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Abstract

Continuous observation of atmospheric organic and elemental carbon (OC, EC) were
conducted at Xi’an during high pollution seasons from September 2003 to Febru-
ary 2004. PM2.5 samples were collected on pre-fired quartz-fiber filters with battery-
powered mini-volume samplers every day and PM10 samples were collected every third5

days. Three types of source samples (i.e., coal-combustion, motor vehicle exhaust, and
biomass burning) were also collected during ambient sampling period. Ambient and
source samples were analyzed for OC and EC by thermal/optical reflectance (TOR) fol-
lowing the Interagency Monitoring of Protected Visual Environments (IMPROVE) pro-
tocol. The average PM2.5 OC concentrations in fall and winter were 34.1±18.0µg m−3

10

and 61.9±33.2µg m−3, respectively, while EC were 11.3±6.9µg m−3 and 12.3±5.3µg
m−3, respectively. Most of OC and EC were associated with fine particle (PM2.5) mode.
The OC and EC levels at Xi’an are higher than most urban cities in Asia. The OC and
EC in fall were found to be strongly correlated (R2>0.9), with moderate correlation in
winter (R2=0.66). The carbonaceous aerosol accounted for 48.8±10.1% of the PM2.515

during fall and 45.9±7.5% during winter. Average OC/EC ratio was 3.3 in fall and 5.1
in winter with individual OC/EC ratios constantly exceeding 2.0. Elevated OC/EC ratios
were found during heating seasons with increased coal combustion. The contribution
of secondary organic carbon was not significant during winter. The time series of OC
and EC showed periodic variability. Traffic contributes 5 and 7 day peaks in the spec-20

trum, precipitation appears as a 10 day periodicity and biomass burning can be iden-
tified as a 24 day periodicity. Total carbon (TC) was apportioned by absolute principal
component analysis (APCA) using the 8 carbon fraction data (OC1, OC2, OC3, OC4,
EC1, EC2, EC3, and OP [a pyrolyzed carbon fraction]). TC attributes 73% to gasoline
exhaust, 23% to diesel exhaust, and 4% to biomass burning during fall. However, TC25

attributes 44% each to gasoline exhaust and coal burning, 9% to biomass burning, and
3% to diesel exhaust during winter.
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1. Introduction

Study of atmospheric organic carbon (OC) and elemental carbon (EC, also named
black carbon, BC) in China has received intensive attentions in recent years due to the
high emission of OC and EC and their impacts on global/regional climatic and environ-
mental changes (IPCC, 2001; ACE-Asia, 1999, http://saga.pmel.noaa.gov/aceasia/;5

Project Atmospheric Brown Clouds (ABC), 2003, http://www-abc-asia.ucsd.edu/).
Roughly one-fourth of global BC emissions are estimated from China (Cooke et al.,
1999). Control of emission of BC from China was considered as a most effective way
for slowing global warming (Jacobson et al., 2002). Elevated OC and EC contributed
to high particulate matter (PM) pollution in urban area (He et al., 2001; Ye et al., 2003;10

Cao et al., 2003, 2004). In a regional scale, EC heats the air, alter atmospheric stabil-
ity and vertical motions, and affect the large-scale circulation and hydrologic cycle with
significant regional climate effects in China (Menon et al., 2002).

Several studies have been conducted on developed and coastal cities like Beijing,
Shanghai, Guangzhou, and Hong Kong (He et al., 2001, Ye et al., 2003; Cao et al.,15

2003, 2004), but limited studies were available for inland cities in China. Xi’an situated
in northwest China and it was selected as the city with high PM pollution in the United
Nation Development Program (UNDP) pilot study during 1997 and 2001 (Zhang et al.,
2001, 2002). Xi’an has been the capital city of 13 Chinese dynasties for more than a
millennium. Since the discovery of terra-cotta warriors and horse, Xi’an became one of20

the most popular tourist attractions in China. In addition to coal-combustion and vehicle
exhaust, Xi’an is impacted by mineral dust and dust storm (Zhuang et al., 1992, 1993;
Gao et al., 1997; Cao et al., 2005). Therefore, the primary objectives of the paper are
to: 1) examine the temporal variations of PM2.5 (particle diameter smaller than 2.5µm)
and PM10 (particle diameter smaller than 10µm) OC and EC concentrations, and 2)25

quantify the contributions of major sources to OC and EC.
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2. Sampling and analysis

2.1. Sampling sites and descriptions

Xi’an (33◦29′–34◦44′ N, 107◦40′–109◦49′ E, population 5 million), the largest city in
northwestern China, lies in the south margin of the Loess Plateau, China. The Xi’an
monitoring site (400 m above the sea level) (Fig. 1) is situated ∼15 km south of down-5

town Xi’an. The site has an urban-scale zone of representation (Chow et al., 2002)
with no major industrial activities or local fugitive dust sources in the surrounding area,
which is mostly residential. PM2.5 and PM10 samples were obtained from the rooftop
of the Institute of Earth Environment, Chinese Academy of Sciences, at 10 m above
ground level. PM samples were collected during fall (13 September 2003 to 31 Octo-10

ber 2003) and winter (1 November 2003 to 29 February 2004).

2.2. Sample collection

Daily PM2.5 and every third days PM10 samples were collected using two battery-
powered mini volume samplers (Airmetrics, Oregon, USA) operating at flow rates of
5 l min−1 (Cao et al., 2003). Prior to field operations, calibrated mini-vol samplers were15

collocated with low volume PM2.5 and PM10 Partisol samplers (model 2000, Rupprecht
& Patashnick, Albany, New York, USA) at The Hong Kong Polytechnic University for
data comparison. The difference between the two types of samplers was less than 5%
for the PM2.5 and PM10 mass.

PM samples were collected on 47 mm Whatman quartz microfiber filters (QM/A);20

the filters were pre-heated at 900◦C for 3 h before sampling. The exposed filters were
stored in a refrigerator at about 4◦C before chemical analysis to prevent the evapora-
tion of volatile components. Quartz-fiber filters were analyzed gravimetrically for mass
concentrations using a Sartorius MC5 electronic microbalance with a ±1µg sensitivity
(Sartorius, Göttingen, Germany). These filters were weighed after 24-h equilibration25

at temperature between 20◦C and 23◦C and relative humidity (RH) between 35% and
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45%. Each filter was weighed at least three times before and after sampling, and the
net mass was obtained by subtracting the difference between the averaged pre- and
post-sampling weights. Precisions of the weighings were <10µg for blank filters and
<20µg for filter samples. A total of 16 field blanks were collected to subtract the posi-
tive artifacts due to adsorption of gas-phase organic components onto the filter during5

and/or after sampling. However, negative artifacts due to volatilization of particle-phase
organics from particle sample were not quantified. A total of 165 PM2.5 and 53 PM10
samples were collected, respectively. Five PM2.5 source samples were collected from
the coal-combustion of residential stoves, six samples collected from a major highway
with heavy traffic, and five samples collected from a farmland when the maize residue10

combusted after harvest during ambient sampling period.
Continuous meteorological data were monitored by HFY-IA Wind Speed/Wind Di-

rection Instrument (Changchun Institute of Metrological Instruments, Changchun, Jilin
Province, China).

2.3. Thermal/optical carbon analysis15

The samples were analyzed for OC and EC using a Desert Research Institute (DRI)
Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA).
A 0.5 cm2 punch from the filter was analyzed for eight carbon fractions following the
IMPROVE (Interagency Monitoring of Protected Visual Environments) thermal/optical
reflectance (TOR) protocol (Chow et al., 1993, 2001, 2004; Fung et al., 2002). This20

produced four OC fractions (OC1, OC2, OC3, and OC4 at 120◦C, 250◦C, 450◦C,
and 550◦C, respectively, in a He atmosphere); a pyrolyzed carbon fraction (OP, de-
termined when reflected a transmittance laser light attained its original intensity after
O2 was added to the analysis atmosphere); and three EC fractions (EC1, EC2, and
EC3 at 550◦C, 700◦C, and 800◦C, respectively, in a 2% O2/98% He atmosphere). IM-25

PROVE OC is operationally defined as OC1+OC2+OC3+OC4+OP and EC is defined
as EC1+EC2+EC3-OP. Inter-laboratory comparisons of samples between IMPROVE
protocol with the DRI Model 2001 instrument and the TMO (thermal manganese diox-
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ide oxidation) method (done by AtmAA, Inc., Calabasas, CA) has shown difference
<5% for total carbon (TC) and 10% for OC and EC (Fung et al., 2002). Average
field blanks were 1.56 and 0.42µg m−3 for OC and EC, respectively. Quality Assur-
ance/Quality Control (QA/QC) procedures were described in Cao et al. (2003).

3. Results and discussion5

3.1. Temporal variations of OC and EC

Monthly and seasonally averaged OC and EC concentrations are summarized in Ta-
ble 1. PM2.5 OC and EC during winter are 1.8 and 1.1 times, respectively, of those
during fall. PM10 OC and EC during winter are 2.2 times and 1.5 times, respectively, of
those during fall. Monthly average OC and EC were highest during December and low-10

est during September. In December OC in PM2.5 and PM10 were 81.7±36.2µg m−3

and 124.8±54.8µg m−3, respectively, and EC in PM2.5 and PM10 were 15.2±4.6µg
m−3 and 28.9±8.9µg m−3, respectively. For PM2.5 and PM10, highest to lowest values
of OC were 3.3 and 4.2 and EC were 1.8 and 2.6, respectively. High variability of OC
concentrations may be due to the contributions of different emission sources.15

Figure 2 shows that temporal variations of PM2.5 OC coincide with mass, and to a
lesser extend, with EC. The Pearson correlation coefficients of these two series was
as high as 0.96 (significant level 99%), pointing to OC is major contributor to PM2.5
mass. The Person correlation coefficients of PM2.5 mass and EC also reached to 0.72
(significant level 99%), implying EC is a significant contributor to PM2.5 mass. PM2.520

OC increased gradually from September to November, and reached a maximum on 14
December 2003 (189.6µg m−3). The PM variations at Xi’an have a winter maximum
and summer minimum (Zhang et al., 2001), so this OC value is expected to be the
highest value in the year. PM2.5 OC concentrations fluctuated from mid-December
to earlier January. After the Chinese Spring Festival (22 January 2004 to 29 January25

2004), OC dropped to a low level and began to decrease during February. Similar trend
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of EC variation was found, but the EC concentration was lowest during the Chinese
Spring Festival and fluctuated in low values from 22 January 2004 to 5 February 2004.

The major emission sources of OC and EC in China includes coal-combustion, motor
vehicle exhaust, and biomass burning (includes biofuels) (Streets et al., 2001). Previ-
ous study showed that coal-combustion and motor vehicle exhaust were the two major5

emission sources of TSP (Total Suspended Particle) (Zhang et al., 2001). During the
study periods, the impact of biomass burning seems evident because Xi’an is located
in the Guanzhong Plain, a major base of national rice/corn production. During the
fall harvest season in mid-October, the residue of diverse crops like corn were mainly
cleaned by field combustion. Residential combustion of biofuels is also a significant10

contributor during wither because part of farmer around Xi’an use it as heating source.
Therefore, coal-combustion, motor vehicle exhaust, and biomass burning constitute
the major emission sources of carbonaceous pollution during fall and winter in Xi’an.

Wet deposition is the dominant mechanism to remove OC and EC. As shown in Ta-
ble 2, the precipitation days in fall were 13 days, account for 27% of observational days,15

however, compared to 6 days or 5% of total observational days in winter. During pre-
cipitation, average OC and EC decreased to 16.2µg m−3 and 4.3µg m−3, respectively,
which may mirror the urban background values of OC and EC in high pollution seasons
at Xi’an. Average OC and EC levels in winter precipitation days were two times of those
in fall, i.e., with 34.7µg m−3 for OC and 8.6µg m−3 for EC, reflecting the low quantity20

and shorter duration of precipitation in winter. PM2.5 mass and carbon concentrations
increased by two to three folds during normal day period for both seasons.

3.2. Relationship between OC and EC

The origin of carbonaceous particles can be estimated on the basis of the relationship
between OC and EC (Turpin and Huntzicker, 1991; Chow et al., 1996). As shown in25

Fig. 3, strong OC-EC correlations (0.90–0.95) were found in fall, suggesting impacts
from similar sources (e.g., motor vehicle exhaust and biomass burning). In contrast,
the correlations (0.66) were low in winter, pointing to the complex of emission sources.
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Coal-combustion from residential heating in winter is the major emission sources of
OC and EC. It contributes to more than 50% to TSP (1997 data, Zhang et al., 2001).
Even though many residents in Xi’an replaced coal by natural gas, a large body of
low-income families still use coal as major source of cooking and heating in winter.
Coal-combustion boilers has been banned within the second beltway in the downtown5

since 1998, but many middle- and small- scales coal-combustion boilers inside and
outside Xi’an downtown are still in use due to its low cost.

The slopes of OC versus EC in winter were high, 5.12 for PM2.5 and 3.83 for PM10, as
compared to those in fall (2.46) (Fig. 3), implying the emission of OC increased largely
relative to EC in winter. The difference may be ascribed to the change of emission10

sources in two seasons.

3.3. Variability of OC/EC ratios

Atmospheric EC originates from primary anthropogenic sources and is not formed by
reactions involving gaseous hydrocarbon precursors in the atmosphere. OC may be
emitted directly from sources as primary particles, but secondary organic aerosols15

(SOA) can also be formed in the atmosphere from the low vapor pressure products by
atmospheric chemical reactions. The ratio of OC to EC concentrations has been used
to study emission and transformation characteristics of carbonaceous aerosol.

As shown in Table 1, average OC/EC ratios in PM2.5 and PM10 ranged from 3.0 to 3.4
in fall, and increased to 3.6–6.4 in winter. Monthly averages of OC/EC ratios ranged20

3.3–6.4 in PM2.5 and 3.0–5.1 in PM10 with the highest ratios found in January.
Daily variations of PM2.5 OC/EC ratios in Fig. 2 showed lower ratios and less vari-

ations in fall and higher ratios and more variations in winter. The ratios were around
8.0 during 13 December 2003 to 15 December 2003, and reached a peak value of 9.0
during 22 January 2004 to 29 January 2004. OC/EC ratios were normally affected by25

three factors: 1) emission sources; 2) the formation of SOA in the atmosphere; 3) the
removal of OC and EC. Since EC has higher washout efficiency than OC (Cachier et
al., 1996), OC/EC ratio can be increased accordingly. From Table 2, average OC/EC
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ratios were 4.0 under precipitation days. Since the precipitation days were small (only
5%) in winter (116 days), the effect of OC/EC ratios during and 1–2 days after pre-
cipitation are expected to be low. A long precipitation period during Chinese National
Holiday (from 28 September 2003 to 4 October 2003) led to a peak OC/EC ratio of 6.0
in fall.5

The OC/EC ratios exceeding 2.0 have been used to indicate the presence of SOA
(Gray et al., 1986; Chow et al., 1996). Pandis’ study (Pandis, 2002) indicated that
the formation of SOA in the ambient air was mainly controlled by temperature. The
temperature at Xi’an ranged from −5◦C to 5◦C with dense haze and short duration of
sunshine in winter. So the formation of SOA in Xi’an may be low. Cabada’s study10

(Cabada, 2002) in western Pennsylvania also confirmed that the contribution of SOA
in winter decreased to zero.

Average OC/EC ratio were 12.0 in coal-combustion samples, 4.1 in motor vehicle
(from gasoline vehicles) exhaust samples, and 60.3 in biomass burning samples. For
comparison, the OC/EC ratio was 2.7 for coal-combustion sample and 1.1 for motor15

vehicle sample (Watson et al., 2001), and 9.0 for biomass burning (Cachier et al.,
1989). The individual OC/EC ratios for this study exceeded 2.0 for both PM2.5 and
PM10 fractions (Fig. 2), which may mirror the joint contributions from coal-combustion,
motor vehicle exhaust, and biomass burning sources. Elevated OC/EC ratios (8.0)
during 12 December 2003 to 14 December 2003 can be attributed to biomass burning.20

High OC/EC ratios (6.0–9.0) during the Chinese Spring Festival (22 January 2004 to 5
February 2004) was owing to less contribution from motor vehicle during holiday and
more contribution from residential coal-combustion.

3.4. Contributions to PM2.5 and PM10 mass

The box plot in Fig. 4 showed that PM10 was more scatter than PM2.5 in both seasons.25

Daily PM10 in winter varied by a factor of 5.7, ranging from 155µg m−3 (6 November
2003) to 885µg m−3(14 December 2003). The average PM2.5 was 140.1µg m−3 in fall
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and 258.7µg m−3 in winter. The average PM10 was 261.9µg m−3 in fall and 450.6µg
m−3 in winter. PM2.5 accounted for 55.6% of the PM10 in fall, ranging between 44.3%
and 77.4%. In contrast, PM2.5 accounted for 60.4% of the PM10 in winter with a large
range from 33.0% and 97.6%. For comparison, the order of the percentage of PM2.5
in the PM10 in Chinese urban cities was Shenzhen (73.3%, 2001) (Cao et al., 2003) >5

Zhuhai (70.8%, 2001) (Cao et al., 2003) > Chongqing (65.1%, 1997) (Wei et al., 1999)
> Wuhan (60.5%, 1997) (Wei et al., 1999) > Xi’an (60.4%, 2003) > Lanzhou (51.9%,
1997) (Wei et al., 1999). In reference to Class 2 of the Chinese PM10 standard (150µg
m−3) (GB 3905–1996), only 5 out of the PM10 sampling days in fall in compliance with
the legislation and none of the days in winter. This implies a serious PM pollution in10

Xi’an even with substantial efforts on pollution to control by local government.
As shown in Table 3, total carbonaceous aerosol (TCA), the sum of organic matter

(OM=1.6×OC) and EC, contributed 48.8% of PM2.5 in fall and 45.9% in winter. The
percentage of TCA in PM10 was lower than PM2.5, with an average of 34.5% in fall
and 37.0% in winter, may due to an increased contributions of geological matter in15

coarse particles. Taking into account the contributions of other sources such as ge-
ological materials and secondary aerosol (sulfate, nitrate, and ammonium) to PM2.5,
it is reasonable to speculate that TCA is the most important contributor to fine parti-
cles. The material balance showed that TCA is the dominant components of PM2.5
(Li Y., 2004). It is thus that control measures should be aimed to the anthropogenic20

combustion sources rather than fugitive dust.
From time series in Fig. 2, TCA% varied around the 45% level during the six months

and it didn’t correlate with the changes of PM2.5 mass or the OC and EC concentra-
tions. Level of TCA% is co-varied with the precipitant events and low PM periods. Dur-
ing precipitation, OC and EC usually resided in sub-micron size ranges (0.01–1µm),25

leading to an increase in the percentage of OC and EC and resulted in elevated TCA%
levels.

PM2.5 OC accounted for 81.8% and 72.8%, respectively, of PM10 OC, whereas PM2.5
EC accounted for 75.0% and 59.6% of PM10 EC in fall and winter, respectively (Ta-
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ble 1). Less than 60% of PM10 EC resided in PM2.5 in winter, reflecting the presence
of coarse soot particles in the emission of incomplete coal-combustion.

3.5. The characterization of eight carbon fractions

The IMPROVE TOR protocol does not advance from one temperature to the next until a
well-defined carbon peak has evolved (Chow et al., 1993, 2004). Carbon abundances5

in each of these fractions differ by carbon source (Chow et al., 2003). 8 carbon fractions
have been utilized for the source apportionment of carbonaceous aerosol (Kim et al.,
2003a, 2004).

The average percentages of 8 carbon fractions in ambient and source samples are
shown in Fig. 5. There are distinct differences among three sources samples for 8 car-10

bon fractions. OC2 accounted for 46.9% of TC in coal-combustion samples, higher than
29.2% in biomass burning samples and 30.5% in motor vehicle samples. OC1 con-
tributed 36.8% to TC in biomass burning samples, higher than 2.0% in coal-combustion
samples and 2.8% in motor vehicle exhaust samples. EC1 constituted 15.4% to TC,
higher than 5.6% in coal-combustion samples and 0.4% in biomass burning samples.15

Monthly variations of the 8 carbon fractions were related to the contributions of differ-
ent emission sources. November experienced the highest contribution from biomass
burning sources, with OC1 attaining 8.7%, which was the highest value in six months.
It decreased to 1.7% in February. The variations of OC1 may point to the contribu-
tions of biomass burning in different months. OC2 increased in six months (except20

November), possible reflecting the increased contributions of coal-combustion from fall
to winter. EC1 reached its lowest values in January, implying decreased contributions
of motor vehicle exhaust. This may be due to the less activity of motor vehicles during
the Chinese Spring Festival, consistent with the analysis of OC/EC ratios (Sect. 3.3).
OP was 22.1%, 20.8%, 25.3%, 21.4%, 20.5%, and 16.0% in six months, with an av-25

erage of 21.0%. In contrast, the percentage of OP in TC varied between 8.0% and
17.8% during summer for Pearl River Delta Region in China (Cao et al., 2004).
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3.6. Periodic characteristics of OC and EC

Concentrations of OC and EC were influenced by emissions and dilution processes.
The periodic features of emission sources and metrological conditions can be identified
from the time series of OC and EC. Hies (2000) showed that domestic heating by coal
combustion appears with a 365 day periodicity, traffic contributes 3.5, 4.6 and 7 day5

peaks in the spectrum and elevated long range EC can be identified as characteristic
peaks with periodicities in the range from 13 to 42 days in Berlin, Germany.

The comparison of periodicities of OC, EC, PM2.5 mass and daily average wind
speed are illustrated in Fig. 6. These curves were obtained by AutoSignal 1.0 soft-
ware (SPSS, USA). The common periodicities of OC, EC and PM2.5 were 24 days,10

10 days, 7 days and 5 days. The periodicities of OC were same as PM2.5, implying
they were controlled by similar process, consistent with correlation of OC with PM2.5.
7 days and 5 days were the periodicities of motor vehicle variations, in agreement with
Hies’ study (Hies, 2000). Precipitation events had 10 days periodicity from September
to November. This periodicity should reflect the impact of precipitation on OC and EC15

concentrations. 24 days periodicity may point to the biomass burning events since the
biomass burning events occurred about every 24 days. In addition, EC also had com-
ponents of 60 days and 13 days peaks in the spectrum. 13 days periodicity was a major
component in the spectrum of wind speed, which has been identified by Hies (2000).
Wind speed also influences EC concentrations. 60 day peaks may be related to the20

change of primary emission sources. From Fig. 2, September and October were the
low period of EC, November and December were the high period of EC, January and
February were also the low period of EC. In conclusion, 7 days and 5 days periodicities
of OC and EC were controlled by motor vehicle exhaust, 10 days periodicities were
related to precipitation, and 24 days periodicities were associated with the biomass25

burning around Xi’an.
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3.7. Comparison of OC and EC with other Asian cities

At least 30 analytical methods existed for OC and EC in different labs, TC measures
agree (Schmid et al., 2001) but differences can be found for OC and EC.

Table 4 lists the TC, OC and EC concentrations from Xi’an and other Asian cities. TC
in fall and winter at Xi’an ranked the highest, reflecting serious carbonaceous pollution5

in Xi’an. Comparing with the data from Beijing, Xi’an OC and EC were same as Bei-
jing’s in fall. Xi’an EC was same as Beijing EC in winter, but Xi’an OC was two times of
Beijing OC. From the analysis of OC and EC distributions in source samples, high OC
contents in Xi’an could be ascribed to contributions from coal-combustion. More motor
vehicles and less coal are used in Beijing (Yang et al., 2005). Winter OC levels in Xi’an10

were 3.6, 6.4, 2.7, 4.7, and 5.1 times than those in Shanghai, Hong Kong, Guangzhou,
Shenzhen and Zhuhai. Winter EC levels in Xi’an were 1.5, 2.6, 1.5, 2.0, and 2.5 times
those of the coastal cities. The lower difference for EC may be attributed to the high
emissions of motor vehicle exhaust in these coast cities and the larger difference of
OC may be ascribed to the lower use of coal for residential heating. Winter OC and15

EC levels in Xi’an were 12.4 and 2.9 times those in Chongju, South Korea (Lee et al.,
2001).

3.8. Source apportionment of carbonaceous aerosol

8 carbon fractions of TC have been utilized to estimate sources attributions (Kim et al.,
2003a, b, 2004). Absolute principal component analysis (APCA) (Thurston & Spengler,20

1985) was used in this study.
The first step in APCA is the normalization of all carbon concentrations as Zik ; this

is done through the addition of a zero concentration sample as case 0.

Zik = (Cik − Ci )/Si (1)

where Cik is the concentration of carbon fraction i in sample k, Ci is the arithmetic25

mean concentration of carbon fraction i , and si is the standard deviation of carbon
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fraction i for all samples included in the analysis. The normalization process allows
any continuous variables, such as wind speed to be included in future analyses along
with the carbon data.

Regressing the TC data on these absolute principal component scores (APCS) gives
estimates of the coefficients which convert the APCS into TC-contributions from each5

source for each sample. For each source identified by the APCA, the weighted regres-
sion of each carbon’s concentration on the predicted TC contributions yields estimates
of the content of that carbon in each source, as follows:

Cik = b +
n∑

j=1

ai jMjk (2)

where Cik is the concentration of carbon fraction i in sample k; b is a constant; ai j10

is the mean TC fraction of source j ’s particles represented by carbon fraction i , and
Mjk is the TC concentration of source j for observation k. By repeating this weighted
least square regression for each of the i=1, 2,...n carbon fractions considered in this
analysis, one can estimate the mean concentration of the carbon fractions in each
factor.15

The statistical results for fall and winter were summarized in Tables 5 and 6.
Factor 1 (F1) in fall was highly loaded with the following carbon fractions: OC2, OC3,

OC4, OP, and EC1. This factor appears to represent gasoline motor vehicle exhaust.
The second component (F2) was highly loaded with EC2 and EC3 and appears to rep-
resent diesel vehicle exhaust because it contains lots of high temperature component20

of EC particles (Watson et al., 1994). The high loading of OC1 in the factor 3 (F3)
reflects the contribution of biomass burning. The interpretation of the first factor (F1)
in winter is complicated because it is highly loaded with OC2, OC3, OC4, and EC1.
This factor may represent the mixture of coal-combustion and motor vehicle exhaust
because these two sources are correlated in winter by similar dispersion conditions for25

surface-based emissions. Similar to the fall results, F2 and F3 in winter represents
biomass burning and diesel vehicle exhaust, respectively.
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To simplify the estimation, we assumed there is no contribution of coal-combustion in
fall and there are contributions from gasoline motor vehicle in fall and winter. The con-
tribution of winter F1 to TC subtracted from the contribution of fall F1 was considered as
the contribution of coal-combustion to TC. Thus the source attributions can be resolved
for the two seasons (Fig. 7). TC is composed of 73% from gasoline exhaust, 23% from5

diesel exhaust, and 4% from biomass burning during fall. TC during winter receives
44% from gasoline exhaust, 44% from coal burning, 9% from biomass burning, and
3% from diesel exhaust. The TC source apportionments during fall and winter were
consistent with the qualitative analysis of different sources in aforementioned sections.

4. Conclusions10

Six-month continuous observations of OC and EC were conducted at Xi’an to gain in-
sight into the characterization and source apportionment of OC and EC. Major findings
are as follows.

1) Average PM2.5 OC concentrations during fall and winter were 34.1±18.0µg m−3

and 61.9±33.2µg m−3; and EC concentrations were 11.3±6.9µg m−3 and 12.3±5.3µg15

m−3, respectively. Carbonaceous aerosol accounted for 48.8±10.1% and 45.9±7.5%
of PM2.5 and 34.5±9.3% and 37±8.9% of PM10 during fall and winter, respectively.
This indicates that carbonaceous aerosol is the dominant component of fine particles
in a typical city with high mineral dust pollution in north China like Xi’an.

2) All the OC/EC ratios exceeded 2.0 and average OC/EC ratio were 3.3 in fall and20

5.1 in winter. Elevated OC/EC ratios were found during heating seasons with increased
primary emission sources like coal combustion. PM2.5 OC and PM10 OC were highly
correlated (R2=0.90–0.95) during fall, and moderately correlated (R2=0.66) during win-
ter.

3) PM2.5 TC source apportionment by APCA attributes 73% to gasoline exhaust,25

23% to diesel exhaust, and 4% to biomass burning during fall. PM2.5 TC source ap-
portionment attributes 44% each to gasoline exhaust and coal burning, 9% to biomass
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burning, and 3% to diesel exhaust during winter. Therefore, motor vehicle exhaust and
coal-combustion were the dominant sources for carbonaceous aerosol in Xi’an, which
should be paid more attentions to control them.
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Table 1. Average of the concentrations of OC and EC during September 2003 to February
2004 at Xi’an, China.

Season Month Sample numbers OCa EC OC/EC

PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10

September 18 6 24.9±10.3b 29.6±11.2 8.3±4.5 11.0±6.4 3.3 3.0
Fall October 31 11 39.4±19.4 50.7±30.6 13.1±7.5 17.2±12.2 3.4 3.3

Average 49 17 34.1±18.0 43.2±27.1 11.3±6.9 15.0±10.7 3.3 3.2

November 27 8 52.4±27.1 67.5±25.7 12.1±5.1 19.8±8.2 4.3 3.6
December 29 8 81.7±36.2 124.8±54.8 15.2±4.6 28.9±8.9 5.3 4.3

Winter January 31 11 63.9±36.0 80.3±42.4 10.1±5.8 16.1±8.8 6.4 5.1
February 29 9 48.6±21.7 98.7±87.6 12.0±4.4 26.8±18.2 4.1 3.5
Average 116 36 61.9±33.2 93.0±58.4 12.3±5.3 22.7±12.3 5.1 4.2

Note: a unit is µg m−3; b values represent average ± standard deviation
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Table 2. Distribution of PM2.5 mass, OC, EC, total carbonaceous aerosol (TCA)a% and OC/EC
ratios under precipitation and non precipitation days.

Type Sample numbers PM2.5 mass (µg m−3) OC(µg m−3) EC(µg m−3) TCA% OC/EC

precipitation days
Fall 13 (27%b) 65.3 c 16.2 4.3 50.0 4.0

(26.3–129.1)d (9.5–28.2) (1.7–9.0) (35.2–80.9) (3.1–6.2)
Winter 6 (5%) 128.4 34.7 8.6 50.6 4.0

(74.5–168.7) (19.0–49.6) (6.8–11.9) (38.1–57.7) (2.8–5.3)

non precipitation days
Fall 36 (73%) 165.0 40.2 13.7 48.9 3.1

(51.2–327.6) (16.4–74.2) (3.3–27.6) (30.9–69.8) (2.2–4.9)
Winter 110 (95%) 250.0 63.3 12.5 45.7 5.1

(40.4–663.9) (9.9–189.6) (2.2–25.1) (23.7–72.9) (2.8–9.4)

Note: a TCA=1.6×OC+EC; b the percentage in total observational days; c average; d range
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Table 3. Statistical summary of the percentage of OC, EC and TCA% in PM2.5 and PM10.

Season Month TCA (%) OC (%) EC (%)

PM2.5 PM10 PM2.5/PM10 PM2.5 PM10 PM2.5/PM10 PM2.5 PM10 PM2.5/PM10

September 45.0±7.6 a 26.4±1.5 83.0±6.4 23.5±4.3 13.6±1.0 84.9±5.8 7.3±1.6 4.7±0.8 74.8±13.4
Fall October 51.0±10.7 38.8±8.8 79.4±6.2 26.6±5.5 20.4±4.8 80.2±6.1 8.4±2.7 6.3±1.6 75.0±10.1

Average 48.8±10.1 34.5±9.3 80.7±6.3 25.5±5.3 18.0±5.1 81.8±6.3 8.0±2.4 5.7±1.6 75.0±11.0

November 44.8±7.4 35.7±4.6 69.8±11.8 24.3±3.9 18.9±2.5 71.8±12.2 5.9±1.7 5.4±0.9 58.7±12.0
December 50.3±5.5 42.4±7.7 65.9±13.3 27.9±2.8 23.0±4.5 67.6±14.0 5.6±1.5 5.6±1.3 55.2±10.6

Winter January 44.0±8.1 37.0±11.7 75.0±9.1 24.9±4.6 20.6±7.1 77.0±9.6 4.0±1.1 4.1±0.8 61.4±7.3
February 44.8±7.5 32.4±7.4 72.2±11.9 24.2±4.4 17.2±4.3 74.0±13.1 6.1±1.4 4.9±0.8 63.2±9.4
Average 45.9±7.5 37.0±8.9 71.0±11.5 25.4±4.2 20.0±5.3 72.8±12.1 5.4±1.6 5.0±1.1 59.6±9.8

Note: a values represent average ± standard deviation
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Table 4. Comparison of PM2.5 OC, EC at Xi’an with other Asian cities.

City Period TC OC EC OC/EC Measurement method Reference

(µg m−3)

Xi’an
Fall, 2003 45.4 34.1±18.0 11.3±6.9 3.3 IMPROVE-TOR This study

Winter, 2003 74.2 61.9±33.2 12.3±5.3 5.1 IMPROVE-TOR This study

Beijing1 Fall, 1999 39.0 28.8 10.2 2.8 IMPROVE-TOR
He et al. (2001)

Winter, 1999 42.6 31.5 11.1 2.8 IMPROVE-TOR

Beijing2 2002.12 51.9 36.7±19.4 15.2±11.1 3.5 Elemental analyzer Dan et al. (2004)

Beijing3 1997.11–1998.10 41.5 4 No data Elemental analyzer Duan et al. (2003)

Shanghai5
Fall, 1999 23.2 16.3 6.9 2.4 IMPROVE-TOR

Ye et al. (2003)
Winter, 1999 25.1 17.0 8.1 2.1 IMPROVE-TOR

Hong Kong 2002.1–2 14.4 9.6±4.5 4.7±2.9 2.3 IMPROVE-TOR Cao et al. (2003)

Guangzhou 2002.1–2 31.0 22.6±18.0 8.3±5.6 2.7 IMPROVE-TOR Cao et al. (2003)

Shenzhen 2002.1-2 19.2 13.2±4.1 6.1±1.8 2.2 IMPROVE-TOR Cao et al. (2003)

Zhuhai 2002.1–2 17.3 12.2±4.4 5.0±1.6 2.4 IMPROVE-TOR Cao et al. (2003)

Kaohsiung 1998.11–1999.4 14.5 10.4 4.0 2.6 Elemental analyzer Lin and Tai (2001)

Chongju, Korea
Fall, 1995 12.4 6.0 6.4 0.9 IMPROVE-TOR

Lee and Kang (2001)
Winter, 1995 9.3 5.0 4.3 1.2 IMPROVE-TOR

Sapporo, Japan
1992.9–10 9.1 4.1 5.0 0.8 Elemental analyzer

Ohta et al. (1998)
1992.1–2 9.0 3.9 5.1 0.8 Elemental analyzer

Uji, Japan
1998.9–10 6.4 1.8 4.6 0.4 R&P 5400

Holler et al. (2002)
1998.11–12 10.2 2.5 7.7 0.3 R&P 5400

Note: 1 Chegongzhuang site; 2 average of 3 sites: Beijing Normal University, Capital Steel Plant, Yihai Garden;
3 Temple of Heaven; 4 annual averagel 5 average of Tongji University and Hainan Road
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Table 5. PCA results of fall Samples.

PC1 PC2 PC3

OC1 0.32 0.12 0.91
OC2 0.96 0.16 0.17
OC3 0.89 0.11 0.38
OC4 0.95 0.19 0.19
OP 0.88 0.25 0.13
EC1 0.88 0.21 0.39
EC2 0.62 0.65 −0.28
EC3 0.12 0.94 0.23
Variance 68% 14% 10%
Eigenvalue 5.60 1.10 0.80

Gasoline Diesel Biomass
Exhaust Exhaust Burning
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Table 6. PCA results of winter samples.

PC1 PC2 PC3

OC1 0.09 0.98 0.06
OC2 0.97 0.03 0.05
OC3 0.87 0.44 0.07
OC4 0.96 0.05 −0.01
OP 0.60 0.67 0.24
EC1 0.73 0.50 0.17
EC2 −0.05 0.12 0.90
EC3 0.17 0.06 0.88
Variance 55% 21% 13%
Eigenvalue 4.40 1.60 1.10

Coal combustion Biomass burning Diesel exhaust
+ Gasoline exhaust
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Figure 1 Fig. 1. Location of the sampling site at Xi’an, China.
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Figure 2 Fig. 2. Time series of PM2.5 Mass, organic carbon (OC), elemental carbon (EC), TCA%, and

OC/EC ratios at Xi’an from 13 September 2003 to 29 February 2004 (TCA is total carbonaceous
aerosol, sum of organic matter (1.6×OC, Turpin and Lim, 2001) and EC).
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Figure 3 Fig. 3. Relationship between OC and EC concentrations in PM2.5 and PM10.
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Figure 4 Fig. 4. Distribution of PM2.5 and PM10 mass concentrations during fall and winter (The valid
paired samples were 17 in fall and 36 in winter. The points in the figure were measured data
and the curves were the normal fitting curve of these data.)
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Figure 5 
Fig. 5. Percentage of total carbon contributed by eight carbon fractions in ambient air and three
major source samples.
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Figure 6 

Fig. 6. Periodicity of PM2.5 OC, EC, mass, and daily average wind speed. (PSD TISA refers to
Power as Time-Integral Squared Amplitude.)
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Figure 7 

Fig. 7. Relative contributions of major sources to PM2.5 TC during fall and winter, 2003.
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