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Abstract. The development of efficient space-time rainfall
downscaling procedures is highly important for the imple-
mentation of a meteo-hydrological forecasting chain oper-
ating over small watersheds. Multifractal models based on
homogeneous cascade have been successfully applied in lit-
erature to reproduce space-time rainfall events retrieved over
ocean, where the hypothesis of spatial homogeneity can be
reasonably accepted. The feasibility to apply this kind of
models to rainfall fields occurring over a mountainous re-
gion, where spatial homogeneity may not hold, is herein in-
vestigated. This issue is examined through the analysis of
rainfall data retrieved by the high temporal resolution rain
gage network of the Sardinian Hydrological Survey. The
proposed procedure involves the introduction of a modulat-
ing function which is superimposed to homogeneous and
isotropic synthetic fields to take into account the spatial het-
erogeneity detected in observed precipitation events. Specif-
ically the modulating function, which reproduces the dif-
ferences in local mean values of the precipitation intensity
probability distribution, has been linearly related to the ter-
rain elevation of the analysed spatial domain. Comparisons
performed between observed and synthetic data show how
the proposed procedure preserves the observed rainfall fields
features and how the introduction of the modulating function
improves the reproduction of spatial heterogeneity in rainfall
probability distributions.

1 Introduction

Severe precipitation events occurring over small watersheds
are often caused by localized convective cells belonging to
synoptic systems. In such cases basin response times can
be too short to issue an alert on the basis of real time pre-
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cipitation data retrieved by radar or rain gage telemeters. It
is thus necessary to rely on meteorological forecast in or-
der to predict precipitation fields and to evaluate their possi-
ble effects on ground. Nevertheless numerical weather pre-
diction (NWP) models alone are unlikely to provide rainfall
fields adequate for an efficient application of rainfall-runoff
models to small basins. Specifically general circulation mod-
els (GCMs) resolution is larger than the required hydrologi-
cal scales. Limited area models (LAMs) can be nested into
GCMs in order to increase the resolution, but the coarseness
of the observation network, which is used to build the meteo-
rological analyses and to initialize GCMs, may deeply affect
the subsequent LAM forecast. Specifically this problem may
influence the localization and quantification of rainfall peaks
in high resolution space-time LAMs domains. Therefore, be-
fore using them in a forecasting chain, it may be appropriate
to reaggregate high resolution NWP forecasts to a coarser
scale where rainfall predictions become reliable, as pointed
out bySiccardi et al.(2005).

Thus the development of effective procedures for precip-
itation downscaling has a prominent role in forecasting hy-
drogeological risk for small watersheds. Starting from a
rainfall event predicted over a large space-time scale by a
NWP model, statistical downscaling allows generating sev-
eral equally probable realizations of the same event at scales
compatible with rainfall-runoff models. When embedded in
a forecasting chain, downscaling procedures can thus be ap-
plied to account for small scales uncertainties in rainfall in-
put and their coupling with rainfall-runoff models may help
to provide a probabilistic scenario of the ground effects.

Apart from the uncertainty related to the gap of scales be-
tween meteorological and hydrological models many other
factors may affect the reliability of a forecasting chain. The
ensemble prediction system (EPS) that is currently running
at the ECMWF (European Center for Medium range Weather
Forecasting) allows accounting for meteorological model un-
certainty due to the coarseness of the observation network
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and to the chaoticity of equations used in meteorological
models (Buizza et al., 1999). As the last element of a fore-
casting chain, hydrological models are also affected by un-
certainties that are mainly due to our limited knowledge of
catchment subsurface properties (Beven, 2001). In this paper
we focus the problem of rainfall downscaling with special
regard to mountain regions, while for a discussion on the dif-
ferent sources of model uncertainties and their influence on
a forecasting chain, the reader is referred toFerraris et al.
(2002) andSiccardi et al.(2005), as it goes beyond the aim
of this work.

An important class of statistical models useful for rainfall
downscaling is represented by multifractal models, which
are able to reproduce rainfall variability observed at different
space and time scales. Statistical properties of rainfall fields
are usually characterized by means of multifractal theory ap-
plying self-similar or self-affine transformations. Some re-
cent studies performed on radar rainfall dataset retrieved dur-
ing the two international campaigns GATE (GARP, Global
Atmospheric Research Program, Atlantic Tropical Experi-
ment) and TOGA-COARE (Tropical Ocean Global Atmo-
sphere Coupled Ocean-Atmosphere Response Experiment)
gave evidence of a scale invariant behaviour with simple self-
similar transformations (Deidda, 2000; Deidda et al., 2004).

Both GATE and TOGA-COARE precipitation fields were
retrieved over the ocean without any physical obstacle which
could bias the spatial distribution of rainfall probability in the
analysed domain. On the contrary, when precipitation fields
need to be generated in presence of orographic obstacles and
barriers, it is convenient to analyse the effects of these con-
straints on rainfall fields and on local probability rainfall dis-
tributions. Actually mean and extreme precipitation values
are known to vary with the terrain elevation. More generally
local probability distribution of rainfall may be influenced by
many morphological factors besides the altitude: slope and
shape of orographic relieves, as well as their exposition with
respect to the direction of the perturbation. However it may
be rather difficult to deduct the influence of each of these fac-
tors from the analysis of point rainfall data retrieved by rain
gages.

The opportunity of introducing a heterogeneous compo-
nent when modelling synthetic rainfall fields over land was
investigated byHarris et al.(1996), Jothityangkoon et al.
(2000), Purdy et al.(2001), Pathirana and Herath(2002).
SpecificallyJothityangkoon et al.(2000) andPathirana and
Herath(2002) analysed a 400 km×400 km area in southwest-
ern Australia and a 128 km×128 km region centered in the
Japanese archipelago, respectively. In order to reproduce ob-
served spatial heterogeneity they multiplied a homogeneous
spatial random cascade by a deterministic factor depend-
ing on the spatial location without linking it to local fea-
tures. Analyzing a transect along the Southern Alps of New
Zealand,Harris et al.(1996) andPurdy et al.(2001) found
a dependence of scaling parameters on orography and rain
features. More recentlyDeidda et al.(2006) investigated the

presence of rainfall spatial heterogeneity induced by orogra-
phy on rainfall fields retrieved over Brazil by radars (TRMM-
LBA, Tropical Rainfall Measurement Mission – Large Scale
Biosphere Atmosphere Experiment). Nevertheless this anal-
ysis did not highlight the presence of any spatial heterogene-
ity, probably because of the absence of orographic barriers
that could significantly force upward air movements.

The issue of rainfall downscaling over a mountainous re-
gion was examined byBadas et al.(2005) and is deepened in
the present paper. We propose a procedure that allows the re-
production of spatial heterogeneity detected in observed data,
provided that they are not affected by local variations in the
multifractal behaviour. It consists in the modulation of space-
time homogeneous cascades by means of a simple modulat-
ing function adequately calibrated. Specifically the analysis
of the orographic influence on precipitation observed by the
high temporal resolution rain gage network of the Sardinian
Hydrological Survey is discussed. The examined data were
collected in the period from 1986 to 1996 by 235 rain gage
stations (Fig.1), which recorded on a memory chip the in-
stants when 0.2 mm of rainfall were cumulated.

The paper consists of the following sections. In Sect.2 we
recall some important features of multifractal downscaling
models with special regard to the STRAIN model (Deidda,
2000) which has been used in the present study. In Sect.3
we present a methodology introducing spatial heterogeneity
in the rainfall disaggregation by means of a modulating func-
tion. This function is determined in Sect.4 on the basis of
some preliminary analyses based on both rain gage observa-
tions and average rainfall computed on the cells displayed in
Fig. 1. In Sect.5 the scale-invariance analysis performed on
space-time domains is described, while in Sect.6 the results
obtained for numerical simulations are discussed. Finally in
Sect.7 the conclusions of the work are drawn.

2 Rainfall downscaling by means of multifractal theory

Multifractal theory led to the development of an important
class of statistical models useful for rainfall downscaling.
Mainly due to empirical evidences, the application of mul-
tifractal models for rainfall downscaling, which allows to
reproduce hierarchical structures of rainfall fields shown by
Austin and Houze(1972), is widespread in literature (Love-
joy and Mandelbrot, 1985; Schertzer and Lovejoy, 1987;
Gupta and Waymire, 1993; Over and Gupta, 1996; Perica and
Foufoula-Georgiou, 1996; Deidda, 2000, among the others).

What follows is a brief framework for the analysis of scale-
invariant space-time precipitation fields. Leti(x, y, t) repre-
sent the rainfall intensity at location(x, y) and timet , the
rainfall volume corresponding to a generic space-time region
λ×λ×τ located inxi , yj , tk can be computed as follows:

µi,j,k(λ) =

∫ xi+λ

xi

dx

∫ yj +λ

yj

dy

∫ tk+λ/U

tk

dt i(x, y, t) (1)
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Fig. 1. The regular grid with 13 km resolution used for the analysis is superimposed to the sardinian coast.

The number of rain gages belonging to each cell is reported inside the cell, while points indicate the station

positions. A and B domains correspond to the regions where the space-time sequences analysed in sections 4

and 5 were extracted.
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Fig. 2. A schematization of a downscaling problem: a rainfall measure is given over a region L× L× T (e.g.,

the grid resolution of a NWP model), we want to determine the probability distribution of rainfall intensity over

any smaller region up to the smallest scales λ0 × λ0 × τ0.

18

Fig. 1. The regular grid with 13 km resolution used for the analysis
is superimposed to the sardinian coast. The number of rain gages
belonging to each cell is reported inside the cell, while points in-
dicate the station positions. A and B domains correspond to the
regions where the space-time sequences analysed in Sects.4 and5
were extracted.

In Eq. (1) the integration time scaleτ is related to the spa-
tial scaleλ by the relationshipτ=λ/U , whereU may be
or not a function ofλ, as it will clearly appear further on.
With reference to Fig.2 we can evaluate rainfall volumesµ
at different space-time domains ranging from the large scale
L×L×T resolved by meteorological models to the smaller
scalesλ0×λ0×τ0 compatible with the watershed extension.
Given the rainfall volume over the large scalesL×L×T a
multifractal downscaling model should be able to determine
the probability distribution function of rainfall volumes over
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Fig. 1. The regular grid with 13 km resolution used for the analysis is superimposed to the sardinian coast.

The number of rain gages belonging to each cell is reported inside the cell, while points indicate the station

positions. A and B domains correspond to the regions where the space-time sequences analysed in sections 4
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the grid resolution of a NWP model), we want to determine the probability distribution of rainfall intensity over

any smaller region up to the smallest scales λ0 × λ0 × τ0.

18

Fig. 2. A schematization of a downscaling problem: a rainfall mea-
sure is given over a regionL×L×T (e.g., the grid resolution of a
NWP model), we want to determine the probability distribution of
rainfall intensity over any smaller region up to the smallest scales
λ0×λ0×τ0.

smaller scalesλ0×λ0×τ0, preserving some kind of scale in-
variance rules.

Scale invariant properties of rainfall fields have to be in-
vestigated all over the selected space-time scale range in or-
der to assess whether a multifractal model can be applied. In
the simplest scenario of self-similarity (or scale isotropy) a
scale-independent velocity parameterU can be introduced to
transfer the statistical properties observed at space scalesλ

to coherent time scalesτ=λ/U and vice versa. Thus scale
invariant properties can be studied on space-time domains
derived by isotropic transformations which are characterized
by the same branching numberbs for both space and time:
x→x/bs , y→y/bs , t→t/bs .

Once the scale-invariant velocity parameterU needed to
relate coherent space and time scales is determined, the fol-
lowing q-order partition functionsSq(λ) can be computed at
different scalesλ:

Sq(λ) =
1

N(λ)2N(τ)

N(λ)∑
i=1

N(λ)∑
j=1

N(τ)∑
k=1

µi,j,k(λ)q (2)
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whereN(λ)2N(τ) is the number of subregionsλ×λ×τ of
theλ-partition, beingN(λ) andN(τ)=N(λ) the number of
subgrid cells in each direction of space and time respectively.
In terms of partition functions, scale-invariance laws can be
written as follows:

Sq(λ) ∼ λζ(q) (3)

The non linearity of theζ(q) exponents reveals the multi-
fractality of the measureµ, on the contrary ifζ(q) is a linear
function ofq the field is monofractal.

For the sake of generality and to perserve the formalism
used by other authors, we briefly review how a scale in-
variant analysis can be performed for fields displaying self-
affinity (i.e. space-time anisotropy). Actually the above def-
initions given for self-similar measures can be easily gener-
alized to a self-affine framework thanks to anisotropic space-
time transformations:x→x/bs , y→y/bs , t→t/bt , where
the branching numberbs in space now differs from the one
bt in time. However space and time branching number are
not independent: according to the “Generalized Scale In-
variance” (G.S.I.) (Lovejoy and Schertzer, 1985; Schertzer
and Lovejoy, 1985) they are related bybt=b

(1−H)
s ; while us-

ing the “dynamic scaling” formalism (Kardar et al., 1986;
Czirok et al., 1993; Venugopal et al., 1999a,b) the previous
relationship becomesbt=bz

s . The “scaling anisotropy expo-
nent” H in the G.S.I. formalism, or equivalently the “dy-
namic scaling exponent”z using the second approach, char-
acterize the degree of scale anisotropy; a strict connection
holds between the two parameters:z=1−H . In case of self-
affinity, space and time scales are made homogeneous by
a scale-dependent velocity parameterUλ∼λH , while in the
trivial case of self-similarity (H=0 or z=1) U becomes a
constant value. Although the self-affine approach may ap-
pear to be attractive for its generality, there are several anal-
yses on rainfall scale-invariance indicating that the simpler
self-similar assumption allows to satisfactory explain rain-
fall multifractality. For more details the reader can refer to
Deidda(2000) andDeidda et al.(2004).

If space-time rainfall fields display scale invariant prop-
erties (Eq.3) they can be modelled by means of stochastic
multiplicative cascades, which were first introduced in fluid
dynamics in order to reproduce the turbulent energy trans-
fer mechanism. Among the models for rainfall simulation
described in literature, the STRAIN model (Deidda et al.,
1999; Deidda, 2000) has been here chosen to represent the
analysed rain fields. It is based on a log-Poisson genera-
tor η=eAβy , wherey is a Poisson-distributed random vari-
able with meanc. The model is parsimonious, indeed only
c andβ are free parameters, since the “mean conservation”
conditionη=1 allows eliminating the third one immediately:
A=c(1−β). Besides many other properties (Dubrulle, 1994;
She and Leveque, 1994; She and Waymire, 1995), the log-
Poisson generator satisfies the moments convergence condi-
tion for a wide parameters range (Deidda et al., 2004) which
includes the bulk of the estimates obtained for the data here

analysed. We recall the theoretical expectation for the multi-
fractal exponentsζ(q) of the power law (Eq.3), which allows
the calibration of the model parameters:

ζ(q) = dq − c
q(1 − β) − (1 − βq)

ln 2
(4)

whered is the dimension of the regionS supporting the mea-
sureµ (in our space-time downscaling problemd=3) while
a common binary branching number (bs=bt=2) is assumed
in each direction of the regionS. For a deeper insight on
the STRAIN model the reader is referred to the above cited
bibliography.

Parameters of multifractal cascade models are usually es-
timated from sample multifractal momentsζ(q), once their
theoretical behaviour has been derived from model generator
structure. However attention has to be paid when choosing
the q values in order to calibrate the model. Actually esti-
mates with lowq values are not reliable because they em-
phasize low frequency noise and discretization effects, espe-
cially in case of tipping bucket rain data. On the other side,
high q values magnify the contribution of intense events,
which can be a few according to the sample size. Ifq exceeds
a certain value sample multifractal exponents behaviour be-
comes linear. This effect has often been ascribed to the sam-
ple finiteness or to the moments divergence (Schertzer and
Lovejoy, 1987; Mandelbrot, 1990); howeverLashermes et al.
(2004) proved this feature to derive from the process nature
rather than being tied to multifractal exponents estimation
procedures.

Multifractal exponentsζ(q) in the scale-invariant law
(Eq.3) can be also related to the modified cumulant generat-
ing functionχb(q) (Mandelbrot, 1974; Kahane and Peyriere,
1976), often referred to as MKP function :

ζ(q) = d[1 − χb(q)] (5)

whereb=bd
s for self-similar multifractals embedded on the

regionS⊂Rd (d=3 for space-time fields), while the MKP
function is defined by:

χb(q) = logb ηq − (q − 1) (6)

Kahane and Peyriere(1976) stated the conditions onχb(q)

assuring nondegeneracy ofµ∞ (i.e. the measure of a fully de-
veloped cascade also referred to as a “dressed measure”), the
convergence of its moment, and deduced the estimation of its
support dimension. More recentlyOssiander and Waymire
(2000, 2002) stated a theorem for consistency, which asymp-
totically establishes the conditions needed from data sam-
pled at a prescribed fine scale resolution to consistently de-
termine the distribution of the cascade generator. All these
constraints have to be taken into account when calibrating a
multifractal model on the basis of sample data.

Nat. Hazards Earth Syst. Sci., 6, 427–437, 2006 www.nat-hazards-earth-syst-sci.net/6/427/2006/
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3 Introduction of local heterogeneity in synthetic rain-
fall fields

What we propose in this paper is a simple methodology al-
lowing to investigate spatial heterogeneity in rainfall fields
and to introduce corresponding constraints in downscaling
models. Let us consider the domainL×L×T of Fig.2 whose
mean rainfall intensityI for each precipitation event may be
computed as follows:

I =
1

LLT

∫ L

0

∫ L

0

∫ T

0
i(x, y, t)dxdydt (7)

The ratio between mean rainfall intensity of each cell(x, y)

and the mean rainfallI in the selected domain can be as-
sumed as a local modulating function expressed by:

ξ(x, y) =

1
T

∫ T

0 i(x, y, t)dt

I
(8)

The functionξ(x, y) computed on a single rainstorm shows
high variability not only due to the effect of orography but
also to the specific feature of each precipitation event. Sam-
ple variability depending on the single rainstorm features can
be filtered by averagingξ(x, y) estimates of many events.
Thus the assessment of possible orographic constraints in the
studied region should be pursued on the basis of the spatial
distribution of sample meanξ(x, y). In a region where the
orography does not exert any kind of conditioning on rain-
fall patterns we should expect rainfall to be spatially homo-
geneous on average, leading the average modulating function
ξ(x, y) to be a constant value (equal to one), whatever the lo-
cation of the point(x, y) is. On the contrary, if the pattern of
the modulating functionξ(x, y) highlights a dependence on
localization, this represents a territorial heterogeneity which
has to be reproduced also in the synthetic fields. This kind of
spatial heterogeneity can be modelled multiplying a homoge-
neous random cascadei0(x, y, t) by the modulating function
ξ(x, y):

i(x, y, t) = ξ(x, y) i0(x, y, t) (9)

wherei(x, y, t) represent the resulting heterogeneous rain-
fall field.

This approach is similar to the one adopted byJoth-
ityangkoon et al.(2000) and Pathirana and Herath(2002),
who modulated homogeneous spatial random cascades by
means of spatial patterns obtained from long term accumula-
tion rain fields.

4 Estimate of the modulating function

The proposed procedure was calibrated, applied and tested
to rainfall data retrieved by the high temporal resolution rain
gage network of the Sardinian Hydrological Survey and illus-
trated in Sect.1. In order to analyse scale invariant properties
and multifractal behaviour of space-time rain fields, raw data

were averaged on the grid displayed in Fig.1, where points
indicate rain gage stations location. The adopted grid spa-
tial stepλ0=13 km was obtained dividing the island width
L=104 km by an integer power of two (corresponding to the
branching numberbs=2), with at least one rain gage in most
of the cells. The comparison of self-correlation functions in
space and time allowed to estimate the velocity parameter
U=17.33 km/h needed for space-time transformations in the
adopted self-similar framework. Therefore the smallest time
resolution isτ0=λ0/U=45 min, while the examined event
duration isT =L/U=6 h. Figure1 shows the grid and the
spatial domains used both for the space-time scale invariant
analysis and the downscaling process.

The research of a modulating function has been prelimi-
nary performed on raw rain gage data and then on data grid-
ded on the cells of the grid described above. Both the analy-
ses were made on intense precipitation events with a duration
T equal to 6 h; results concordantly indicate the opportunity
to modulate the rainfall downscaling process at least accord-
ing to the terrain elevation.

4.1 Analysis on rain gage data

The analysis on rain gage data was performed on indepen-
dent events selected on a regional scale. The regional mean
intensityI

(p)
θ on a time interval of durationT =6 h was pre-

liminary computed for all the potential events beginning at a
generic timeθ :

I
(p)
θ =

1

Np

Np∑
k=1

1

T

∫ θ+T

θ

ik(t)dt (10)

whereNp is the number of active recording rain gages in the
whole region fromθ to θ+T , andik(t) is rainfall intensity
retrieved by thek-th rain gage at timet .

The most intense 794 independent events were then
selected, with a resulting average intensityI

(p)
θ rang-

ing from 0.2 mm/h and 4.5 mm/h. For each event start-
ing at time θ and for each rain gagek the function
ξθ (k)=( 1

T

∫ θ+T

θ
ik(t)dt)/I

(p)
θ was computed. Sample vari-

ability was filtered by averaging for each rain gagek the
function ξθ (k) over all the selected events. The analysis of
the results showed a spatial variability of the averageξ(k)

function which can be partially explained considering the
rain gage elevationz(k). As illustrated in Fig.3 the com-
parison between modulating functionsξ(k) and rain gage
elevationz(k) shows a behaviour which can be linearly in-
terpreted, despite a noticeable dispersion of the representa-
tive points. The regression line slopeα computed on sample
points and shown in Fig.3 is equal to 0.61/1000 m−1.

4.2 Analysis on a regular grid

With the aim to obtain a feasible relationship for the analysis
and the simulation of space-time rainfall events, theξ func-
tion was also examined for rainfall data averaged on the same
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Fig. 4. Modulating function valuesξ(x, y) versus mean grid cell
elevationz(x, y) and corresponding regression line.

regular grid used in the downscaling process and already dis-
played in Fig.1. The regional mean intensityI (g)

θ onT = 6 h
and on the whole spatial grid was in this case computed as:

I
(g)
θ =

1

Ng

Ng∑
k=1

1

T

∫ θ+T

θ

ik(t)dt (11)

whereNg is the number of grid cells with at least one rain
gage working during the event,θ is the beginning of the
event, whileik(t) is the average rainfall intensity of rain
gages within thek-th grid cell.

The most intense 806 events were selected with a result-
ing mean intensityI (g)

θ ranging from 0.2 mm/h and 4.5 mm/h.
Such as for the case of raw rain gage data, for each grid cell
(x, y) the mean valueξ(x, y) on all the events was com-
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Fig. 5. Slopesα obtained dividing the selected events into four
groups (circles) and eight groups (squares) versus mean group rain
intensityI . Solid line represents meanα value computed on all the
806 events.

puted. Figure4 shows the behaviour of the modulating func-
tion ξ(x, y) with the average elevationz(x, y) of the cell:
the regression line slopeα=0.65/1000 m−1. As expected,
this value is similar to the one obtained for single rain gage
data since gridded data have been obtained from the same
rain gage network that, being quite dense, does not introduce
significant biases inξ estimates.

With the aim of verifying the stability ofα estimates, the
dataset containing 806 sequences has been divided according
to mean rainfall intensityI (g)

θ into four and then eight groups
having the same number of elements. Mean valuesξ(x, y)

and slopesα of the regression lines (in theξ -z plane) have
been computed for each group. Theα values are plotted in
Fig. 5 versus the mean rainfall intensity of the group. Fig-
ure 5 shows that these values do not display any trend with
intensity,α has been thus considered constant and equal to
its mean value 0.65/1000 m−1, which was estimated on the
806 events.

In order to represent the behaviour of the modulating func-
tion ξ(x, y) with the average cell elevationz(x, y) the fol-
lowing equation was thus assumed:

ξ(x, y) = α z(x, y) + b (12)

where the interceptb=1−α<z>(x,y) is easily obtained from
the relationships (7) and (8), while < · >(x,y) is the spatial
average on the selected domain. Thus it is possible to define
the functional relationship betweenξ and the terrain eleva-
tion for different spatial domains, assuring the conservation
of the large scale rainfall volume.
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Fig. 6. Partition functions of the third orderS3(λ) computed on spa-
tial scales ranging fromλ0=13 km toL=104 km (and correspond-
ing time scales fromτ0=45 min aT =6 h) for the 5 most intense
sequences. The partition functions are plotted in arbitrary units in
order to display different sequences results in the same graph. For
each field the multifractal exponentζ(3), slope of the regression
line, is indicated.

5 Scale invariant properties on rainfall events extracted
on a regular grid

Although the computation of the modulating functionξ has
been performed on events which could contain some miss-
ing rain data, for the following multifractal analyses the con-
ditions imposed for events selection were stricter. Specifi-
cally we accepted for each event a maximum of 20% miss-
ing data; in order to perform scale invariance and multi-
fractal analyses these precipitation measures were estimated
averaging the rainfall intensities retrieved over the adjacent
eight grid cells in the same time intervalτ0=45 min. The
stricter condition imposed for missing data allowed us to se-
lect only 138 space-time events that occurred over the A and
B domains displayed in Fig.1. These sequences were re-
trieved over aL×L×T domain with dimensionL=104 km
in space andT =6 h in time; their resolution isλ0=13 km
andτ0=45 min, while the mean rain intensitiesI range from
0.2 to 3.5 mm/h. For the following analyses, the selected se-
quences were made spatially homogeneous dividing rainfall
intensity of each cell(x, y) by the corresponding modulating
function valueξ(x, y) defined by the Eq. (12) for the respec-
tive domain.

The selected space-time sequences were found to be self-
similar on the average, with a scale independent veloc-
ity parameterU=17.33 km/h relating coherent space and
time scales. We computed for each sequence the parti-
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Fig. 7. Sample multifractal exponentsζ(q) computed for one of
the selected sequences are plotted versus the moment orderq and
display the typical multifractal non-linear behaviour.

tion functionsSq(λ) defined in Eq. (2) on space scalesλ
from λ0=13 km toL=104 km and corresponding time scales
τ from τ0=λ0/U=45 min to T =L/U=6 h. The partition
functions Sq(λ), calculated for momentsq from 1 to 6,
showed a good correspondence to the scaling law (Eq.3) for
all the space and time scales considered. As an example in
Fig. 6 the third order partition functionsS3(λ) of the most
intense 5 sequences are plotted versusλ. Figure 6 clearly
shows that sample points are well interpreted by scaling laws
(Eq.3) which correspond to linear trends in the log-log plane.
The regression line slopes, given in Fig.6, provide estimates
of the ζ(q) multifractal exponents. All the analysed events
show the non-linear behaviour typical of multifractal fields
when plottingζ(q) multifractal exponents versusq, as dis-
played in Fig.7 for one event.

The behaviour of the multifractal exponentsζ(q) was in-
terpreted by the STRAIN cascade model briefly reviewed
in Sect.2. Showing a behaviour similar to the one already
found for the GATE and TOGA-COARE dataset,β esti-
mates do not display a great variability among the different
sequences, thereforeβ was considered as constant and equal
to e−1. Thec parameter estimates, bounded to the constantβ

value, showed (despite a high variability) a decreasing trend
with increasing mean intensities. This behaviour, displayed
in Fig. 8 (top), was interpreted with the following equation:

c(I ) = a exp(−γ I) + c∞ (13)

wherea=1.3679,γ=1.4792,c∞=0.8257.
The form of the Eq. (13) is the same of the one used to

interpret thec behaviour for GATE, TOGA-COARE, and
TRMM-LBA sequences (Deidda, 2000; Deidda et al., 2004,
2006). Estimates of thec parameter obtained for these radar
campaigns are displayed in Fig.8 (bottom) together with
the regression lineµ(I) and the intervalc(I )=µ(I)[1±CV ]
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Fig. 8. Sample estimates of thec parameter computed on the
138 selected sequences retrieved over Sardinia are plotted versus
mean rainfall intensityI together with the corresponding regression
line (top). Samplec estimates for the sequences extracted from
TRMM-LBA, TOGA and GATE dataset, corresponding regression
linesµ(I) and confidence limits (bottom).

which was determined by means of the coefficient of varia-
tion CV . The comparison between Fig.8 (top) and Fig.8
(bottom) highlights thatc estimates obtained for the se-
quences extracted in Sardinia from rain gages data differ
from the ones obtained from radar data belonging to the cam-
paigns cited above. This outcome might depend on the dif-
ference in the analysed data, concerning their type and dis-
cretization, as well as on the specific features of the examined
region. Independently of the fact that the analysed sequences
had similar scale invariant properties,c estimates behaviour
does not seem to be interpreted by the same equation for the
examined rain gage and radar data. Thus in the following
sections we use Eq. (13) which has been calibrated only on
Sardinian data (top of Fig.8).
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Fig. 9. Cumulative distribution function of rainfall rain rate at
higher resolution is compared to the 90% confidence limits es-
timated from synthetic fields for one of the analysed sequences.
Observed rainfall data have been made spatially homogeneous by
means of the modulating functionξ in order to be compared to the
synthetic ones.

6 Simulation of synthetic fields

The effectiveness of the proposed downscaling procedure
was evaluated generating a set of 100 synthetic fields for each
of the 138 space-time sequences selected in Sect.5 and then
comparing the behaviour of observed and generated rainfall
sequences. The STRAIN model was applied for the genera-
tion of each set using parametersβ=e−1 andc obtained from
Eq. (13) for the same rainfall intensityI of the correspond-
ing observed field. Spatial heterogeneity was later introduced
in homogeneous synthetic fields by multiplying rainfall in-
tensity in each cell(x, y) by the same modulating function
ξ(x, y) given by Eq. (12).

A first comparison was performed among observed and
synthetic data within each of the analysed events. Cumu-
lative distribution functions (CDFs) of rainfall intensity ob-
tained at the smallest scales (13 km and 45 min) were com-
puted for each of the observed sequences and compared to
the 90% confidence intervals deduced from the correspond-
ing set of synthetic sequences. In order to merge homoge-
neous data, for these comparisons, rainfall intensities were
previously divided by the modulating functionξ while gen-
erated fields are not yet multiplied byξ . Sample CDFs are
within this interval for most of the analysed fields, meaning a
correct reproduction of the observed behaviour. As an exam-
ple the CDF corresponding to one of the selected sequences
and its 90% confidence intervals are displayed in Fig.9.

A second comparison was performed in order to statisti-
cally assess the positive effect induced by the modulating
function ξ . Actually its influence is not apparent from the
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Fig. 10. Cumulative distribution function of rainfall rain rate at
45 min resolution observed over a 13 km×13 km grid cell of the
A domain (solid line) is compared to the 90% confidence limits
estimated from synthetic fields for the same grid cell. The thick
long-dashed lines refer to generations including theξ modulating
function while the short-dashed lines are obtained from synthetic
homogeneous data (withoutξ ).

analysis of a single event, due to sample variability of rain-
fall fields. Thus for each of the grid cells (13 km×13 km) of
the two selected spatial domains (namely A and B), CDFs
of rainfall intensity at time resolution of 45 min were com-
puted considering all the analysed events retrieved over the
corresponding domain. From the synthetic fields generated
by the STRAIN model, with and without the superposition
of the modulating function, the 90% confidence intervals in
each cell were computed and compared with observed CDF.
As an example, in Fig.10 this comparison is displayed for
one of the grid cells belonging to the A domain. The solid
line, which represents observed data, is within the thick long-
dashed lines referring to generation including the modulating
functionξ while it is partially outside the short-dashed lines
representing synthetic homogeneous data (withoutξ ). The
same behaviour was observed for the other grid cells demon-
strating the effectiveness of the modulating function in the
reproduction of spatial heterogeneity of rainfall mean inten-
sity.

The dependence of the cell mean intensity values on the
mean terrain elevation was verified to hold both on the ob-
served events retrieved over the A and B domains (top in
Figs. 11 and 12) and on the corresponding simulated se-
quences (bottom in Figs.11and12).

In Figs.11 (top) and12 (top) sample behaviour of the av-
erage parameterξ as a function of the terrain elevation is
shown for the observed events on the A and B domains. A
visual examination of these figures confirms a dependence of
ξ on the terrain elevation, despite a notable dispersion of the
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Fig. 11.Averages of the modulating functionξ plotted versus mean
cell terrain elevationz for the events selected on the A domain. The
plots refer to the observed sequences (top) and to one set of syn-
thetic generations (bottom).

data. The regression line slope isα=0.86/1000 m−1 for the
A domain andα=0.40/1000 m−1 for the B domain, therefore
the slope is, in both cases, different from the one obtained for
the entire region analyzing more than 800 events (Sect.4.2).
In order to better understand this apparent discrepancy we
remark that the selected sequences are only 70 on the A do-
main and 68 on the B domain. The considerable reduction in
the number of events with respect to those (about 800) used
in the analysis presented in Sect.4.2is due to stronger condi-
tions imposed in accepting missing data for the multifractal
analysis as discussed at the beginning of Sect.5. It should
be expected that uncertainty inα estimates increases as the
number of events used forξ averaging decreases. As an ex-
ample the reader can refer to the results of the analysis per-
formed on a regional scale, which are described in Sect.4.2
and displayed in Fig.5. Specificallyα estimates made on
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Fig. 12.Averages of the modulating functionξ plotted versus mean
cell terrain elevationz for the events selected on the B domain. The
plots refer to the observed sequences (top) and to one set of syn-
thetic generations (bottom).

sets of 100 events (square symbols in Fig.5) are very spread
along a wide range of values ranging from 0.4 to 0.9 and
thus includingα estimates obtained for the data belonging to
the A and B domains. It is therefore difficult to understand
whether differences in the two domains, which are superim-
posed for three quarters, are due to a different local behaviour
or to the high variability inα estimates computed on a small
group of events. Although our opinion is more favourable
to interpret these differences as sample variability, only the
availability of longer series of rainfall observation can clarify
this issue.

7 Conclusions

We investigated the suitability of downscaling procedures
for space-time rainfall modelling in case of orographic con-
straints. With this aim the orographic influence in rainfall
fields has been investigated on data retrieved by the high
temporal resolution rain gage network of the Sardinian Hy-
drological Survey. The results have highlighted the existence
of spatial heterogeneity in point rain gage measurements as
well as in precipitation fields averaged on a regular spatial
grid. This heterogeneity was included in the downscaling
process by means of a locally defined modulating function
which takes into account the different mean values of the
precipitation intensity probability distributions depending on
terrain elevation.

Due to the high space-time variability in the precipitation
events, a great number of events has to be examined in order
to retrieve local dependencies in rainfall distributions. The
dependency between modulating function and terrain eleva-
tion was determined on precipitation data referring to more
than 800 events. This relationship was used twice: in order to
make the observed sequences spatially homogeneous before
performing the scale invariance analysis and then to intro-
duce local orographic constraints in synthetic rainfall fields,
which had been generated by means of a homogeneous and
isotropic cascade model.

The proposed downscaling procedure is based on the mul-
tifractal model STRAIN, with self-similar transformations
between space and time scales. The model parsimonious-
ness allowed to keep only one free parameter depending on
the mean rainfall intensityI , a quantity that in a forecasting
context should be predicted by meteorological models.

The orographic influences highlighted in the analysis are
finally introduced multiplying synthetic fields obtained with
the STRAIN model by the modulating function previously
determined. Results support the feasibility to apply the pro-
posed methodology for the generation of rainfall fields also
in case of a mountainous terrain. Despite these encouraging
results, orography alone may not completely explain the spa-
tial rainfall heterogeneity features which are also connected
to the synoptic situation generating the rainfall events. The
feasibility of linking the modulating function to meteorolog-
ical features of the modelled fields is an important topic for
further investigation.

Finally, the way the multifractal analyses were conducted
deserve a remark. As a matter of fact, deriving rainfall fields
from point measurements may affect the estimates of mul-
tifractal exponents and consequently the downscaling model
calibration. It would be advisable to understand the effect
induced by the use of point measures instead of areal ones.
Unfortunately we had no possibility to perform this kind of
investigation in the analysed region due to the lack of areal
measures. This research issue can be better investigated in
orographic regions where both radar data and rain gage mea-
surements are simultaneously available.
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