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Abstract. During the seismic wave propagation through the
crust, the electromagnetic pulse can originate due to MHD
conversion in this conductive medium. On the assumption
of simple models of seismic wave excitation and attenua-
tion, the problem is reduced to the analysis of a diffusion-
like equation for a vector potential function. In this way,
we need to change the classical gauge condition. A semi-
analytical form of the solution is obtained in a case with con-
stant ground conductivity. Dependencies of the electric and
magnetic field components and the pulse duration on distance
and crust conductivity have been computed in detail. The re-
sults could be useful for the explanation of electromagnetic
signals related to coseismic, foreshock and aftershock activ-
ity.

1 Introduction

ULF (ultra-low frequency,f = 0.003− 10 Hz) electromag-
netic emissions have been observed prior to the occurrence
of earthquakes in the USA, Russia, and Japan (see references
in Hayakawa, 1999). It is rather difficult to find theoretical
mechanisms of this phenomenon. Fenoglio et al. (1994) pro-
posed a model of ruptured isolated reservoirs, resulting in
the electro-kinetic (EK) generation of a transient magnetic
field. However, they neglected the compensating conduction
current inside the path of the EK current and they oversimpli-
fied the problem. Therefore, EK generation can be used for
the interpretation of so-called seismo-electric signals (SES),
but not for ULF magnetic emission (Molchanov, 1999).

A mechanism of ULF electromagnetic field generation
based on the ensemble crack opening (microfracturing) was
considered by Molchanov and Hayakawa (1995). Creation
and relaxation of charges at the walls of opening cracks in
the earthquake hypocenter was proposed as a possible rea-
son for electromagnetic noise prior to the earthquake. The
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other approach was suggested by Surkov (1999), Surkov et
al. (2000), and Molchanov et al. (2001). Their theory is based
on the same assumption of microfracturing, but the electro-
magnetic perturbation is caused by an MHD (inductive) ef-
fect from a propagating seismic wave. An inductive seismo-
magnetic effect from a solitary seismic wave was assumed in
relation to the observation of so-called magnetic forerunners
or coseismic magnetic perturbations (Eleman, 1965; Belov
et al., 1974). Recently, the coseismic electric signals were
also observed (Takeuchi et al., 1997; Nagao et al., 2000).

The next problem is the penetration of the electromagnetic
fields through a dissipative ground medium. The conven-
tional way is to consider static fields. For example, Fenoglio
et al. (1994) applied the Biot-Savart law for the estima-
tion of magnetic variations from the opening fracture. But
Kawate et al. (1998) found a clear difference between the re-
sults of modeling on the suppositions of Biot-Savart law and
full-wave procedure. However, they have assumed a quasi-
stationary source. The same approach of quasi-stationarity
is conventional for magneto-telluric (MT) or telluric calcu-
lations (e.g. Ward and Hohmann, 1988), but it is not valid
for our case of a pulsing source. In a low-frequency (LF)
domain after neglecting the displacement currents (it is valid
for a ground medium iff < 1 MHz), Maxwell equations can
be reduced to the well-known equations of electromagnetic
diffusion (e.g. Hohmann, 1988):

1

D

∂H

∂t
− ∇

2H = ∇ × j s + ∇σ × E, D =
1

µσ
, (1)
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D
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σ
∇ · j s

)
+∇

(
E ·

∇σ

σ

)
− µ

∂js

∂t
(2)

where E, H, j s are the vectors of electric and magnetic
fields and source current density,σ, µ are conductivity and
magnetic permeability, andD = (σµ)−1 is the coefficient of
electromagnetic diffusion.
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Fig. 1. Scheme of tension(a) shear(b) cracks.

These equations are rather popular in MHD theory and
could be used for the special assumptions on parameters (e.g.
frozen electric field). But in our case, they lead to great
complications due to the imposing vectorial operators on the
source current. For example, even by using the assumption of
constant conductivity, Surkov et al. (2000) have succeeded in
obtaining only asymptotic behaviour of the solutions, which
cannot be checked in a static limit and cannot be applied for
comparison with observational data. The numerical solution
of these equations are sometimes used in an MT study in or-
der to analyze the transient fields (Hohmann, 1988; Pellerin
and Hohmann, 1995). But such 4-D computations usually re-
quire a lot of time and also cannot be checked in dependence
on the task parameters. We found that this is the best way
to use the classical double-potential method but with special
modification of the gauge condition.

2 Basic equations

Vectorial potentialA and scalar potentialϕ are introduced in
the usual manner:

H = ∇ × A E = −µ
∂A

∂t
− ∇ϕ. (3)

These potentials are not completely independent from each
other. Their connection is determined by the so-called gauge;
its classical (Lorentz) form is the following (Landau and Lift-
shits, 1992):

∇ · A + ε
∂ϕ

∂t
= 0 or ∇ · A = 0. (4)

The last relationship is conventional in LF and static approx-
imation. But this gauge cannot give separated second order
equations for the potentials in the case ofσ 6= 0. On the
other hand, it is usual (e.g. in plasma physics) to include the
conductivity influence through the effective, complex permit-
tivity coefficient ε′

= ε (1 + iσ/ωε). It identified how the
classic gauge could be modified. Remembering that operator
∂/∂t ' −iω, we can rewrite this gauge as follows:

∇ · A + ε′
∂ϕ

∂t
= ∇ · A + ε

(
1 +

iσ

ωε

)
(−iωϕ) '

∇ · A + ε
∂ϕ

∂t
+ σϕ = 0 (5)

and introduce a new gauge for the conductive medium in LF
approximation:

∇ · A + σϕ = const. (6)

Using this gauge, the equations for vectorial and scalar po-
tentials are written as follows:

1

D

∂A

∂t
− ∇

2A + (∇σ/σ)∇ · A = j s (7)

∇(σϕ) = −∇(∇ · A). (8)

Of course, these equations are more convenient for computa-
tions than Eqs. (1, 2) and Eq. (7) clearly represents the com-
bination of diffusion and convection processes. But in the
case of a homogeneous conductive medium, the situation is
reduced to a symmetrical view of simple diffusion equations:

1

D

∂A

∂t
− ∇

2A = j s (9)

1

D

∂ϕ

∂t
− ∇

2ϕ = −∇ · j s/σ (10)

whereD = (σµ)−1 is the coefficient of electromagnetic dif-
fusion.

The electric field induced in the conductor moving with
velocityv under the permanent magnetic fieldH 0 is known:

E′
= µ v × H 0 (11)

assumingH � H 0. In our case,v = ∂u/∂t , whereu is a
vector of ground displacement produced by a seismic wave,
and the resultant source current is given by,

j s = σE′
=

1

D

∂u

∂t
× H 0 (12)

3 Model of seismic perturbation

In general, the seismic source is characterized by seismic
moment density tensor (Aki and Richards, 1980). How-
ever, for the description of far-distance displacement (dis-
tancer � Ls , the last is the source dimension), the seis-
mic momentM, which is proportional to the faulting area
As ∼ L2

s and slip[u], is conventionally used. It is equivalent
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Fig. 2. FunctionFs(ξ) anddFs/dξ (Eq. (20)). Solid line is the
approximation.

to the supposition of the point source and a couple of body
forces. There are two limiting cases in such a way (Fig. 1).
The first is a case of expansion or tension crack when a force
direction (direction of strike) is perpendicular to the faulting
plane (Fig. 1a). The second (Fig. 1b) is a case of shear dis-
location when strike and slip are in the faulting plane. Two
waves are propagating from the seismic source with veloc-
ity Cp =

√
(l + 2m)/ρ (primary wave P) andCs =

√
m/ρ,

wherem, l are Lame’s coefficients andρ is the ground den-
sity. By neglecting attenuation, they create the following dis-
placements (Aki and Richards, 1980):

a) in the case of a tension crack,Mt = l As [uz],

ui
t =

ai
t

4πρC3
i r

∂Mt (t − r/Ci)

∂t
(13)

wherei = P, S. In the spherical coordinate system with
unity vectorser , eθ , eφ (axisθ = 0 is perpendicular to
the faulting plane, and axisφ = 0 is the strike direc-
tion), the polarization vectors are the following:

aP
t = (1 + 2m cos2 θ/ l) er , aS

t = −m sin 2θ eθ/l (14)

b) in the case of a shear crack,Msh = m As [ux]

ui
sh =

ai
sh

4πC3
i r

∂Msh(t − r/Ci)

∂t
(15)

and

aP
sh = sin 2θ cos(φ − φs) er ,

aS
sh = cos 2θ cos(φ − φs)eθ

= cosθ sin(φ − φs)eφ (16)

whereφs is the angle between the directions of strike
and slip (see Fig. 1b).

Fig. 3. Attenuation function for the relative distancer/Ra . It can
be represented by the dependence(r/Ra)−α , whereα ≈ 2.33 for
r ≥ 3Ra and averagedα ≈ 0.33 for the valuesr ≤ Ra .

Lame’s coefficients are related with rigidityKt = 2m and
the Poisson ratiop: l = Ktp/(1 − 2p). As usual in theory,
we assumep ∼ 0.33, sol ∼ Kt andCp ∼ 2Cs . Further-
more, we simplify the problem supposing:

– H 0 is parallel to the axisθ = 0

– φs = 0

Eqs. (13, 15) include the dependence of∂M/∂t on retard
time t − r/Ci ≥ 0.

The temporal evolution ofM(r, t) can be expressed as fol-
lows:

M|t≥0 =

∞∫
0

M(ω/ωc)e
−iωt dω (17)

whereωc is a “corner” frequency of the seismic spectrum and
ωcτ = q0 ≈ 2 (e.g. Brune et al., 1979),τ ≈ Ls/CR is the
duration of the slip, andCR is the rupture velocity.M(ω/ωc)

is proportional toω−3 in the high frequency (ω � ωc) part
of the spectrum (Aki and Richards, 1980, Scholz, 1990). So
the convenient representation is the following:

M(ω/ωc) = (M0/ωc)/
[
1 + (ω/ωc)

2
]3/2

(18)

where M0 = KtAs[u
0
z] for a tension crack orM0 =

KtAs[ux]/2 for a shear crack. Hence, by neglecting atten-
uation, we obtain

∂M

∂t

∣∣∣∣
t≥r/Ci

= M0ωcFs(ξ) (19)

whereξ = ωc(t − r/Ci), and for the displacement, we have

Fs(ξ) =

∞∫
0

x sin(xξ) dx(
1 + x2

)3/2
≈ 20πξ2 exp(−5

√
ξ) (20)
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Fig. 4. Calculationr2Hr (t) for r = 50 km, r = 100 km, r =

150 km.θ = 15◦. Figure shows thatHr ∼ 1/r2. Time of primary
(p) and secondary (s) seismic wave are highlighted.

The last expression is a useful approximation that is demon-
strated in Fig. 2. For this approximation,dFs/dξ (velocity)
is limited for allξ ∈ [0, +∞). Furthermore, the condition of
summary displacement

∫
+∞

0 dFs(ξ) = 0 is true.
As a result, the induced source currents are the following:

j t = Bt

{
f P (r, t) sinθ(1 + cos2 θ)

+8f S(r, t) sinθ cos2 θ
}
eφ (21)

j sh = Bsh

{
f P sinθ sin 2θ cosφeφ + 8f S cosθ

[sinθ sinφer + cosθ sinφeθ + cos 2θ cosφeφ]
}

(22)

where

Bt = H0 AsCR

[
u0

z

]
/
(
8π D CpL2

s

)
≈ C H0

[
u0

z

]
/(16D)

assuming

C ≈ CR ≈ Cs ≈ Cp/2, Bsh ≈ C H0

[
u0

x

]
/(32D)

and

f i
=

(
T i

a/r
) ∂F s

∂ξ
, ξ = 2

(
t − t is

)
/τ ≥ 0 (23)

t is = r/Ci , i = P, S. Here,T i
a is an attenuation function. It

depends on the spectrum of seismic pulse (see Molchanov et
al., 2001):

T i
a =

{ ∫
ω4M2(ω/ωc) exp(−2ωr/ωcR

i
a)

dω/

∫
ω4M2(ω/ωc) dω

}1/2
(24)

whereRi
a = 2QCi/ωc ≈ QLsCi/C is an attenuation dis-

tance,Q is a seismic quality (Q ≈ 100). Assuming (18), we
have the following expression forTa :

Ta(r/Ra)

=
4

√
3π

{∫
∞

0
x4 exp(−2xr/Ra)dx/(1 + x2)3

}1/2

(25)

whereRi
a ≈ QLsCi/C. The dependence ofTa(r/Ra) is

given in Fig. 3.

4 Solution for a tension crack

In this case,A = Aeφ , ∇ · A = 0, ϕ = 0, Eφ = −µ∂A/∂t ,
Hr = (1/r sinθ)∂(sinθ A)/∂θ , Hθ = −(1/r)∂(rA)/∂r,
Hφ = Er = Eθ = 0 and the basic equation (9) is reduced to
the following:

1

D

∂Ai

∂t
−

1

r2

∂

∂r

(
r2∂Ai

∂r

)
−

1

r2

∂

∂θ

(
1

sinθ

∂Ai sinθ

∂θ

)
= Bif i(t, r)8i(θ) (26)

where the meaning of8i(θ) andBi is evident from Eq. (21).
Index i will be omitted hereafter. The initial condition is
A(0, r, θ) = 0 and the boundary condition isA|r→∞ = 0.
Note that8i(θ) are not arbitrary functions and they should
be invariant to the choice of directionθ = 0 axis. It means
8i(−θ) = −8i(θ), so8i

= const is not possible due to
the physics of our problem. For such a case, the convenient
replacement is as follows:

A =

+∞∑
n=1

anpnwn (27)

wherepn ≡ P 1
n (cosθ) are associated Legendre functions

which are the solutions of the equation:

∂

∂θ

(
1

sinθ

∂pn sinθ

∂θ

)
+ n(n + 1)pn = 0. (28)

They consist of an orthonormal basis (
∫ 1
−1 pnpj d cosθ = 0,

if n 6= j and
∫ 1
−1 p2

n d cosθ = 2n(n + 1)/(2n + 1)), so
p0 = 0 (Gradshtein and Rizik, 1963, p. 1012). Hence, the
coefficientsan can be easily determined:

an =
2n + 1

2n(n + 1)

∫ 1

−1
8(θ)pn d(cosθ) (29)

As a result,wn is a solution of the following equation:

1

D

∂wn

∂t
−

1

r2

∂

∂r

(
r2∂wn

∂r

)
+

n(n + 1)

r2
wn

= Bf (t, r). (30)

It is shown in Molchanov et al. (2001) that the solution can
be expressed as follows:

wn(t, r) = B

∫ t

0
dτ

∫
+∞

0

f (τ, ρ)
√

r

1

2D(t − τ )
e
−

r2
+ρ2

4D(t−τ)

In+1/2

(
rρ

2D(t − τ)

)
ρ3/2 dρ (31)

whereIn+1/2(z) is the modified Bessel function of the order
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Fig. 5. Seismic source(a), r2Hr (b), r2Eϕ (c) as a function oft ; r = 100 km,Ls = 3 km, θ = 15◦ (1) or θ = 60◦ (2), Cp = 6 km/s,
Cs = 3 km/s,D = 200 km2/s. Dash-dot lines show the value of|Hr |/ max|Hr | (2) and|Eϕ |/ max|Eϕ | (3) in logarithmic coordinates.

of n + 1/2. Note that in the case ofn = 0, it reduces to the
well-known Poisson solution of the diffusion equation.

w0(t, r) =
B

π

∫ t

0

∫
Vρ

1

(4D(t − τ))3/2
e
−

|r−ρ|
2

4D(t−τ) dVρ dτ

=
B

π

∫ t

0
dτ

∫ π

0
sinθ ′ dθ ′

∫ 2π

0
dϕ′

∫
+∞

0

1

(4D(t − τ))3/2
e
−

r2
+ρ2

−2rρ(cosθ cosθ ′
+sinθ sinθ ′ cosϕ′)

4D(t−τ) dρ

=
B

√
π

∫ t

0

dτ
√

D(t − τ)

∫
+∞

0

f (τ, ρ)
ρ

2r

(
e
−

(r−ρ)2

4D(t−τ) − e
−

(r+ρ)2

4D(t−τ)

)
dρ. (32)

In our case,n = 1, andn = 3. Then we have

wn(t, r) =
B

√
π

∫ t

0

dτ
√

D(t − τ)

∫
+∞

0

f (τ, ρ)Fn(D(t − τ ), ρ, r)) dρ, n = 1, 3 (33)

where

F1(a, ρ, r) =
ρ

r
Cs(a, ρ, r) −

2a

r2
Sn(a, ρ, r),

F3(a, ρ, r) =

(
ρ

r
+

60a2

ρr3

)
Cs(a, ρ, r)

−

(
12a

r2
+

120a3

r4ρ2

)
Sn(a, ρ, r),

Cs(a, ρ, r) =
1

2

(
e−

(r−ρ)2

4a + e−
(r+ρ)2

4a

)
,

Sn(a, ρ, r) =
1

2

(
e−

(r−ρ)2

4a − e−
(r+ρ)2

4a

)
.

5 Result of computations

We use Eq. (21) for an induced source. Let us calculate the
coefficientsan for the case of a tension crack:

sinθ
(
1 + cos2 θ

)
=

6

5
p1(cosθ) +

2

15
p3(cosθ),
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Fig. 6. Seismic pulse (above) together with coseismic variations in theH, D, Z components of the magnetic field (0.003–0.4 Hz frequency
range, next panels) and wavelet spectrum ofH -variations (below) observed at Karimshino station, Kamchatka, Russia. Hypocentral distance
is ≈ 86 km andMs = 3.8 in this case. Influence by shaking in the magnetic field is coincident with the maximal spike inside the seismic
train, but the total duration of magnetic pulseτm essentially exceeds the length of the seismic pulseτs and their ratiort = τm/τs ≈ 30.

sinθ cos2 θ =
1

5
p1(cosθ) +

2

15
p3(cosθ). (34)

We use Eq. (33) for the calculations whenB = 1. Some
results of the calculation are shown in Fig. 4 and Fig. 5. Fig. 4
shows the plots ofr2Hr as a function oft for Ls = 1 and
distances of 50, 100 and 150 km. It is clear that the value of
Hr decreases as∼ 1/r2.

Plots of the source (1a, 1b),Hr (2a, 2b) andEϕ (3a, 3b)
for θ = 15◦, θ = 60◦ are shown in Fig. 5. To define an
elongation of the magnetic field and electric field, we placed
the graphics of|Hr |/ max|Hr | and |Eϕ |/ max|Eϕ | in loga-
rithmic coordinates (dash-dot line).

6 Discussion and conclusions

We have tried to demonstrate that consideration of the
penetration of a low-frequency wave through a conductive
medium is rather simplified if we solve the equations of elec-
tromagnetic diffusion by a double-potential method. This
approach is related to the specific gauge condition, which
was justified in detail here. Of course, the solutions are not
so simple when taking into consideration inhomogeneity and

the presence of boundaries at the real medium. But even in
this situation, the discussed solutions could be useful for es-
timates (assuming some averaged parameters) or for compu-
tations in the case of an inhomogeneous medium.

The most prominent feature of the seismo-inductive effect
is the elongation of magnetic and electric pulses in compar-
ison with the duration of the seismic pulse, as demonstrated
in Fig. 5. Nagao et al. (2000) found that duration of coseis-
mic electric pulses are sometimes exceeding essentually the
length of the corresponding seismic pulses. They interpreted
this in terms of electro-kinetic phenomenon, but a seismo-
inductive effect explanation is also possible. Recently, some
indication of coseismic magnetic pulses have probably been
found in Kamchatka ULF observations (description of the
observations is presented in Gladyshev et al., 2001). An ex-
ample is shown in Fig. 6.

Of course, there is no exact coincidence in theoretical and
observational results; however, a tendency of magnetic pulse
elongation is evident from both pictures in Fig. 5 and Fig. 6.

It is known that a variety of seismic shocks could happen
in a time of foreshock activity during several days before a
large earthquake. The usual seismic spectrum has a maxi-
mum nearω/2π ∼ ωc/2π ∼ 1 Hz (see e.g. Molchanov et
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al., 2001). Let us imagine what will happen with the mag-
netic and electric variations, taking into account a possibil-
ity of the inductive effect discussed here. We can expect an
appearance of specific electromagnetic “noise” whose spec-
trum maximum is reduced down toω/2π ∼ 1Hz/rt ∼

0.01 − 0.05 Hz. Such phenomena in the shown frequency
range have been observed indeed as ULF electromagnetic
emission and they are well discussed just in this monograph.
We can expect, furthermore, that this ULF emission (if re-
sulted from an inductive effect) should have the same limi-
tation in the area of observation as foreshock seismic shocks
thenselves. In the case of EQ withMs ∼ 5−6, the usual val-
ues of foreshock magnitudes which occurr near the hypocen-
tral region are about 3–4 (Ls ∼ 1−2 km) and the attenuation
distance for them isRa ≈ QLs ∼ 100− 200 km. Similar
limiting distance in the observation of precursory ULF mag-
netic emission was often reported. In fact, this limitation is
more severe for electromagnetic pulses due to the∼ 1/r2

dependence of their amplitudes even in the region (r ≤ Ra)
without attenuation as evident from Fig. 5 and unlike the ge-
ometrical factor 1/r for the seismic pulses.

Our modeling is greatly simplified due to the suppositions
of an inhomogeneous medium, the special form of the frac-
ture (in reality, shear crack is more probable) and the orien-
tation of the fracture plane to the direction of the external
magnetic field. It is interesting to note that some important
features of the seismo-inductive effect are revealed even in
this oversimplified consideration.
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