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Abstract

This technical note summarizes and classifies the various approaches to validation of
remote measurements of atmospheric state variables, and tries to recommend a clear
and unambiguous terminology. The following approaches have been identified: Inter-
comparison of single profiles for accuracy validation; statistical comparison of matched5

pairs of measurements with respect to bias determination and precision validation; sta-
tistical intercomparison of randomly sampled measurements by two instruments, and
comparison of a single measurement to an ensemble of measurements. Applicable
statistics are shortly reviewed, and recipes for evaluation of the co-incidence error due
to less than perfect co-incidences are presented. A rigorous approach is suggested10

to quantitatively validate profile measurements when full covariance matrices are un-
available. We distinguish between “necessary validation” which is rejection of the null
hypothesis that a difference between two measurements is significant, and “sufficient
validation” which means to provide evidence that the probability that there is a signifi-
cant difference is definitely small.15

1 Introduction

Validation of a data product we understand is a statistical analysis of the differences be-
tween measurements of a new instrument to be validated, and a reference instrument
already validated. The purpose is to detect any potential bias of the new measurement,
and to verify that the estimated precision of the new measurement characterizes the20

measurements correctly.
Without any validated reference measurement available, it may also be helpful to

intercompare measurements by two or more non-validated instruments. This approach
we call “cross validation”. While this approach certainly is no validation in its rigorous
sense, it still may help to better characterize the data products.25
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2 Terminology

Let x=(x1, · · · , xN )T be a vertical profile of an atmospheric state variable, sampled on a
discrete vertical grid of N altitude gridpoints, describing the true atmospheric state at
the altitude resolution of the measurement to be validated. Let further x̂=(x̂1, · · · , x̂N )T

be a measurement of x. The accuracy a of the measurement x̂ is the square root5

of the expectation value of the squared differences of the true quantities xn and their
measurements x̂n:

a =


a1
a2
...
aN

 =



√
〈(x̂1 − x1)2〉√
〈(x̂2 − x2)2〉

...√
〈(x̂N − xN )2〉

 (1)

The bias b of a measurement is the expection value of the deviation of the measured
and the true quantity:10

b =


b1
b2
...
bN

 = 〈x̂ − x〉. (2)

Depending on the nature of the bias, it can also be multiplicative rather than additive:

bmult. =


bmult.;1
bmult.;2

...
bmult.;N

 = 〈


x̂1
x1

− 1
x̂2
x2

− 1
...

x̂N
xN

− 1

〉 (3)
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The precision p of the measurement characterizes the reproduceability of the mea-
surement:

p =


p1
p2
...
pN

 =



√
〈(x̂1 − 〈x̂1〉)2〉√
〈(x̂2 − 〈x̂2〉)2〉

...√
〈(x̂N − 〈x̂N 〉)2〉

 (4)

Accuracy, bias, and precision are related by
a2

1

a2
2
...
a2
N

 =


b2

1

b2
2
...
b2
N

 +


p2

1

p2
2
...
p2
N

 (5)

5

Usually, remotely sensed data are provided along with careful data characterization,
which includes estimates of the total error covariance matrix Stotal, the systematic error
covariance matrix Ssys and the random error covariance matrix Srandom, and we have

Stotal = Ssys + Srandom. (6)

The diagonal elements of these matrices are the related variances σ2
total;n=stotal;n,n,10

σ2
sys;n = ssys;n,n and σ2

random=srandom;n,n, respectively. In the case of remote measure-
ments, these error estimates typically are the linear mapping of known uncertainties
(measurement noise, model parameter uncertainties etc) onto the retrieved quantities
x̂n (Rodgers, 2000, 1990). Validation then means to verify that for all n from 1 to N

a2
n = σ2

total;n (7)15

b2
n = σ2

sys;n (8)

p2
n = σ2

random;n. (9)
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A useful strategy in validation is to first search for a possible bias, to suggest a bias
correction, and to finally validate the estimated precision.

3 Comparison of co-incident measurements

3.1 General aspects

Let x̂val and x̂ref be two vertical profiles of the same quantity, measured by instruments5

“val” and “ref”, respectiviely. The profiles and related diagnostic data have to be rep-
resented on a common grid, which usually implies regridding of one of both profiles
(Calisesi et al., 2005). Further, if the measurements include a priori information, both
profiles have to be transformed to the same a priori profile, and the smoothing error
of the difference, Ssmooth,diff has to be estimated (Rodgers and Connor, 2003). These10

authors suggest to quantify profile intercomparison by application of a χ2 test:

χ2 = (x̂val − x̂ref)
TS−1

diff(x̂val − x̂ref), (10)

where Sdiff is the covariance matrix of the difference with elements sdiff;m,n usually cal-
culated as

Sdiff = Stotal,val + Stotal,ref + Scoinc. + Ssmooth,diff, (11)15

unless both measurements have a common error source, which introduces correla-
tions. This may apply to spectroscopic data uncertainties, similar temperature depen-
dences of both measurement principles, etc. In case of such correlations, Sdiff can be
evaluated as

Sdiff = (I,−I)
(

Stotal,val,Ctotal,val,ref

CT
total,val,ref,Stotal,ref

)
(I,−I)T + Scoinc. + Ssmooth,diff, (12)

20

where I is N×N unity and where matrix Ctotal contains the related covariance elements
between the new measurement “val” and the reference measurements “ref”. In case
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of less than perfect coincidences of the two measurements, it is important to quantify
and consider the expectation value of the temporal and spatial coincidence error Scoinc.
(see Sect. 3.2) (We avoid the term “mismatch error” in this context, because in parts of
the community this term is reserved for the error which goes along with large values of
the objective function of any kind of inverse modeling). Comparison of single profiles5

does not allow to distinguish between precision and bias validation.

3.2 Determination of coincidence error in time and space

Usually, only profiles are selected for comparison which meet a certain co-incidence
criterion in time and space or any other adequate co-ordinates d like solar zenith angle,
potential vorticity, equivalent latitude etc. The actual difference ∆d in this quantity is the10

mismatch, and the maximum allowed mismatch is the co-incidence criterium ∆dmax.
Variability of most atmospheric state variables is composed by a functional term and

a random term. The abundance of a certain species, for example, may have a typ-
ical latitudinal dependence or a typical diurnal variation, which are superimposed by
random fluctuations caused by the actual small-scale atmospheric situation. When-15

ever the mismatch is large enough for the functional dependence being important,
and when the mismatch is large enough that nonlinear components of the functional
dependence are important, the functional term should be corrected first by some ap-
propriate parametrization M. With dval and dref being the co-ordinates of the validation
and reference measurements, respectively, the uncorrected reference measurement20

x̂ref,uncorrected is corrected as

x̂ref = x̂ref,uncorrected +M(dval) −M(dref). (13)

and only the residual random term should be characterized by its covariance matrix.
Otherwise the coincidence error may not follow a Gaussian distribution, and systematic
sampling errors may inadvertently be treated as random coincidence errors. An exam-25

ple of application of a correction function M is found in Ridolfi et al. (2006)1 who use
1Ridolfi, M., Blum, U., Carli, B., et al.: Geophysical Validation of temperature retrieved from
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ECMWF temperature analyses to estimate the component of the differences between
MIPAS and radiosonde temperatures which are explained by mismatch in space and
time. A similar apprach was chosen by Cortesi et al. (2006)2 for ozone.

To quantify the residual co-incidence error caused by finer structures than those
accounted for by the correction function M, a sufficiently fine resolved typical reference5

distribution x̂r of state variable x is needed. Let the reference distribution contain
I(∆d ) independent pairs of data points separated by the mismatch ∆d=dval −dref. The
coincidence error Scoinc. then can be evaluated as a function of ∆d as

scoinc.;m,n(∆d ) =

∑I(∆d )
i=1 (∆x̂r;m(∆d ))i (∆x̂r;n(∆d ))i

I − 1
− sdistribution;m,n (14)

where10

(∆x̂r;m(∆d ))i = (x̂r;m(d ) − x̂r;m(d + ∆d ) −Mm(d ) +Mm(d + ∆d ))i (15)

and

(∆x̂r;n(∆d ))i = (x̂r;n(d ) − x̂r;n(d + ∆d ) −Mn(d ) +Mn(d + ∆d ))i (16)

and where m and n identify the profile gridpoints, and where sdistribution;m,n is an element
of the random error covariance matrix Sdistribution of the reference distribution of the state15

variable x̂c. Sdistribution has to be estimated by error propagation calculation and cannot
be obtained from the scatter of the reference sample, because the latter contains the
natural variability we are trying to isolate. The M terms account for the difference
already explained by the functional mismatch correction.

MIPAS/ENVISAT atmospheric Limb-emission measurements, Atmos. Chem. Phys. Discuss.,
in preparation, 2006.

2Cortesi, U., Blom, C., Blumenstock, Th., et al.: Co-ordinated validation activity and quality
assessmentof MIPAS-ENVISAT Ozone data, Atmos. Chem. Phys. Discuss., in preparation,
2006.
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In order to get I(∆d ) large enough for meaningful statistics, binning of Scoinc. is rec-
ommended, i.e. evaluation of S([∆d1,∆d2]) for all mismatches in a range from ∆d1
to ∆d2, where Scoinc. is sufficiently linear in ∆d . If such a bin [∆d1,∆d2] covers the
entire coincidence criterium, i.e. ∆d1=0 and ∆d2 equals the coincidence criterium, it is
no longer necessary to care about the ∆d -dependence of Scoinc. but the mean coinci-5

dence error Scoinc.≈Scoinc.(∆d ) can be used for the entire ensemble of coincidences.
Meteorological analyses, satellite measurements or modeled atmospheric fields can

be used as reference distributions to evaluate the coincidence error on a larger scale.
It is important to carefully assess any possible reduction of the horizontal variability
in these datasets through application of Bayesian statistics in the sense of variational10

data assimilation (e.g. Ide et al., 1997) or optimal estimation retrievals (Rodgers, 1976).
For determination of small-scale temporal fluctuations stationary in situ measurements
or ground-based remote sensing measurements are better suited, while for small-scale
spatial fluctuations aircraft measurements are the first choice.

Multi-dimensional co-incidence can be assessed component-wise by evaluation of15

Eq. (14) for each co-incidence direction (e.g. latitude, longitude and time) and sum-
ming up the respective coincidence error covariance matrices. In the case where the
variation of the state variable under assessment is correlated between two of these
dimensions, the summation has to be replaced by the following scheme:

Scoinc. = (I, I)
(

Scoinc.;1,Ccoinc.;1,2

CT
coinc.;2,1,Scoinc.;2

)
(I, I)T , (17)

20

where the subscripts of the covariance matrices Scoinc.;l and the cross-dimension co-
variances Ccoinc.;k,l denote the dimensions along which the variabilities are analyzed.
Such correlations may apply, e.g., to the mixing ratio of an inert trace gas whose abun-
dance is ruled by transport processes. The existence of a prevailing direction of wind in
combination with a prevailing gradient in the field of the state variable then introduces25

such correlations.
Another option to handle co-incidence errors in L dimensions is to define
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a norm of the following type which transforms the multi-dimensional mismatch
∆d=(∆d1, . . . ,∆dL) to a scalar mismatch distance ∆d :

∆d =

√√√√ L∑
1

(wl∆dl )2, (18)

where wl are weighting factors reflecting the expected variability of the state variable
with the respective direction l . Steck et al. (2006)3, e.g., have used5

∆d =
√
∆2

long + ∆2
lat + (∆tvw)2 (19)

where ∆long and ∆lat are longitudinal and latitudinal mismatch distances, ∆t is the mis-
match in time, vw is the typical windspeed. This particular norm holds for analysis
of transport-dominated abundances of trace species without prevailing gradients and
wind directions.10

3.3 Horizontal smoothing

Additional complication arises if the measurements to be compared characterize air
parcels of non-zero extension in the direction of d . In this case the smoothing error in
direction of d and the coincidence error can no longer be treated independent. First
we discuss the along-line-of-sight extension of an air parcel sounded by a limb-viewing15

instrument. If the extension of an air parcel sounded by the measurement system to

3Steck, T., Blumenstock, T., Clarmann, T., Glatthor, N., Grabowski, U., Hase, F., Hochschild,
G., Höpfner, M., Kellmann, S., Kiefer, M., Kopp, G., Linden, A., Milz, M., Oelhaf, H., Stiller, G. P.,
Wetzel, G., Zhang, G., Fischer, H., Funke, B., Wand, D. Y., Gathen, P., Hansen, G., Stebel, K.,
Kyrö, E., Allaart, M., Redondas Marrero, A., Remsberg, E., Russell III, J., Steinbrecht, W., Yela,
M., and Raffalski, U.: Validation of ozone measurements from MIPAS-Envisat, J. Geophys.
Res., under review, 2006.
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be validated is larger in the direction of d than that represented by an element of the
reference measurement xr, then the profiles xr in Eq. (14) have to be replaced by

x̃r = Ahorxr (20)

Further, the covariance matrix Sdistribution has to be replaced by

S̃distribution = AhorSdistributionAT
hor, (21)5

where Ahor is the matrix of horizontal averaging kernels in the line-of-sight direction.
These can be obtained e.g. from perturbationan analysis or analytically from 2D radia-
tive transfer modelling and retrieval tools (see, e.g. Steck et al., 2005; Carlotti et al.,
2001). If Ahor is not available, it can be approximated by RA, where A is the verti-
cal profile averaging kernel matrix, and R the I×N dimensional ray-tracing operator,10

which maps altitudes z1, · · · , zn to along-track distances d1, · · · , dI according to the ob-
servation geometry. Elements of A representing contributions from below the tangent
altitude are assigned to the tangent point geolocation. This approximation, however,
neglects both the mapping of any horizontal smoothing error onto the retrieved profile,
and the asymmetry of the horizontal averaging kernel around the tangent point of a15

limb viewing measurement. This approach has been chosen by Ridolfi et al. (2006)1

and Cortesi et al. (2006)2 to account for the horizontal smoothing of MIPAS in the
co-incidence correction.

To account for the cross-line-of-sight extension of the air-parcel sounded by a limb
viewing instrument, R is unity and A is the horizontal cross-line-of-sight field-of-view20

weighting function. For nadir sounding instruments, the latter approach can be applied
in either direction.

For comparison of a limb viewing measurement with a measurement of negligible
horizontal smoothing, the pure relative smoothing error without any co-incidence er-
ror component can be evaluated by application of the approach proposed above in25

this Section (Eqs. 20 and 21) to Eq. (14) for ∆d=0. Similar considerations apply to
comparison of two limb sounders with different azimuth viewing direction. In this case
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the smoothing errors of both instruments have to be combined under consideration of
correlations if the lines of sight are not orthogonal.

4 Bias determination

To determine the bias between two measurement systems, a statistical ensemble of
measurements is needed. This ensemble can either be composed of K matching pairs5

of measurements or random samples of K and L measuremets of each measurement
system, respectively.

4.1 Statistical bias determination with matching pairs of measurements

The mean difference between measurements to be validated and coincident reference
measurements can be compared with its statistical uncertainty in order to determine10

any bias between the measurement to be validated and the reference measurement
and its significance. With K pairs of coincident measurements available, the bias b is
estimated at

b̂ =

∑K
k=1(x̂val;k − x̂ref;k)

K
(22)

The statistical uncertainty of the bias is characterized by the related covariance matrix15

Sbias, of which the elements are estimated at

sbias;m,n =

∑K
k=1(x̂val;m,k − x̂val;m)(x̂val;n,k − x̂val;n)

K (K − 1)
+ (23)∑K

k=1(x̂ref;m,k − ¯̂xref;m)(x̂ref;n,k − ¯̂xref;n)

K (K − 1)
−∑K

k=1(x̂val;m,k − x̂val;m)(x̂ref;n,k − x̂ref;n)

K (K − 1)
−
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∑K
k=1(x̂val;n,k − x̂val;n)(x̂ref;m,k − x̂ref;m)

K (K − 1)

=

∑K
k=1(x̂val;m,k − x̂ref;m,k − b̂m)(x̂val;n,k − x̂ref;n,k − b̂n)

K (K − 1)
,

where

¯̂x =

∑K
k=1 x̂k
K

. (24)

This assessment does not need any error estimates of x̂val or x̂ref. If, however, precision5

estimates of differences

Sdiff,random = Sval,random + Sref,random + Sval,coinc. (25)

are available, the measurements can be weighted accordingly in the bias determina-
tion:

b̂ =

(
K∑

k=1

S−1
diff,random;k

)−1( K∑
k=1

S−1
diff,random;k(x̂val;k − x̂ref;k)

)
(26)

10

The bias uncertainty in terms of covariance matrix then is

Sbias =

(
K∑

k=1

S−1
diff,random;k

)−1

(27)

The consistence of b̂n and σsys,n can easily be checked (see, e.g. Ridolfi et al., 20061,

for application to MIPAS temperature validation, or Cortesi et al., 20062, for ozone
validation). Evaluation of the significance of the bias then requires χ2 statistics, where15

χ2
bias = b̂

T
Sbiasb̂. (28)
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Obviously, neither the root mean squares difference of profiles obtained from two
measurement systems nor 1/

√
K of the root mean squares difference are a measure

of the significance of the bias.
The extension of the bias determination discussed above to the determination of a

multiplicative bias is straightforward: The mean relative deviation of a state parameter5

xn at altitude gridpoint n is calculated as

b̂mult.;n =

∑K
k=1

x̂val;n,k−x̂ref;n,k

x̂ref;n,k

K
. (29)

The elements of its covariance matrix are calculated as

sbias,mult.;m,n =

∑K
k=1(

x̂val;m,k−x̂ref;m,k

x̂ref;m,k
− b̂mult.;m)(

x̂val;n,k−x̂ref;n,k

x̂ref;n,k
− b̂mult.;n)

K (K − 1)
, (30)

The multiplicative bias is the natural choice to report the systematic errors which are10

expected to be proportional to the state parameter itself. Retrieval errors due to erro-
neous line intensities in spectrometric remote sensing of trace gas abundances are a
typical example. Some authors prefer to report relative mean deviation instead:

b̂rel.;n =
b̂n∑K

k=1 x̂ref,k

K

=
b̂n

¯̂xref,n

(31)

This way to report the bias is adequate when the nature of the bias is additive and15

the ratioing by the reference value (used here as an estimate of the true value) only
serves the purpose to illustrate the relevance of this error component with respect to
a typical value. The estimation of the variance sb,rel;n,n of this quantity requires error
propagation calculation under consideration of correlations, because the counter and
the denominator include common terms:20

σ2
b,rel;n,n = sb,rel;n,n =

1

¯̂x
2
ref;n

(sbias;n,n
¯̂x

2
ref;n + sref;n,nb̂

2
n − 2rσbias;n,nσref;n,n

¯̂xref,nb̂n), (32)
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where σbias;n,n =
√
sbias;n,n is the standard deviation of the bias; σref;n,n is the standard

deviation of the mean reference value given by

σ2
ref;n,n = sref;n,n =

∑K
k=1(x̂ref,n − ¯̂xref,n)2

K (K − 1)
(33)

and r is the correlation coefficient of counter and denominator,

r =

∑K
k=1(x̂val;k,n − x̂ref;k,n − b̂k,n)(x̂ref;k,n − ¯̂xref,n)

(K − 1)σbias;n,nσref;n,n
. (34)

5

The simplified expression

σ̃b,rel;n,n =
σbias;n,n

¯̂xref,n

(35)

ignores the uncertainty of ¯̂xref,n.

4.2 Bias determination by statistical comparison of random samples

It is not necessary to use matched pairs for validation. Random samples are suffi-10

cient but any sampling artefacts have to be carefully excluded. A parametrization as
suggested in Sect. 3.2, Eq. (13) may help to reduce systematic sampling errors.

When two instruments provide large but independent, i.e. unmatched, random sam-
ples of measurements, the bias can be determined as the difference of respective
mean values:15

b̂ =

∑K
k=1 x̂val;k

K
−
∑L

l=1 x̂ref;k

L
= x̂val − x̂ref (36)

and the respective covariance matrix has the elements

sbias;m,n =

∑K
k=1(x̂val;m − x̂val;m)(x̂val,n − x̂val;n)

K (K − 1)
+ (37)
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∑L
l=1(x̂ref,m − x̂ref;m)(x̂ref,n − x̂ref;n)

L(L − 1)
.

Obviously, any non-randomness of the samples can cause an apparent bias.

5 Precision validation

5.1 Precision determination with matching pairs of measurements

For accuracy validation, the root mean squares difference of the pairs of matched mea-5

surements is calculated, which we expect to equal the total estimated error of the profile
difference. In terms of variances and covariances, we test that

〈
K∑

k=1

(x̂val;k,m − x̂ref;k,m)(x̂val;k,n − x̂ref;k,n)〉 = sdiff;m,n, (38)

which again is to be verified by χ2 statistics:

〈(x̂val − x̂ref)
TS−1

diff(x̂val − x̂ref)〉 = N (39)10

However, if there is a bias b between the measurement systems, this should be re-
moved in order to validate the precision of the measurement rather than the accuracy.
This leads to the following χ2 test

〈(x̂val − x̂ref − b̂)TS−1
diff,random(x̂val − x̂ref − b̂)〉 = N − 1, (40)

where Sdiff,random is the random component of Sdiff according to Eq. (12) (see, e.g. Ri-15

dolfi et al., 20061, for application to MIPAS temperature validation, or Cortesi et al.,
20062, for ozone validation).
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The variances and covariances of the bias-corrected differences are related to the
variances and covariances of the bias by

K∑
k=1

(x̂val;k,m − x̂ref;k,m − b̂m)(x̂val;k,n − x̂ref;k,n − b̂n) = Ks2
bias;m,n, (41)

where K is the sample size.

5.2 Precision validation by comparison of random samples5

The scatter of a sample of measurements is composed of both the measurement ran-
dom error (characterized by covariance matrices Srandom;val or Srandom;ref, respectively)
and the natural variability (characterized by its covariance matrix Snat). The natural
variability of two randomly sampled data sets, however, is the same, regardless if we
observe the atmosphere with the one or the other instrument. Thus, we have to verify10

Sval;nat = Sval;sample − Sval;random = Sref;sample − Sref;random = Sref;nat, (42)

where the elements of Sval;sample are

sm,n =

∑K
k=1(x̂val;m − x̂val;m)(x̂nal;n − x̂val;n)

K − 1
(43)

and where the elements of Sref;sample are

sm,n =

∑L
l=1(x̂ref;m − x̂ref;m)(x̂ref;n − x̂ref;n)

L − 1
(44)

15

Testing of Sval;nat=Sref;nat is performed with the F-test (see, e.g., Press et al., 1989). The
strategy discussed here is particular sensitive to an artificial reduction of the variability
of one of the measurement data sets through the use of retrieval schemes involving
Bayesian statistics, where each single profile is pushed towards some a priori informa-
tion.20
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6 Comparison of a single measurement with a random sample of measure-
ments

If only single profile measurements are available which do not coincide with any of
the measurements to be validated, it can be checked if the single profile measurement
could be part of the distribution defined sample of size K to be validated. The applicable5

χ2 test then is

(x̂val − x̂ref)
T (Sval;ensemble + Sref;total)(x̂val − x̂ref) (45)

where Sval;ensemble is the ensemble covariance matrix of the measurements to be vali-
dated. Its elements are

sval;ensemble;m,n =
K∑

k=1

(x̂val;m,k − x̂val;m)(x̂val;n,k − x̂val;n)

K − 1
. (46)

10

Again, considerations as outlined above Eq. (12) may apply.

7 How much validation is enough?

The rationale of validation often is as follows: The null hypothesis is that the difference
of the profiles is significant. χ2 statistics allows to calculate the probability Pacc(χ2) that
the actual χ2 occurs accidently, due to the error bars, without any substantial differ-15

ence of the profiles. If this probability is larger than a given threshold, corresponding
to an actual χ2 below a given threshold, the null hypothesis of a significant difference
has to be rejected. The integral of the χ2 probability density function from the actual
χ2 to infinity may result in a value of slightly above, say, 0.05, which implies a proba-
bility Pdis(χ2) of a substantial, i.e., non-accidental disagreement below 95%. The null20

hypothesis of substantial disagreement is thus not significant at 5% confidence level
and must be rejected. However, we only know that the probability Pacc(χ2) that there
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is agreement between the measurements is larger than 5%, which does not suggest
that the new data are really trustworthy. The failure of proving significance of disagree-
ment is not equivalent with the evidence of agreement. We call this level of validation
“necessary validation” but it is indeed only failed falsification.

If, however, the (predefined!) intercomparison ensemble contains K comparisons,5

with all χ2
k smaller than a critical threshold χ2

crit representing the 5-% confidence level,

than the probability of disagreement Pdis(K, χ2
max) is for independent profile measure-

ments according to the multiplication axiom

1 − Pacc(K, χ2
max) = Pdis(K, χ2

max) < 0.95K , (47)

where χ2
max is the largest χ2 value found in the ensemble. With an ensemble of enough10

intercomparisons (K=59 for the 5-%-threshold), each with a χ2
k<χ

2
crit equivalent to a

probability of disagreement Pdis(k, χ2
k ) of less than 95%, the probability Pacc(χ2

max, K )
that there is no significant disagreement is larger than 95%, and the new measurement
is validated at 5% confidence level. We call this level of validation “sufficient validation”.
With a large maximum χ2

max in the comparison ensemble, a large ensemble is needed15

with all χ2
k below the threshold χ2

max, while with a smaller maximum χ2
max, a smaller

ensemble is sufficient. Similar considerations apply to the F-test using for statistical
validation of random rather than matched samples.

Alternatively one can also perform a single χ2 test for the entity of measurements.
For horizontally uncorrelated measurements the total χ2 simply is the sum of the in-20

dividual profile χ2 values. The expectation value of χ2 then is the degree of freedom
of the whole system, i.e. N×K . In this case the probability Pdis(χ2) of substantial dis-
agreement of the entire comparison ensemble can be evaluated directly by integration
of the χ2 probability density function.

The advantages of the approach involving the multiplication axiom are (1) for the25

lower degree of freedom the user will more easily find tabulated values of P in the
literature; (2) the availability of numerous χ2 values allows to verify that these follow
the expected distribution. The major disadvantage is that this probability estimate is
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not “sufficient” (in estimation theoretical terminology; beware of the different meaning
compared to “sufficient condition”!), because it is based only on the maximal χ2

max of
the entire ensemble but not on the actual values of the other ones. Further, it is not
“robust” because it is very sensitive to outliers. The advantages of the χ2 test of the
entire comparison ensemble is its inherent sufficiency. Disadvantages are on the prac-5

tical side because the integrals of the χ2 probability density functions are not usually
tabulated for large degrees of freedom. The safest is to combine both approaches. Dis-
crepancies can then point at non-representative outliers in the comparison ensemble.
E.g., Migliorini et al. (2004) have detected suspicious ozone profiles in their comparison
ensemble by comparison of the expected and the found χ2 distribution.10

If the null hypothesis cannot be rejected (failed necessary validation), or if no suf-
ficient confidence in the agreement of the new measurement and the reference mea-
surement can be achieved (failed sufficient validation), the precision estimates of one of
the instruments have been too optimistic, or the coincidence error may have been un-
derestimated, or any other excuse will be found by the responsible scientist in charge.15

In the case the sufficient validation fails, there are three options: 1. One option is
not to change anything and just to report a poorer level of significance. This is option
of choice if no further validation measurements are available and if the largest χ2

max

values cannot be explained by outliers which are not part of the expected χ2 distribu-
tion and which cannot be sorted out with good reason, as discussed under option (3).20

2. If the initial ensemble size was chosen too small, the profile causing χ2
max may not

be representative. In this case, a larger comparison ensemble may help to achieve a
reasonable significance level according to Eq. (47). If, however, the initial sample was
representative, even larger χ2 values will occur in the larger ensemble, and the signifi-
cance level will not improve. It is, of course, important to work with pre-defined random25

samples and not to adjust the sample or the sample size to the optimum significance
level. 3. Large χ2 can also be associated with a particular subset of the sample which
can be characterized by some objective criterion. Migliorini et al. (2004), e.g. have
found problems in O3 data from spectra suspected to be cloud contaminated. In this
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case it may be appropriate to define a kind of data filter and to validate only the comple-
mentary subset which passes the filter. There are, however, two traps in this approach:
First, the filter should not use the quantity to be validated itself as a filter criterium.
Second, the new analysis system, of which the newly defined filter is a part, has to be
validated using an independent comparison ensemble. When the original sample is5

used, it will always be possible to tune the data filter such that a good significance level
is achieved.

8 What if full retrieval error covariance matrices are not available?

Without the profile covariances available, we cannot draw any quantitative conclusion
on the reliability of the retrieved profiles in the sense of χ2 statistics. Often, however, af-10

ter debiasing, there are at least no horizontal error correlations to be considered. Then,
state variables can be compared and χ2 statistics can be set up for a large ensemble
of size K of scalar measurements to be validated x̂val,n,k and reference measurements
x̂ref,n,k at a single selected altitude z(n). This corresponds to “map validation” instead of
“profile validation”. All formulation discussed in this paper then is applied to the simple15

case where N=1. χ2-testing in the sense as discussed in Section 7 in this applica-
tion leads to a valid conclusion on the reliability of a measurement x̂val,n at a certain
confidence level 1-P at the selected altitude z(n). Of course, this procedure can be per-
formed for all altitudes of interest independently. We consider a profile measurement
system sufficiently validated if we can sufficiently validate the values at each altitude. If,20

after debiasing, correlations in the time domain can be excluded, the rationale outlined
above also can be applied to time series validation. Ridolfi et al. (2006)1 have com-
bined the map validation and time series validation approach by statistically analyzing
differences between MIPAS temperatures and radiosonde temperatures from two sta-
tions measured at various times. The statistical analysis was peformed for altitude bins25

defined such that each MIPAS limb scan (i.e. each profile) was represented only once
in each bin, justifying to disregard any error correlations in altitude.
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9 Conclusions

Recipes and terminology for statistical validation of a profile measurement system have
been suggested which cover both bias and precision validation and which are applica-
ble to both matched pairs of coincident measurements and random samples of mea-
surements. Further, a recipe has been suggested to validate profile measurements in5

a statistical rigorous way even if their full profile covariance matrices are not available.
The rejection of the hypothesis that there is a set of reference measurements which
is significantly in contradiction with the measurements to be validated is a necessary
condition of validation. The more rigorous approach to give evidence that the proba-
bility of the existence of a significant contradictory measurement is small is considered10

a sufficient condition. While in real life it will not always be possible to apply these
approaches at full rigorosity, validation scientists certainly will find workarounds and
simplifications. It is hoped that this technical note at least supports better communica-
tion in the validation community by suggesting a more or less consistent terminology.
Further, ad hoc validation approaches may serve their purpose better, once clarified15

which rigorous approach they are meant to replace.

Acknowledgements. The author would like to thank all people who patiently listened to his
thoughts even at times of the day when statistics are not usually discussed.

References

Calisesi, Y., Soebijanta, V. T., and van Oss, R.: Regridding of remote soundings: For-20

mulation and application to ozone profile comparison, J. Geophys. Res., 110, D23306,
doi:10.1029/2005JD006122, 2005. 4977

Carlotti, M., Dinelli, B. M., Raspollini, P., and Ridolfi, M.: Geo-fit approach to the analysis of
limb-scanning satellite measurements, Appl. Opt., 40, 1872–1885, 2001. 4982

Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C.: Unified Notation for Data Assimilation: Opera-25

tional, Sequential and Variational, J. Meteorolog. Soc. Japan, 75, 1B, 1997. 4980

4993

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/4973/2006/acpd-6-4973-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/4973/2006/acpd-6-4973-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 4973–4994, 2006

Validation

T. von Clarmann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Migliorini, S., Piccolo, C., and Rodgers, C. D.: Intercomparison of direct and indirect measure-
ments: Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) versus sonde
ozone profiles, J. Geophys. Res., 109, D19316, doi:10.1029/2004JD004988, 2004. 4991

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical Recipes, Cam-
bridge University Press, Cambridge, 1989. 49885

Rodgers, C. D.: Retrieval of Atmospheric Temperature and Composition From Remote Mea-
surements of Thermal Radiation, Rev. Geophys. Space Phys., 14, 609–624, 1976. 4980

Rodgers, C. D.: Characterization and error analysis of profiles retrieved from remote sounding
measurements, J. Geophys. Res., 95, 5587–5595, 1990. 4976

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, vol. 2 of10

Series on Atmospheric, Oceanic and Planetary Physics, edited by: Taylor, F. W., World
Scientific, 2000. 4976

Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding instruments, J. Geo-
phys. Res., 108, 4116, doi:10.1029/2002JD002299, 2003. 4977
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