
§ 300 pendent from event to event and the time occurrence.

% 250 Hypothesis a), being a common sense one, appears to be
@ 200 quite inconsistent with the data when the analysis is per-
g 150 formed using raw-data. However, lggdata do not show this

E 100 inconsistency. The whole model is checked using Bayesian
g 50 p-values for both data sets.

€ o

1964 1969 1974 1979 1984 1989 1994

time (years) 2 Precipitation data

To study the effect of scale transformation, a single rain-

gauge is selected from the data bas&loynero et al(1998.

This data base contains records of daily precipitation along
30 years (1964-1993) for 72 rain-gauges in Valencia region
(Eastern Iberian Peninsula). The selected rain-gauge is lo-
é:ated at Vergel de Racons (Alicante;.882 N, 0.012 E).

Only daily precipitation over 25 mm is considered, and the

Fig. 1. Observed daily precipitation at Vergel de Racons (Alicante,
Spain), 1964-1993.

character of precipitation. Precipitation in 24 h must be lim-
ited due to several physical reasons: water content in th
atmosphere is limited, the movement of convective cells is
limited, and also the time of precipitation. These facts havemaxmum daily precipitation in a moving window of 7 days

been neglected by many authors for the sake of S|mpI|C|ty,S extracted. In order to obtain independent events, consecu-
because actual physical upper limit is not known (€gles tive maxima are forced to be separated more than three days;

and Tawn 1996 Egozcue and Rami001, DeMichele and whenever two or more are closer than three days, only the
Salvadorj 2003 largest daily precipitation is considered. The obtained set of

While analysing the underlaying reasons for heavy tail192 events |s_represented in Fig.They range from_ 25 mm
: S . p to the maximum observed, namely 305 mm daily precipi-
behaviour of precipitation, one can realise that 20mm and .. . - S
ation. Along this study the original precipitation values are
20 mm precipitations are one double of the other, whereas ised (raw-data) as well as the lggransformed data (
500mm and 510 mm are both large rainfalls and may be" g ag-

considered similar. Only few observers would characterise ata).

these differences using the ordinary differences of 10 mm.

Most people would prefer a relative measure of difference,3 Hazard model

i.e. the first case corresponds 1@D—10)/10=100% incre-

ment of the first rainfall, while in the second case, it is only The Poisson point-process model used for natural event oc-

100(510-500/500=2%. The comparison of 0 mm precipi- currences is assumed stationary, something contradictory

tation and 10 mm is more dramatic: the first one correspondsvith the seasonal character of precipitation, or even with

to “no rainfall” or “no event”; the second one is definitively some long term trend. However, if attention is restricted to

“rainfall” and, therefore, the difference is no longer quanti- high magnitude events, the yearly periodic component can

tative but qualitative. These appreciations are mainly sub-e neglected because these events occur with return periods

jective and may depend on the particular application but, aimuch longer than one year. Moreover, long term trends like

least, put a question mark on the use of the ordinary distancéhose possibly induced by a climate change are hardly de-

to quantify differences between rainfall events. A logarith- tected along a 30 years record. Hence, results of the analysis

mic transformation of rainfall data gives a way to handle using stationary models should be considered carefully for

these problems of scale: the relative scale is transformed intpredictive uses. Precipitation events exceeding a threshold

the ordinary one and positive data become just real (positive: are modelled as points in time. For each event, a mag-

or negative). This kind of discussion on the natural scalenitude or sizeX (daily precipitation in this case) is usually

of positive data is generaPawlowsky-Glahn and Egozcue taken as a random variable. The assumptions used are: (a)

2007 and logarithmic transformation of positive data may magnitudes are independent from the point process itself; (b)

be recommended in many applications. they are independent from event to event; (c) all magnitudes
The present goal is to compare the behavior of a pre-have the same distributiafiy; and (d) the occurrence of the

cipitation sample in its original scale (raw-data) and log- events in time follows a Poisson process. Thus, the number

transformed data (Iqg-data) using the above described haz- of events,N (1), occurring in a given arbitrary time interval,

ard model and Bayesian estimation of parameters. The cort is governed by the Poisson probabili=0, 1, 2, .. .)

sidered model is based on the following hypotheses: a) daily

precipitation is bounded in the upper tail and the uppermosfIN (1) = n[A(u), 1] = —(X(M)t)"e_k(”)', (1)

Nat. Hazards Earth Syst. Sci., 6, 4836, 2006 www.nat-hazards-earth-syst-sci.net/6/459/2006/
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where(u) stands for the rate of the Poisson process givenDA contains distributions with heavy upper tails correspond-
the thresholdy. This model is sometimes known as the ing to GPD’s withé>0. GPD’s in the Weibull and Gumbel
Craner-Lundberg model. domain have both mean and variance, but this does not apply
The event magnitudeX, is modelled only in the upper to Fréchet DA. If£§>1, the mean does not exist, and vari-
tail of its distribution using the peak-over-threshold method ance is not defined far>0.5, thus remarking the heavy tail
(Embrechts et al.1997). The excess over the threshold behavior of GPD’s in the Erchet DA.
u is defined as¥={X—u|X>u} and uses the relationship Natural phenomena are physically bounded; thus, their
(y=x—u=>0) magnitude should be in the Weibull DA. However, heavy
tail distributions have been reported, in particular for intense

1-— Fy(y)=PlY > y|X > u] = ﬂ , (2) precipitation in different climatesQoles and Tawn1996
1-Fx(u) Egozcue and Rami€001). Data in Fig.1, reported in raw

where Fy is the excess distribution. Equatio?) (inks the  Scale, behave in this way, as is shown later. This fact is usu-
distributions ofX andY. ally considered to be due to lack of data, but the reason might

Hazard parameters can be obtained from the model. FoP€ SImply an inappropriate scale. In the present case study, a
instance, the return period of events whose magniftiee- logarithmic scale reveals a clear Weibull DA for precipitation
ceedsr is events. _

This is not unimportant, as one should be aware that, from
T(x) = () Cu<x, (3)  atheoretical point of view, a log-transformation of a GPD
1-Fy(x —u) - random variable cannot transform an unbounded support into

a limited one. In fact, log-transformation of a distribution in
the Gumbel and Eechet DAs are transformed into distribu-
tions in the Gumbel DA.

wheret (u)=1/1(u). Also, non-exceedance probabilities of
the threshold: in a lifetime L are

PIN(x) = 0|L] = exp—A(x)L], (4)

where(x)=1/7(x). 4 Bayesian estimation of parameters

When Fy is specified, the hazard model is complete for
excess values>u. The option here selected is the Gener- The selected hazard model has four parameters: the absolute
alised Pareto Distribution (GPD). GPD is a simple and parsi-thresholdx; the rate of the Poisson process of events which
monious model for excesses, as it is the limiting distribution magnitude is larger tham, A («); and the shape and scale pa-
for excesses wheneveis high enoughRickands1975and  rameters of the GPL¥ and g, for excesses over. Due to
it is general enough as it includes both finite and infinite sup-scale reasons, we prefer to re-define the Poisson parameter

port distributions. GPD is given b§>0, y>0) asz=z(u)=l10g;gA(u)=—10g;g7 (). The four parameters
1 must be estimated from the data set to evaluate hazard pa-
Fy(y|E,p) =1— <1+ S_y) , (5) rameters. _ _ _
B The absolute threshold is selected according to crite-

ria discussed in Secbt and, here, we assume that it has
oBeen already chosen. The remaining three parameters,
& and g, are estimated using Bayesian methods developed
in Egozcue and Rami@001) and Egozcue and Tolosana-
Delgado(2002. According to the Bayesian paradigm, these
y parameters are assumed to be random variables. Their joint
Fy(ylt=0,8)=1- eXD(-g) . (6)  probability densities f.z4(z, £, 8) and f.z4(z, £, B D), ac-
count for their uncertainty before (prior) and after (posterior)
Asymptotically, GPD approaches the upper tail of continu- using the data sample, symbolised by
ous distributions. According to the type of the upper tail, The prior density represents our knowledge about param-
maxima extracted from such distributions correspond to dif-eters previous t®. The key assumption is thafu) is inde-
ferent extreme value distributions, namely Gumbel, Weibull pendent froni¢, g), i.e. f.ep(z, &, B)=1.(2)- fep (£, B). Sec-
and Fechet, frequently merged in the so-called generalisedion 6 describes the assessment of the prior in the present case
extreme value distributiorEmbrechts et al.1997. GPD’s study.
are classified into three domains of attraction (DA) referred  The core of Bayesian estimation is to use Bayes’ theorem
to the kind of maxima they generate. Distributions with to obtain the posterior from the prior and the data. Bayes’

exponentially decaying upper tails belong to the Gumbeltheorem, under the stated assumption about the prior, states
DA and are approached by a GPD wihk-0 (exponential).  that

Bounded upper tail distributions correspond to the Weibull
DA and are approached by a GPD witk0. The Fechet  fiz5(z, &, BID) = C L(z,§,BID) - f;(2) - fep(€.B), (7)

with & andB the shape and scale parameters. The support
Y is the positive real lin®* for £>0, while it is bounded in
the interval[0, —8/&] for £<0. Foré=0, Eq. 6) takes the
exponential form

www.nat-hazards-earth-syst-sci.net/6/459/2006/ Nat. Hazards Earth Syst. Sci.,4/32906
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Fig. 2. Posterior density of, 8 for raw-data. u=45mm. Flat prior. High probability of Echet DA. Lower-Left grey triangle is a
null-likelihood zone due to observations.

whereC is a normalising constant ant(z, &, 8| D) is the old u=45mm. The prior has been set to a uniform distribu-
likelihood of the data. The likelihood can also be factorised, tion over a large enough square §f 8)-values. Therefore,
” the posterior is, up to a constant, the likelihood of the ex-
_ _ ] , cesses. Figurg represents the posterior density in the plane
Lz & FID) = PIN() = nlz, o] 1:[1 il py.®) g, B. Each point in the plané, 8) corresponds to a GPD,
and the value offzg (¢, | D) to the relative likelihood of the
where D has been made explicit as the numb&g)=n of parameters. An important feature is tl§at0 (Frechet DA)
excesses,;=x;—u overu, the excesses themselves, and thecontains the most likely points for the parameters and, con-
observation timeg. sequently, Rechet DA is clearly more probable than Weibull
The posterior density in Eq7) is itself the result of the DA, thus confirming the Fechet DA behaviour of the raw-
Bayesian estimation, but it is also the basis to obtain thedata. In contrast, Fig3 shows the posterior for Iqg-data.
distribution of other hazard parameters, like return periodsAgain the prior was uniform in a large enough domain, so
Eqg. @), or non-exceedance probabilities, E4).(When it  that the posterior is essentially the normalised likelihood. In
is assumed that the estimated GPD is in the Weibull DAthis case, Weibull DA is largely more probable thaieéhet
with probability 1, i.e. the magnitud¥ is surely limited by DA, thus remarking the opposite behaviour of raw-data and
ysup=—p/&, two additional hazard parameters can be con-log,,-data.
sidered: the maximum attainable magnitusigy=u-+ysup,
and the probability of a magnitude to be attainable, i.e. The mode of(&, B) is easily located in Figs2 and 3,
Plx <u+ysupl D]. they correspond to the maximum Ii[<elihood estimates of
These hazard parameters are easily approached from tHbe parameters. For raw-data, they &g =0.14 (Fechet
posterior density. Since, &, andg, are random and jointly  DA), By =37, for log o-data, the results argy,; =—0.24
distributed asf,ss(z, &, | D), hazard parameters are also (Weibull DA), 83, =0.29. The sample distribution and the
random and can be described by their probability densities. Aestimated GPD can be represented in a QQ-plot, &fgr
simulated sample of, £, andg, generates a sample of each raw-data and Fig5 for log;g-data. In both figures the ref-
desired hazard parameter. From this derived sample, cererence is an exponential distribution (GPD-Gumbel DA) fit-
tral tendency parameters, e.g. the median, provide point estied to the data (diagonal line). In Fi§.quantile, given in
mates, and the sample quantiles determine credible interval$og; ; scale have been translated back into raw scale in mm to
These type of estimates of hazard parameters (return periodmake the comparison easier. Sample distributions are repre-
exceedance probabilitiessyp) will be used in Sect?. sented only by markers (filled for upper corners; hollow for
As an example of Bayesian estimation, Figshows the  lower corners). In both figures the maximum likelihood esti-
estimation of andg for raw-data using an absolute thresh- mated GPD’s are also shown (full lines) together with a band

J
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Fig. 3. Posterior density of, g for log,g-data.u = 1.653 = log;¢(45). Flat prior. High probability of Weibull DA. Lower-left grey triangle
is a null-likelihood zone due to observations.
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Fig. 4. QQ-plotwith GPD{=0) as reference (diagonal line). Sam- rig 5. QQ-plot with GPDE=0) as reference (diagonal line). Sam-
ple distribution of raw-data: filled and hollow markers correspond pje gistribution of log-data: filled and hollow markers correspond
to upper and lower corners of the stepwise function; maximum like- upper and lower corners of the stepwise function; maximum like-
lihood estimated GPD, full line; dotted lines: 5% acceptance regionjihgod estimated GPD, full line; dotted lines: 5% acceptance region
for Kolmogorov-Smirnov test. for Kolmogorov-Smirnov test.

(dotted or dashed lines) that represents the 5% acceptance r8- Absolute threshold selection

gion for the Kolmogorov-Smirnov goodness-of-fit test. The

different behavior of the data and fitted GPD with respect toThe first step in the estimation is the selection of an appropri-
the exponential confirms the &het DA behavior of raw- ate reference threshold A graphical techniqueEmbrechts
data (Fig.4) and the Weibull DA in the case of lggdata  etal, 1997 can be applied attending to the fact that, for GPD
(Fig. 5). In both cases, the estimated GPD could not be re-distributed excesses and fe>u, the mean excess is linear
jected at 5% significance level. with respect ta/’ (& <1),

B+ s
T ©

Inspection of the mean excess function was performed for
the raw data and lgg-data. Figure$ and7 show sample

E[X —u|X >u' >u]l=

www.nat-hazards-earth-syst-sci.net/6/459/2006/ Nat. Hazards Earth Syst. Sci.,4/32906
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Fig. 6. Mean excess function for raw-data, squares. Number ofFig- 7. Mean excess function log-data, triangles. Number of ex-
excesses, no marker, secondary axis. cesses, no marker, secondary axis.

do this is to check the goodness-of-fit of excesses to the

estimates of the mean excess function for both data sample%PD but this requires the previous estimation of the GPD
The lines with markers correspond to the sample average Xthe g)rocedure is the following: Fix an absolute threshold
cess over each threshold. The number of excesses used ‘13‘% a candidate and obtain the marginal posterict ad
compute the mean excess is superimposed to indicate the ag— fep(&. BID); for each(&, B) on a grid, compute the p-
e e o e ot s e o o 1 Koo S () goodnes-of i s
> a (&, B); then, imate th dictive KS-p-value,
responds to a echet DA distribution (heavy and unlimited «(8. §); then, approximate the predictive pvaiue
tails), whereas negative slopes suggest data from GPD’s of
the Weibull DA (limited support). In order to guess an abso- dpred = / a(&, B) fep(&, BID) dE dB , (10)
lute threshold, we look for the smallest threshold for which

the mean excess function can be assumed to be linear frorpgy a weighted average. FiguBshows the values af(£, )
this point on, according to Eq9). In general, a tradeoff  for |og, -data assuming an absolute threshalet1.653,
between a good fit and the number of excesses should bgqyivalent to 45mm. The p-value has been computed only
done to retain a good deal of data in the subsequent estimgg, points in which the posterior is not negligible. Fig-
tion. From the expected excess functions we have guessegie 9 shows the results Ofrpreq for both raw-data and
u=A45mm for raw-data, and=1.85 for log,o-data, which |5q. -data using different absolute thresholds. These re-
corresponds to 63 mm. However, lower absolute thresholdg ts suggest that, with the exception of thresholds near
seem to be also acceptable for jgglata. 25mm for raw-data, there are no evidences for rejection
This kind of selection of absolute threshold is mainly sub- of the GPD model. For further comparisons between raw-
jective, and a statistical validation is convenient. A way to data and log,-data, thresholds ef=45 mm for raw-data and

Nat. Hazards Earth Syst. Sci., 6, 4836, 2006 www.nat-hazards-earth-syst-sci.net/6/459/2006/
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Fig. 8. Significance of KS goodness-of-fit teat, 8), for log;g-data.x=1.653 mm.

u=100g,4(45=1.653 have been finally chosen. This decision oz
is supported by a KS-predictive p-value of aboi4.0 0704

0.60

6 Prior knowledge implementation 050 |

0.40

P-VALUE

Prior density for; has been assumed uniform for a very wide
range of values corresponding to a non-informative prior. We
have renounced to an informative prior because we assume °2
there are enough data (88 excesses avet5 mm) to esti- 040 |
matez quite accurately, and any soft information would be
superseded by the likelihood of the data. Prior density for — 2 4 70 s 10 s 10 195 220 25 2m0
GPD parameters has been assessed following the methods THRESHOLD

developed inEgozcue and Ramig200]) and Egozcue and Fig. 9. Predictive p-values of the KS-goodness-of-fit test. Raw-

TOI0§an-a-DeIgaFi(2902). . . data, full line and squares; lgg-data, dotted-dashed line and trian-
Prior information is mainly used to give bounds of the ad- gjes. critical value of @5, dashed line.

missible domain for the GPD-parametérand . Our prior

hypothesis are referred to the Mediterranean area. They are

ordered by decreasing influence in the estimation: E. Frequencies of events are decreasing with precipitation;
the decreasing is, at least, linear.

A. Dalily precipitation is a bounded phenomenon.
F. A typical event with precipitation larger than 45 mm is

B. A daily precipitation of 2000 mm is almost impos- 100 mm, which occurs approximately with probability
sible. Precipitation events larger than 45mm attain 0.1 (characteristic event).
2000 mm with probability less than 16 (almost im-

possible events). The most important assumptionAs It essentially implies

that we only consider GPD’s in the Weibull D& £0) for

C. Precipitation events larger than 45 mm exceed 100 mnPoth raw-data and lgg-data. Figured0and1l show the
with probability less than 6 (upper probability of char- ~ corresponding prior densities fgrand 8. AssumptionA
acteristic events). is reflected in the upper bound ¢t AssumptionB (al-

most impossible events) is physically based. In Higy.it

D. A precipitation of 400 mm must be possible, although it appears as a border cutting the upper-right corner of the rep-
may not be observed (surely attainable event). resented domain, so excluding all GPD’s not fulfilliig

www.nat-hazards-earth-syst-sci.net/6/459/2006/ Nat. Hazards Earth Syst. Sci.,4/32%906



466 J. J. Egozcue et al.: The effect of scale in daily precipitation hazard assessment

a
c
a
&
-
Q
=] —— %
e
[
99
a
a 95
¢ o
90
ag &0
§ 75
@ 50
o
E N 25
4]
o 10
Q 1
Q
Q
o
-0.20 -0.22 -0.15 -0.08 0.00
xi parameter
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Fig. 11. Prior density for GPD parametess, g, for log; o-data.u=1.653.

This condition does not appear in the represented domaiexperience in the Mediterranean area clearly supports it and
in Fig. 10. It could be verified at whichever rain-gauge in there is no physical reason to assume that 400 mm is not at-
the Mediterranean zone. Assumpti@his a weak condi- tainable. It excludes GPD’s in the lower-left triangle with a
tion based on the behaviour of convective precipitation invertex in(6=0, 8=0); for these distributions precipitation of
the Eastern Mediterranean sea; it can be observed regulard00 is not attainable. For raw-data, assumpEaneans that

in this region. It produces a similar effect to conditiBn —0.5<¢&, becausé&=—0.5 corresponds to a triangular GPD.
the corresponding border appears in both figures as an uppéior log;o-data we apply the same rule. However, the state-
limit of the prior support, thus excluding too largk val- mentE does not match exacth/0.5<¢ in the log-scale. Fig-

ues. Assumptioml is quite subjective, although, in general, urel0does not show the valde=—0.5 because conditior®

Nat. Hazards Earth Syst. Sci., 6, 4836, 2006 www.nhat-hazards-earth-syst-sci.net/6/459/2006/



J. J. Egozcue et al.: The effect of scale in daily precipitation hazard assessment 467

oy
<
o
o
-
o
er——1 %
0 t
99
oy
=) 95
§ o
o0
£ 0
E 75
£ o
@ 50
£ 8
8N 25
T
o 10
o 1
-
a
o
-0.20 -0.23 -0.15 -0.08 0.00

xi parameter

Fig. 12. Posterior density for GPD parametefsg, for raw-datau=45 mm.

andD imply E. Both priors have been forced to be flat inside firms the large uncertainty of the estimates, visualised by the
the domain defined by conditiods throughE, but decreas-  (0.05, 0.95) credible interval for both raw-data and lgg
ing to zero at the borders. Finally, assumpti®moughly  data (thin lines-hollow markers). Other important differences
defines a characteristic event that is used to place the modeetween the two samples are also revealed. Median return
of both priors; its influence is weak. Figuré8and11show  periods (thick lines-filled markers) for raw-data are clearly
contours of the resulting priors for raw-data andq\pdata  larger than for logy-data. For instance, for the 300 mm daily
respectively. precipitation, 190 years using raw-data are obtained, and 29
Although the stated assumptions are weak and reasonablgears using logy-data, a difference of one order magnitude.
they collate with the information from raw-data. Figu2e This is not negligible, even taking into account the large un-
shows that most of the posterior probability is placed in thecertainty of the results. To understand the importance intu-
Fréchet DA €>0) when the prior does not constrain it to itively, one should take into account that one event of more
the Weibull DA ¢ <0). However, according to our main hy- than 300 mm has been recorded in the available sample run-
pothesis, i.e. daily precipitation is a bounded phenomenonning along 30 years. This fact predisposes us to accept the
the prior for raw-data (Figl10) is restricted to the Weibull results based on Igg-data more easily than those based on
DA. This contradiction between observed raw-data and prioraw data.

assumptions does not hold for lggrata because their likeli- - pifferences between the two samples appear as well when
hood is mainly located in the Weibull DA, as shownin Bg.  comparing exceedance probabilities of a given level of pre-
cipitation in 50 years. Exceedance probabilities are com-
plementary to non-exceedance probabilities, introduced in
Eq. @). Results for both samples are shown in Hi§. For

For both raw-data and lgg-data, hazard parameters are es-instance, for the level of 400mm, raw-data gives a median
timated using the priors in Figd0 and 11, in agreement ©xceedance probability of.@L5 in 50 years, whereas for
with the assumption that daily precipitation is a bounded phe0910-data this probability is B7.
nomenon. The obtained posteriors are shown in Higsand In a particular case study, it may be difficult to believe
13, respectively. Simulated samples(ef &, 8) are obtained that certain precipitation levels may be attainable. Therefore,
according to their joint posterior distribution, and character-raising the question whether they are actually attainable or
istics of the posterior distribution of hazard parameters arenot makes sense. The estimation of the probability of one
then estimated. particular value being attainable is possible because we are
Atypical hazard parameter, introduced in E8), (sthere-  assuming bounded distributions for precipitation (Weibull
turn period of events which magnitude exceed a given threshbA). Figure 15 shows these probabilities. They are very
old. Figurel4 shows the results. At a first sight, one con- important from the engineering point of view, because civil

7 Daily precipitation hazard estimation
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Fig. 13. Posterior density for GPD parametefsg, for log; o-data.u=1.653.
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Fig. 14. Estimated logg-return periods, logy(x). Squares, Fig. 15. Exceedance probabilities in 50 years. Squares, raw-data;
raw-data; triangles, log-data. Thick lines-filled markers, median triangles, logg-data. Thick lines-filled markers, median of poste-
of posterior distribution; thin lines-hollow markers06 and 095 rior distribution; thin lines-hollow markers, @ and 095 quantiles.
quantiles. Probability of attainable precipitation, dashed lines.

An estimation of the upper-limit of precipitation is also
works do not need to be designed for non attainable actiongpossible, although it is very uncertain and the corresponding
Consider for example precipitation of 700 mm, which has adistribution is very asymmetric. The mode of the posterior
probability of Q92 of being attainable using raw-data, and distribution of this upper limit—g/&, was 788 mm for raw-

a lower one, 01, using loggy-data. Looking at this and data and 759 mm for log-data. However, these values cor-
higher values for precipitation, one recognizes the conservarespond to low quantiles: probability of the upper-limit being
tive character of conclusions drawn from raw-data, comparedarger than 788 mm is about8Y for raw-data; for logy-data,

to those derived from log-data. In the same Fidb5, it is the probability of an upper-limit greater than 759 mm is ap-
easy to see that raw-data give overall lower probabilities ofproximately 0.65 thus showing the asymmetry of these esti-
exceedance in 50 years compared to probabilities given bynates. In this case the difference between the two samples is
log;g-data. Thus, while raw-data are conservative concernot so large.

ing the attainable character of a precipitation level, jedata Two main points derive from these results: uncertainty
are so for probabilities of exceedance in 50 years. of the estimates is large and the results from raw-data and
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log,o-data differ substantially. The first one is a consequence o
of the short record (30 years) we are using to estimate occur- oso |
rence of long-term large events. The second one confronts |
the analyst with the choice of the appropriate model for the _ |*
data: which scale gives more sensible results? Reasons SUR; 40 |
porting the log, scale option have been exposed in the previ- g

ous sections. A quantitative study on adequacy of the model® ** |
for both samples follows. 0301

0.20

0.10

8 Bayesian Model checking

0.00 T T T T T T T T T T
20 45 70 95 120 145 170 195 220 245 270

In order to quantify consistency of a model in a Bayesian THRESHOLD

framework, model checking techniques have been developed ) _

recently Meng 1994 Gelman et al.1996). They are based Fig. 16. Baye5|anp-ve_llues. .Raw-data: full line, squares. {gg
on the comparison of the observed data with replicated datﬁata: dashed-dotted line, triangles.0® reference level: dashed
obtained using the estimated model. We centre our attentio

on the GPD-model for excesses. It includes thes)-prior,
the corresponding posterior, and the GPD itself.

ande is the average excess ower. This is equivalent to
Sitting a regression line to the estimated mean excesses as

, stma \ )
() Simulate GPD parametegs;”, p/), accordingtothe ob- 5t ,nction of the threshold, as suggested by B (The

()

tained posterior distribution; (b) simulatenasample, yrep, regression is actually weighted by the number of excesses
from a GPD with parametets?), ). This can be repeated ysed to estimate.
a large enough number of times. Each replicateshmple, For each excess sample, observed or replicated, we define

yi&p, is compared to the originaksample of excessesons ~ T=£. We realise that andg do not appear explicitly i
using a functionT=T (y, &, B), known as discrepancy func- but, when calculated for a replicated samgl€) and g/
tion. T is intended to express the features one wants to checklay a role through the GPD distribution. We expect this dis-
in the model and can be defined ad hoc. The actual comparierepancy function to be sensible to situations in which prior
son is performed using a Bayesiarvalue, and likelihood disagree.

_ < Figure 16 shows thep-values of Eq. 11) for a number
@ =P Orep £ ) - ?(yObS’ 5Pl " - _(11) of different absolute thresholds and for both raw-data and
where§ and g are distributed according to their joint pos- |oq, _data. For raw-data and thresholds under 80 mm, the
terior, and the samplgrep as a GPD conditional to the mgdel is suspicious of inconsistencies. Recall that the cho-
parameters and 8. In a consistent model, the observed gan threshold was 45 mm both for raw-data and for dog
data should appear (through the discrepancy function) mixe@ata. For higher thresholds, the model becomes acceptable,
with replicated samples and not separated from them. Fromyiihough the number of available data decreases to less than
this point of view, p-values close to 0 or to 1 indicate 30 excesses (Fig) and uncertainty increases accordingly.
some inconsistency in the model. Clearly, the kind of contrarily, for log ,-data, the model checking is satisfactory
inconsistency checked depends on the discrepancy funGy; 4) ysed thresholds. These results quantitatively confirm
Flon. ane the replicated samples have begn Ob.taldﬂﬁd., that raw-data are hardly compatible with the assumption that
is easily estimated as the proportion of times in which gycesses have a bounded distribution.
T (yidp, €9, BO)=T (yobs £V, BY).

We are mainly interested in checking the compatibility of
observed data with the GPD model of excesses, and our pria§ Conclusions
assumptions concerning the domain of attraction of the data-
sample. Therefore, the value dicorresponding to a partic-  Estimation of hazard parameters is highly uncertain mainly
ular data-set is a suitable eXplanatory function. An estimatordue to lack of data. Using a Bayesian approach1 this uncer-
of & given the sample of excesses is then a reasonable choigginty can be monitored as shown in the study of a 30-year
for a discrepancy function. Rough, but intuitively effective precipitation series obtained from a rain-gauge at Vergel de

estimators of, (¢ <1), andg areé andf minimising Racons (Alicante). Events can be modelled as a Poisson
m 5 B £ process, and the upper tail of daily precipitation as Gener-
D o) (ex — (a+bu))? , a = 1-¢ b= ¢ (12)  alised Pareto distributed. The final model is validated using a
k=1

Bayesian model checking. Two considerations about precip-
whereu;, u; > u, are pre-defined thresholds for excesses,itation lead the approach: (a) differences in precipitation are
n(uy) is the number of excesses in the sample exceading relative, calling for a log-scale, and (b) precipitation is finite.
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