

A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

A. Lee, G. W. Schade, R. Holzinger, A. H. Goldstein

▶ To cite this version:

A. Lee, G. W. Schade, R. Holzinger, A. H. Goldstein. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux. Atmospheric Chemistry and Physics Discussions, 2004, 4 (6), pp.7819-7835. hal-00301520

HAL Id: hal-00301520 https://hal.science/hal-00301520

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Atmos. Chem. Phys. Discuss., 4, 7819–7835, 2004 www.atmos-chem-phys.org/acpd/4/7819/ SRef-ID: 1680-7375/acpd/2004-4-7819 European Geosciences Union

AC	PD
----	----

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Title Page Introduction Abstract Conclusions References Figures Tables ► Back Close Full Screen / Esc Print Version Interactive Discussion

EGU

A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

A. Lee¹, G. W. Schade², R. Holzinger¹, and A. H. Goldstein¹

¹Department of Environmental Science, Policy, and Management, University of California, Berkeley, 151 Hilgard Hall # 3110, Berkeley, CA 94720-3110, USA ²Institute of Environmental Physics, University of Bremen, NW1, Otto-Hahn-Allee 1, D-28359 Bremen, Germany

Received: 29 October 2004 - Accepted: 24 November 2004 - Published: 1 December 2004

Correspondence to: A. Lee (alee@nature.berkeley.edu)

 $\ensuremath{\textcircled{C}}$ 2004 Author(s). This work is licensed under a Creative Commons License.

Abstract

Many monoterpenes have been identified in forest emissions using gas chromatography (GC). Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS) coupled with the eddy covariance (EC) technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β -pinene, α -pinene, 3-carene, d-limonene, β -phellandrene, α -terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID), coupled to a relaxed eddy accumulation system (REA). Monoterpene mixing ratios and fluxes measured by PTR-MS averaged $30\pm 2.3\%$ and $31\pm 9.2\%$ larger than by GC-FID, with larger differences at night than during the day. Four unidentified peaks that correlated with β -pinene were resolved in the chromatograms and completely accounted for the daytime difference

¹⁵ and reduced the nighttime difference to 19±3.4%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional monoterpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night, and that must have been oxidized during the day before they escaped the forest canopy.

1. Introduction

25

Monoterpenes are a large class of biogenic $C_{10}H_{16}$ hydrocarbons which include the commonly observed species α -pinene and β -pinene. Monoterpenes are emitted from all conifers and some flowering plants (Lerdau, 1991). They are highly reactive and can be oxidized by ozone (O₃) and the hydroxyl and nitrate radicals, with lifetimes that range from days to minutes (Fuentes et al., 2000). In addition to their influence on the

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

oxidative capacity of the atmosphere, monoterpene oxidation products can partition to the particle phase and contribute to secondary organic aerosol (SOA) (e.g. Kavouras et al., 1999; Makela et al., 1997; Griffin et al., 1999). These SOA represent a natural source of aerosol to the atmosphere that impact regional air quality and global climate (Andreae and Crutzen, 1997), therefore, quantitative and gualitative knowledge of ter-

⁵ (Andreae and Crutzen, 1997), therefore, quantitative and qualitative knowledge of terpene emission is essential to reduce the uncertainty in biogenic production of SOA.

Ecosystem scale monoterpene fluxes to the atmosphere have been measured as a sum of the individual fluxes of a few speciated monoterpenes, using GC-FID coupled with the flux similarity approach (e.g. Schade et al., 1999; Rinne et al., 2000) or coupled with the relaxed eddy accumulation technique (e.g. Greenberg et al., 2003;

- Schade and Goldstein, 2003). While models of tropospheric O₃ and SOA production rely on flux measurements of a few species of monoterpenes, it is currently unknown if speciated flux measurements of a limited number of monoterpenes represent the impact of total monoterpenes to the atmosphere. In addition to monoterpenes, other terpene compounds, such as sesquiterpenes and oxygenated terpenes, also affect
- tropospheric chemistry (Fuentes et al., 2000).

In this paper, we address the question of whether above-canopy fluxes of monoterpenes are well represented by GC-FID-REA measurements of a limited number of monoterpene species. We improved our speciated monoterpene mixing ratio and flux

- 20 measurements by increasing the number of monoterpene species routinely quantified by our GC-FID-REA from four to eight, and simultaneously made the first ecosystem scale measurements of total monoterpene fluxes using a PTR-MS-EC. Comparison of these measurements help determine if other monoterpene compounds, in addition to the eight species quantified by the GC-FID, are emitted from the forest and detected
- ²⁵ by the PTR-MS in the measurements of total monoterpenes.

10

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

2. Experimental

We report on a four day period in August 2002 of total and speciated monoterpene mixing ratios and fluxes made simultaneously above a young ponderosa pine plantation at 1315 m elevation on the western slope of the Sierra Nevada, California ($35^{\circ}53'42.9''$ N,

- ⁵ 120°37′57.9″ W). Temperature and 3-D wind speeds were measured using a sonic anemometer (Campbell Scientific, Logan, UT), mounted 12 m above ground level, 5 m above the forest canopy. The sample inlet was located at the top of the tower, adjacent to the sonic anemometer. Air was pulled at 10 L min⁻¹ through a 2 μ m Teflon particulate filter, and brought down, using $\frac{1}{4}$ inch ID Teflon tubing, to a temperature controlled
- ¹⁰ container. Air was sub-sampled by the GC-FID and PTR-MS from the same sample line, and the same sonic anemometer was used to control the REA valve system and for EC flux calculations. The GC-FID-REA system was calibrated with an internal standard, by diluting ppm-level n-octane in UHP N₂ (Scott-Marrin, Inc., Riverside, CA) directly into the sample line at the top of the tower, downstream of the particulate filter.
- ¹⁵ Monoterpenes were automatically and simultaneously calibrated on both instruments every ten hours, rotating between three separate ppm-level monoterpene standards, diluted into the sample line inside the temperature-controlled container to achieve lowppb concentrations, before sub-sampling to the GC-FID and PTR-MS. One standard cylinder contained monoterpenes as a mixture of α -pinene, 3-carene, and d-limonene
- ²⁰ in UHP N₂, and two cylinders contained monoterpenes singly as either α -pinene or β -pinene in UHP N₂. Blank measurements were run on the GC-FID every ten hours, and were run for five minutes each hour on the PTR-MS, by sampling zero air (AADCO, Clearwater, FL).

For measurements of total monoterpene flux, the PTR-MS acquired 3-D wind speed, temperature, and monoterpene concentration (in counts per second) at 2 Hz, and fluxes were calculated according to EC from the mean covariance between deviations of the vertical wind speed and the monoterpene mixing ratio calculated from the 30min time series of the de-meaned, de-trended, tapered, and appropriately lagged data

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14		
•	•	
Back	Close	
Full Screen / Esc		
Print	Version	
Interactive Discussion		

(Stull, 1988). The PTR-MS (Ionicon Analytik, Innsbruck, Austria) was developed by Werner Lindinger and his group at the University of Innsbruck, and is described in detail elsewhere (Lindinger et al., 1998). Briefly, the PTR-MS is a chemical ionization technique that uses H₃O⁺ to transfer a proton from water to the compound of interest,
thus, any compound with a proton affinity higher than water will be ionized and detected by the quadrupole mass spectrometer. For monoterpenes, fragmentation occurs but usually produces only one fragment ion, so for most monoterpenes >99% of the signal is detected as C₁₀H₁₆H⁺ and C₆H₈H⁺ ions, which are monitored at m/z 137 and 81, respectively (Tani et al., 2003). We monitored m/z 81 and 137, each with a dwell time of 0.2 s, primary ions H₃O⁺ and H₂OH₃O⁺, and recorded information from five analog channels on 3-D wind speed, temperature, and drift tube pressure of the PTR-MS, so that one measurement cycle was completed in 0.5 s. A lag time between the wind and concentration measurements of ~4 s was measured by popping balloons filled with

acetone-enriched air at the co-located sonic anemometer and sample inlet, and subtracting the time difference between the sonic and acetone spikes. This method agreed well with the lag time inferred through analysis of the PTR-MS data by finding the time difference that produced the best correlation between deviations in wind speed (w') and deviations in m/z 81 or 137 count rates (c').

Calculated mixing ratios were corrected against the single β-pinene and mix of the α-20 pinene, 3-carene, and d-limonene standards to account for uncertainties in the reaction rate constants, and the mass dependant transmission efficiency of the mass spectrometer. Additionally, this correction ensured that PTR-MS and GC-FID measurements were calibrated against the same standard. While the mass based detection of the PTR-MS is an important distinction from the GC-FID because it detects all compounds 25 with an m/z of 137 and 81, and thus, is a measure of total monoterpenes in the air sample, an important consideration is the possibility of non-monoterpene compounds

occurring at the monoterpene masses. We observed that sesquiterpenes (m/z=205) also produce fragments at m/z 137 and 81, with ratios of the fragment to m/z 205 count rate varying significantly between β -caryophyllene and α -humulene, from 0.11

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

(cps 137/cps 205) and 0.26 (cps 81/cps 205) for α -humulene, and 0.30 and 0.62 for β -caryophyllene. The sesquiterpenes α -longipinene, longifolene, and germacrene D were identified in the oleoresin distillates of ponderosa pine (Himejima et al., 1992), however, the signal at m/z 205, monitored in Summer 2003, never exceeded 5% of the signal at m/z 81 and 137. Therefore, fragmentation of sesquiterpenes onto the monoterpene masses should only be a minor issue. We must also consider the contribution of other non-terpene species to the count rates of m/z 137 or 81. However, because the slope of the correlations between masses 137 and 81 from ambient air compared with the slope of the correlations between masses 137 and 81 from the standard additions where within 7%, we conclude that any such interference was small compared to the monoterpene signal.

Speciated flux measurements of eight monoterpene species were made using a dual channel GC-FID combined with the relaxed eddy accumulation (REA) technique. The GC-FID-REA are described in detail elsewhere (Lamanna and Goldstein, 1999;

- Schade and Goldstein, 2001). Air was sub-sampled from the inlet line at 20 mL min⁻¹ for 30 min. Fast response REA segregator valves (Bio-Chem Valve Inc., Boonton, NJ) were controlled by the sonic anemometer and partitioned sample air into updraft or downdraft channels according to the sign of the vertical wind speed obtained at 10 Hz. Because of the potential smearing of small eddies inside our sampling line, a dead-
- ²⁰ band (0.4 σ_w) was applied to reduce the sampling of these small eddies (Lenschow and Raupach, 1991). Sample air was cold trapped in $\frac{1}{16}$ inch Silcosteel tubes (Restek Inc., Bellafonte, PA) packed sequentially with glass beads, Tenax TA, and Carbopack X (Supelco, St. Louis, MO). The two sample tubes were heated from -10° C to 220°C within 20 s to desorb the trapped compounds into He carrier gas, which delivered the
- samples to two RTX-5 chromatography columns. The monoterpenes were identified according to their retention times on the columns, and quantified by the two flame ionization detectors. The n-octane served as an internal standard to correct for potential leaks or changes in instrument response. Using the monoterpene standards, an instrument response factor was calculated according to the method described by (Lamanna

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
	►I	
•	►	
Back	Close	
Full Scre	Full Screen / Esc	
Print V	/ersion	
Interactive Discussion		

and Goldstein, 1999), and applied uniformly to all monoterpenes. The measured response factors calculated from the individual standard additions of α - and β -pinene were within 10% of this instrument response factor based on n-octane. Monoterpene species for which cylinder standards were unavailable were identified by waving the ⁵ pure compound at the inlet. These compounds included camphene, myrcene, α terpinene, β -phellandrene, γ -terpinene, and terpinolene. Although we could identify ten monoterpene species, only eight were included in this analysis, as myrcene and γ -terpinene peaks were typically below our detection limit. Fluxes of the monoterpene species were calculated from:

10 $F = b\sigma_w (C_u - C_d),$

where C_u and C_d are the mixing ratios of the updraft and downdraft channels, respectively, σ_w is the standard deviation of the vertical wind speed, and b is determined from measurements of the sensible heat flux and air temperature (Bowling et al., 1998). Values for b were set to the mean value (0.45) for times when the sensible heat fluxes ¹⁵ were within ±30 W m⁻², or when b was outside a ±0.2 interval of the mean (Schade and Goldstein, 2001). Because the GC-FID-REA resolved β -pinene fluxes best, the flux of the sum of speciated monoterpenes was calculated by scaling the β -pinene flux by the slope of a scatter plot of the mixing ratio of each speciated monoterpene versus β -pinene. This process did not significantly change the mean fluxes of the speciated 20 monoterpenes, but increased the precision of the speciated monoterpene fluxes for each 30 min measurement period.

We estimated the uncertainty of the mixing ratios from the PTR-MS based on the counting statistics of the instrument and the uncertainty in the delivery of the monoterpene calibration standards. The percent uncertainty in the measured count rate due to

²⁵ counting statistics is defined as the square root of the total signal divided by the total signal, where the total signal is the count rate, in counts per second, times the dwell time. Because mixing ratios were calculated as the mean over a 30 min period, uncertainties resulting from counting statistics were calculated for each 30 min period. The uncertainty of the calibration factor was determined using Gaussian Error Propagation

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

(1)

to combine the uncertainty from counting statistics with the other sources of uncertainty in the calculation of the calibration factor, including the uncertainty in β -pinene standard concentration (±2%), the concentrations of the mixture of three monoterpenes (±5%), and the ±1% uncertainty, at full scale, of the two mass flow controllers (MKS Instruments Inc., Andover, MA). For each 30-min average count rate from the PTR-MS, uncertainties from counting statistics ranged from 1 to 4.8% with a mean uncertainty of 2.3%. Combining the uncertainty from counting statistics with the calibration uncertainty, the mean uncertainty in the total monoterpene mixing ratio measurements was 4.9% with a range of 2.4 to 11.3%. Given our primary ion signal of 2–4 million

counts per second, and the response of monoterpenes to the PTR-MS, the detection limit during this measurement period was ~60 ppt. The lowest total monoterpene mixing ratio measured was 50% higher than the detection limit. It is important to note that the uncertainty estimate is based on four monoterpenes, and the actual uncertainty is somewhat larger because the total monoterpene measurement consists of a mix of monoterpenes whose reaction rate constants contain additional uncertainty.

Gaussian Error Propagation was also used to estimate the uncertainty of the mixing ratios and fluxes measured by the GC-FID-REA system. Uncertainty in the monoterpene concentration in the standard cylinders was combined with uncertainty in the accuracy of the flow controllers. In addition, the deviation of the measured response factors of the monoterpene standards from the instrument response factor (Lamanna and Goldstein, 1999) was included in the uncertainty estimate for each monoterpene species. The mean uncertainty in the speciated monoterpene mixing ratios ranged from 17% for α - and β -pinene, to 34% for 3-carene. Given the response factor for monoterpenes was 8 ppt.

²⁵ Mixing ratios of the dominant monoterpenes were always above the detection limit. Because we calibrated both the GC-FID and the PTR-MS instruments with the same ppm-level standards diluted to ppb levels in the same sample stream, any error in the absolute concentration of the standards and measured flow rates for the dilution system would be propagated identically through both measurements. Thus, our conclusions

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

regarding percent differences in concentrations measured by the two methods should be more accurate than the above uncertainty analysis implies. A critical difference in instrument calibration would occur only if the GC-FID or PTR-MS system responded significantly differently to monoterpenes that we could not calibrate directly versus com-⁵ pounds for which we had quantitative standards.

Potential underestimates in EC flux measurements due to loss of high frequency signals are typically assessed using spectral analysis of the time series data. To examine the potential bias in the calculated flux associated with our 2 Hz sampling frequency, we sub-sampled vertical wind and temperature collected at 10 Hz to match our 2 Hz sampling protocol. The cospectra are plotted on a semi-log scale so that the area under the curve is proportional to the covariance (Stull 1988). Figure 1a shows that the

- der the curve is proportional to the covariance (Stull, 1988). Figure 1a shows that the 2 Hz cospectrum is slightly elevated and noisier compared to the 10 Hz cospectrum at frequencies near the Nyquist frequency (sampling frequency/2; the highest frequency that can be resolved in the Fourier transform) (Stull, 1988), suggesting that aliasing
- ¹⁵ may cause the folding of high frequency energy onto lower frequencies, resulting in a distortion of the 2 Hz cospectrum. Because of the lower sampling frequency and added noise, we expected to underestimate the calculated flux from the 2 Hz data compared to the 10 Hz data, however, the sensible heat fluxes calculated at 2 Hz were not consistently lower than at 10 Hz, and agreed within ±10%, despite the additional noise.
- The correction for high frequency flux loss due to the inertia of sensors can be estimated by applying an empirically-determined time constant, which acts as a low pass filter, to the "ideal" wind-temperature cospectrum (w'T') so that the transformed w'T'mimics the non-ideal cospectrum of w'monoterpene'(w'M'); Fig. 1b) (e.g. Bauer et al., 2000). The ratio of the measured w'T' and the transformed w'T' represents the correction factor for the monoterpene flux. The normalized cospectra for the 2 Hz w'T' and w'M' (Fig. 1b) show that both cospectra follow the expected $-\frac{4}{3}$ slope in the inertial sub-range, but the w'M' cospectra suffers from noise at higher frequencies. Median correction factors calculated for the 2 Hz w'M' data were small (<10%), but

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14		
•	•	
Back	Close	
Full Scre	Full Screen / Esc	
Print \	/ersion	
Interactive Discussion		

highly variable due to the high frequency noise in the cospectra. We chose not to apply these relatively small corrections based on the cospectral densities, which would have slightly increased the difference between the fluxes measured by PTR-MS-EC and GC-FID-REA.

5 3. Results and discussion

The diurnal cycles of total (PTR-MS) and the sum of speciated (GC-FID) monoterpenes over the four-day period in early August agree well (Fig. 2a), with higher mixing ratios measured by the PTR-MS. Mixing ratios of total monoterpenes averaged $30\pm2.3\%$ (mean ± standard error) larger than mixing ratios of the sum of eight monoterpene species, which is a significant contribution to monoterpene mixing ratio, considering β -pinene, the dominant monoterpene, contributes $40\pm1\%$ to the sum of the eight monoterpenes detected by GC-FID. Total monoterpene mixing ratios were $35\pm3.5\%$ larger at night and $19\pm2.5\%$ larger during the day (07:00–19:00 PST) than the sum of speciated monoterpenes. The time series of the percent difference between the mixing ratios measured by PTR-MS and GC-FID, plotted with O₃ mixing ratio, show that

periods when the PTR-MS measures significantly more monoterpene than the GC-FID coincide with periods of low O_3 mixing ratio (Fig. 2b).

Careful inspection of the chromatograms showed that 6–10 small peaks were resolved by the GC-FID in addition to the eight identified monoterpenes, and four of those peaks were correlated with β -pinene mixing ratios. Taking the area of those four unidentified peaks, and applying the GC-FID response factor used for the identified monoterpenes, the resulting mixing ratios reduced the difference between total and sum of speciated monoterpenes to $-0.94\pm2.8\%$ during the day, and $19\pm3.4\%$ at night. Thus, PTR-MS measurements of total monoterpenes and GC-FID measurements of eight identified monoterpenes and 4 unidentified potential monoterpenes agree well during the day, but at night, additional compounds are detected by PTR-MS that are

night but not during the day suggests complete daytime photochemical loss of these compounds before they reach the height of our sample inlet 5 m above the forest canopy. Daytime oxidation of the unidentified terpenes is consistent with observations at this field site in 2003 of oxidation products with highest concentrations above the 5 canopy, indicating a strong local, daytime source (Holzinger et al., 2004).

Figure 3 shows the exponential relationship between air temperature and monoterpene flux for the four-day period from 08:00 to 16:00 PST. Guenther et al. (1993) describe the temperature dependence of flux according to:

 $F = F_{30} \exp[\beta(T - 30)],$

- where, F₃₀ represents the flux at 30°C, T represents the air temperature in °C, and β is the temperature dependence coefficient, with units of °C⁻¹, where higher β values represent a larger change in flux per °C increase. The values for F₃₀ and β that produce the best log-normal linear least squares fit to the measured fluxes are: F₃₀=8.5±1.1 µmole terpene m⁻² h⁻¹ and β=0.13±0.02°C⁻¹ for the total monoterpene flux, and F₃₀=5.1±1.2 µmole terpene m⁻² h⁻¹ and β=0.08±0.02°C⁻¹ for the flux of the sum of speciated monoterpenes. Values for F₃₀ reported by Schade and Goldstein (2003) from the same experimental site using GC-FID-REA, for the sum of *α*-pinene, *β*-pinene, and 3-carene were 5.9 µmole terpene m⁻² h⁻¹ for Summer 1999, and are in good agreement with those measured by GC-FID-REA and PTR-MS-EC for this four-
- day period. The values for β are within the range of previously reported values of 0.06–0.2°C⁻¹ (Guenther et al., 1993; Rinne et al., 2002, and references therein). For α -pinene, β -pinene, and 3-carene fluxes, Schade and Goldstein (2003) reported β coefficients for individual monoterpenes that ranged from 0.095 to 0.14°C⁻¹, with lowest β values for α -pinene and highest for 3-carene. Values for β exhibit spatial (Guenther
- et al., 1993) and seasonal variability (Schade and Goldstein, 2003), so the β values of 0.08°C⁻¹ and 0.13°C⁻¹ obtained by GC-FID-REA and PTR-MS-EC, respectively, are within the expected range.

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

(2)

4. Conclusions

The eight identified monoterpenes measured by GC-FID above the forest account for \sim 70% of the total monoterpene mixing ratio and flux measured by PTR-MS. Six to ten additional peaks were resolved by the GC-FID; four of these peaks correlated with

- β -pinene and accounted for the daytime discrepancy between PTR-MS and GC-FID mixing ratios, and reduced the nighttime discrepancy to 19±3.4%. Thus, despite the detection of eight identified and four unidentified potential monoterpenes, the PTR-MS still measured ~20% more monoterpenes above the forest at night. The good agreement between PTR-MS and GC-FID during the day but not at night suggests that
- the additional compounds detected by PTR-MS are reactive enough to be oxidized before escaping the forest canopy, and undergo complete photochemical destruction before we can detect them during the day. This is consistent with the recent daytime observations of oxidation products in and above the forest canopy (Holzinger et al., 2004). This work shows that GC-FID-REA measurements of speciated monoterpene
- ¹⁵ mixing ratio and flux measure longer-lived and commonly occurring compounds well, but simultaneous measurements of total monoterpene mixing ratio and flux by PTR-MS-EC indicate that additional very reactive monoterpene species are emitted from our field site and can be detected at night above the forest canopy by PTR-MS.

Acknowledgements. This research was supported by the National Science Foundation Atmo spheric Chemistry Program (award ATM-0119510), the California Air Resources Board (contract 00-732), and the University of California Agricultural Experiment Station. A. Lee was supported by a Graduate Research Education Fellowship from DOE-GCEP. We thank B. Heald, D. Rambeau, S. Rambeau, and the Blodgett Forest Crew for their invaluable support, D. Baldocchi, L. Misson, and D. Farmer for discussions on spectral analysis, and SPI for allowing us
 to conduct our research on their property.

4, 7819–7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
	►I
•	►
Back	Close
Full Screen / Esc	
Print	/ersion
Interactive Discussion	

References

30

- Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276 (5315), 1052–1058, 1997.
- Bauer, M. R., Hultman, N. E., Panek, J. A., and Goldstein, A. H.: Ozone deposition to a ponderosa pine plantation in the Sierra Nevada Mountains (CA): A comparison of two different climatic years, J. Geophys. Res.-A, 105 (D17), 22 123–22 136, 2000.
 - Bowling, D. R., Turnipseed, A. A., Delany, A. C., Baldocchi, D. D., Greenberg, J. P., and Monson,
 R. K.: The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and of her biological trace gases, Oecologia, 116 (3), 306–315, 1998.
- ¹⁰ Fuentes, J. D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J. W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T. D., and Stockwell, W.: Biogenic hydrocarbons in the atmospheric boundary layer: A review, Bull. Am. Met. Soc., 81 (7), 1537–1575, 2000. Greenberg, J. P., Guenther, A., Harley, P., Otter, L., Veenendaal, E. M., Hewitt, C. N., James, A. E., and Owen, S. M.: Eddy flux and leaf-level measurements of biogenic VOC emissions
- from mopane woodland of Botswana, J. Geophys. Res.-A, 108 (D13), 8466–8475, 2003.
 Griffin, R. J., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res.-A, 104 (D3), 3555–3567, 1999.
 Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R.: Isoprene and monoterpene emission rate variability model evaluations and sensitivity analyses, J. Geo-

²⁰ phys. Res.-A, 98 (D7), 12609–12617, 1993.

Himejima, M., Hobson, K. R., Otsuka, T., Wood, D. L., and Kubo, I.: Antimicrobial terpenes from oleoresin of Ponderosa pine tree pinus ponderosa: A defense mechanism against microbial invasion, J. Chem. Ecol., 18 (10), 1809–1818, 1992.

Holzinger, R., Lee, A., Paw U, K. T., and Goldstein, A. H.: Observations of oxidation products

above a forest imply biogenic emissions of very reactive compounds, Atmos. Chem. Phys. Discuss., 4, 5345–5365, 2004,

SRef-ID: 1680-7375/acpd/2004-4-5345.

- Kavouras, I. G., Mihalopoulos, N., and Stephanou, E. G.: Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests, Geophys. Res. Lett., 26 (1), 55–58, 1999.
- Lamanna, M. S. and Goldstein, A. H.: In situ measurements of C-2-C-10 volatile organic compounds above a Sierra Nevada Ponderosa pine plantation, J. Geophys. Res.-A, 104 (D17),

7831

ACPD

4, 7819–7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
	-1
•	►
Back	Close
Full Screen / Esc	
Print \	/ersion
Interactive Discussion	

21 247-21 262, 1999.

- Lenschow, D. H. and Raupach, M. R.: The attenuation of fluctuations in scalar concentrations through sampling tubes, J. Geophys. Res.-A, 96 (D8), 15259–15268, 1991.
- Lerdau, M.: Plant function and biogenic terpene emissions, in: Trace gas emissions from plants,
- edited by: Sharkey, T., Holland, E., and Mooney, H., 121–134, Academic Press, 1991.
 Lindinger, W., Hansel, A., and Jordan, A.: Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): On-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev., 27 (5), 347–354, 1998.
 - Makela, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A., Palmroth, S., Markkanen, T.,
- ¹⁰ Seitsonen, K., Lihavainen, H., and Kulmala, M.: Observations of ultrafine aerosol particle formation and growth in boreal forest, Geophys. Res. Lett., 24 (10), 1219–1222, 1997.
 - Rinne, J., Hakola, H., Laurila, T., and Rannik, U.: Canopy scale monoterpene emissions of Pinus sylvestris dominated forests, Atmos. Envir., 34 (7), 1099–1107, 2000.

Rinne, H. J. I., Guenther, A. B., Greenberg, J. P., and Harley, P. C.: Isoprene and monoterpene

- ¹⁵ fluxes measured above Amazonian rainforest and their dependence on light and temperature, Atmos. Envir., 36 (14), 2421–2426, 2002.
 - Schade, G. W. and Goldstein, A. H.: Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation, J. Geophys. Res.-A, 106 (D3), 3111–3123, 2001.

Schade, G. W. and Goldstein, A. H.: Increase of monoterpene emissions from a pine plantation

- as a result of mechanical disturbances, Geophys. Res. Lett., 30 (7), 1380–1384, 2003.
 Schade, G. W., Goldstein, A. H., and Lamanna, M. S.: Are monoterpene emissions influenced by humidity?, Geophys. Res. Lett., 26 (14), 2187–2190, 1999.
 - Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic Publishers, Boston, 1988.
- Tani, A., Hayward, S., and Hewitt, C. N.: Measurement of monoterpenes and related compounds by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), Int. J. Mass Spec., 223 (1–3), 561–578, 2003.

4, 7819–7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
	•1
•	•
Back	Close
Back Full Scre	Close en / Esc
Back Full Scre	Close en / Esc
Back Full Scre Print V	Close een / Esc /ersion

Fig. 1. Normalized cospectra **(a)** of 10 Hz and 2 Hz wind-temperature and **(b)** 2 Hz wind-temperature and wind-monoterpene from day 214 (11:00 PST) plotted on a semi-log scale.

EGU

Interactive Discussion

ACPD

4, 7819–7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

Fig. 2. (a) Total monoterpene mixing ratios and (c) fluxes measured by PTR-MS are greater than the sum of eight monoterpene species measured by GC-FID. (b) Diurnal cycle of the percent difference between PTR-MS and GC-FID mixing ratios, plotted with O_3 mixing ratio, show that the PTR-MS measures more monoterpenes than the GC-FID, particularly when O_3 mixing ratios are lower.

ACPD

4, 7819-7835, 2004

New measurements of total monoterpene flux

A. Lee et al.

PTRMS-EC ▼ ဖ GCFID-REA S PTRMS-EC micromole terpene m-2 h-1 $\overline{F_{30}} = 8.53 \pm 1.14 \ \mu mol \ m^{-2} \ h^{-1} \\ \beta = 0.13 \pm 0.02 \ ^{\circ}C^{-1}$ 4 c GCFID-REA $\overline{F_{30}} = 5.07 \pm 1.23 \ \mu mol \ m^{-2} \ h^{-1}$ $\beta = 0.08 \pm 0.02 \ ^{\circ}C^{-1}$ \sim 0 $\overline{}$ 5 10 15 30 0 20 25 temperature (degrees C)

Fig. 3. Temperature dependence of total and speciated monoterpene fluxes.