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Abstract

The paper describes the theoretical framework for a class of general continuous mod-
els of the hydrologic response including both flow and transport of reactive solutes. The
approach orders theoretical results appeared in disparate fields into a coherent theo-
retical framework for both hydrologic flow and transport. In this paper we focus on the5

Lagrangian description of the carrier hydrologic runoff and of the processes embedding
catchment-scale generation and transport of matter carried by runoff. The former de-
fines travel time distributions, while the latter defines lifetime distributions, here thought
of as contact times between mobile and immobile phases. Contact times are assumed
to control mass transfer in a well-mixed approximation, appropriate in cases, like in10

basin-scale transport phenomena, where the characteristic size of the injection areas
is much larger than that of heterogeneous features. As a result, we define general
mass-response functions of catchments which extend to transport of matter geomor-
phologic theories of the hydrologic response. A set of examples is provided to clarify
the theoretical results towards a computational framework for generalized applications,15

described in a companion paper.

1. Introduction

The effective management of hydrological systems, including e.g. the design of hy-
draulic structures, of the general architecture of systems capable of mitigating the ef-
fects of floods and droughts and of measures aimed at improving the quality of receiv-20

ing water bodies, can benefit from the use of reliable models describing hydrological
fluxes and storage terms both in space and time (e.g. Beven and Freer, 2001; Maurer
and Lettenmaier, 2003). New tools and open problems for models of the hydrologic re-
sponse have been recently summarized by Montanari and Uhlenbrook (2004), and yet
analogs for general transport processes are lagging behind, especially if solidly rooted25

in the stochastic framework that seems appropriate for large-scale applications. Gen-

1614

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1613/hessd-2-1613_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1613/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1613–1640, 2005

Basin-scale
transport: 1.

A. Rinaldo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

eral transport models would serve well, however, both research and applications, given
the timeliness of design criteria that include directly concepts of probability. Manage-
ment objectives require, in fact, models capable of i) reproducing system functioning
as described by observations; and ii) predicting system functioning under conditions
and during events which have not been observed, possibly generating statistical en-5

sembles of events. This must be possible without the burden of making unphysical or
unrealistic assumptions, like, typically, statistical stationarity of the response of manned
and ever-changing watersheds. Thus one can hardly overestimate the importance of
basin-scale models of transport for society at large.

The formulation of transport by travel time distributions serves well the above scopes10

(Rodriguez-Iturbe and Valdes, 1979; Gupta et al., 1980; Dagan, 1989; Rinaldo and
Rodriguez-Iturbe, 1996). We shall address here this formulation in a framework some-
what broader and more comprehensive than that of the original approach. In fact,
here we collect independent results from transport theories to propose a formulation
that applies regardless of whether we deal with flow or with transport models at catch-15

ment scales (e.g. as in Rinaldo and Marani, 1987; Rinaldo et al., 1989, 1991; Rinaldo
and Rodriguez-Iturbe, 1996; Cvetkovic and Dagan, 1996; Gupta and Cvetkovic, 2002;
Destouni and Graham, 1995; Botter and Rinaldo, 2003; Botter et al., 2005) aimed at
the large-scale collection and objective manipulation of geomorphic, hydrologic or land
use data.20

This paper is organized as follows. An introductory framework reviews the kinematics
and the elements of general transport theory that allow us to blend flow and transport
of matter for a single transport volume. The ensuing sections uses the theoretical re-
sults obtained for a single transport volume to obtain a formulation valid for arbitrary
sequences (in series or in parallel) of transport states, distinguishing the effective func-25

tioning of any geomorphic paths upon the fraction of input rainfall conveyed therein. A
conclusive section proposes a few examples aimed at clarifying a somewhat convolute
procedure, which is related to the naturally nested structure of control volumes within
a catchment rather than to unnecessary complications of our models.
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2. Theoretical framework

2.1. Flow

Once net rainfall is suitably partitioned into surface and subsurface pathways, the flux
of the water carrier within natural formations is seen as a conservative process where
water particles move within the control volume towards the outlet without significant5

variations of their mass. Let thus mw be the (time-independent) water mass trans-
ported by a single particle injected at time t0=0 in the initial position x0. Each tra-
jectory is defined by its Lagrangian coordinate X(t)=X(t; x0, t0) =x0+

∫t
0 v(X(τ), τ)dτ,

where v(x, t) is the point value of the velocity vector. The spatial distribution of water
concentration in the transport volume V as a result of the injection of a single particle10

is given by Taylor (1921):

cw (x, t; x0, t0) ∝ mw δ(x − X(t)), (1)

where δ(.) is Dirac’s delta distribution and, without loss of generality, we have assumed
unit porosity within the whole control volume (i.e.

∫
V cwdx=mw ). Equation (1) states

that, in the one-particle one-realization case, volumetric water concentration (water15

mass per unit transport volume) is nonzero only at the site where the particle is instan-
taneously residing (i.e. at its trajectory). Thus uncertainty in the dynamical specification
of the particle (i.e. the evolution in time and space of the trajectory X(t; x0, t0) of the
labeled, traveling ’water particle’) is reflected in the transport process.

Owing to the heterogeneity which characterizes transport processes and environ-20

ments at basin scale, the trajectory is seen as a random function. Let therefore g(X)dX
be the probability that the particle is found within the infinitesimal volume dX located
around the position X at time t (notice that the functional dependence g(X) implies
g(x, t) in terms of cartesian coordinates because of the evolution of the trajectory with
time). The ensemble average concentration 〈cw (x, t)〉 is given by the classic relation25
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(Taylor, 1921; Dagan, 1989):

〈cw (x, t)〉 =
∫ ∞

−∞
mwδ(x − X)g(X)dX = mwg(x, t) (2)

The distribution g(x, t) is usually called displacement probability density function. Im-
portant models describing displacement distributions, g, or 〈cw 〉 (from Eq. (2) g ∝ 〈cw 〉),
notably the cases deriving from the Fokker-Planck’s equation, are reported in the liter-5

ature (see, for a summary relevant to hydrology, Rinaldo et al., 1991). Note that the
above theoretical link between displacement distributions and mean concentrations al-
lows the equivalence of the rate of change of displacement covariances (heuristically,
the moments of inertia of the displaced particles) with half the dispersion coefficient
of the Eulerian problem, originating the definition of shear-flow, hydrodynamic or ge-10

omorphologic dispersion. Mathematically, dispersion terms are generally anisotropic
and time-dependent but not space-dependent. Details on the nature of the dispersion
tensor can be found elsewhere (e.g. Dagan, 1989).

The displacement pdf g(x, t) due to the kinematics of the carrier flow determines the
travel time distribution f (t) of the water carrier within the control volume. The definition15

of the undergoing travel time distribution is related to the possibility of identifying a
suitable control section for the transport process considered. We thus assume that the
time t at which a particle crosses the control section is unique and, most importantly,
that all particles injected in V ensuing from x0∈V must transit the predefined control-
section. The probability density of travel times is proportional to the instantaneous20

mass flux at the absorbing barrier of the control volume (Dagan, 1989). In fact water
mass in storage within the control volume Mw (t) is expressed by:

Mw (t) =
∫
V
< cw > dx = mw

∫
V
g(x, t)dx =

= mwP (T ≥ t) (3)

where P (T≥t) is the probability that the residence time is larger than current time t.25

Thus, by continuity, one has dMw (t)/dt=I−Q (where I [M][T ]−1 is the mass water
1617

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1613/hessd-2-1613_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1613/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1613–1640, 2005

Basin-scale
transport: 1.

A. Rinaldo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

input and Qw (t) [M][T ]−1 is the mass flux at the outlet of V), and therefore, for an
instantaneous water pulse (i.e. I(t)=mwδ(t)):

Qw (t) = −mw
dP (T ≥ t)

dt
= mw f (t) for t > 0 (4)

where f (t) is the probability density function (pdf) of travel times for the water carrier.
In surface hydrology, when the input is a unit of net rainfall, such pdf is usually termed5

the instantaneous unit hydrograph.
In using the travel time formulation of transport in surface hydrology, two courses

have been pursued: one course assumes the form of the pdf, and characterizes it
by some parameters of clear physical meaning like mean travel times. An example
of this are the exponential pdf’s used to describe travel times of water particles in the10

original approach by Rodriguez-Iturbe and Valdes (1979) to derive the geomorphologic
unit hydrograph. The second course exploits the equivalence of water fluxes and pdf’s
to deduce travel times from the equations of motion. Eulerian, Lagrangian or travel
time approaches therefore may differ formally although they are derived from the same
assumptions. The common prejudice of considering one approach in principle superior15

to the other is therefore incorrect. A discussion on the relative balance of merits of the
above approaches can be found in Dagan (1989).

2.2. Transport

We now turn to reactive transport of solutes carried by hydrologic waters in the same
framework depicted in Sect. 2.1. A given amount of solute (of mass ms) is injected20

within the control volume through an instantaneous release of water, and is thus al-
lowed to move within the transport volume driven by the hydrologic carrier flow and
to exchange mass with the surrounding environment. The “reactive” character of the
transport is described by the (spatial and/or temporal) variability of the solute mass as-
sociated with the water particles moving within the control volume, that is, the function25
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ms=ms(X, t) which embeds physical, chemical or biological exchanges with immobile
phases in some contact with the carrier flow.

One-particle, one-realization concentration fields resulting from the injection of a sin-
gle reactive particle are given by the following equation:

cs(x, t; x0, t0) ∝ ms(X, t; t0) δ(x − X(t)), (5)5

The reactive components involved define the instantaneous solute mass ms attached
to the moving particle without affecting the trajectory X of the particle itself which is
determined by the usual kinematic relationship. The mass transfer occurring between
the carrier and immobile phases (e.g. chemical or physical sorption, ion exchange,
precipitation) leads in general to variability for m both in time and space. We assume,10

however, that the injection area is much larger than any correlation scale of heteroge-
neous transport properties and/or that the temporal scales relevant for the undergoing
advective processes are larger than the characteristic times for the reaction processes.
This suggests (Rinaldo et al., 1989; Rinaldo and Rodriguez-Iturbe, 1996; Botter et al.,
2005) that the spatial gradients of mass exchange become negligible and that, there-15

fore, the contact times drive mass transfer between phases (i.e. the well-mixed ap-
proximation). The injection of identical particles labeled by carrier and solute masses
mw ,ms at different initial locations x0 at time t0 produces, at time t>t0, the sampling
of different trajectories X(t) but yields roughly the same temporal evolution of the mass
of solute transported ms(t−t0, t0), which thus depends (for a given injection time t0)20

solely on the time available for the reaction processes, t−t0. The expected value of the
volumetric concentration 〈cs(x, t)〉 (solute mass for unit transport volume) is then given,
from Eq. (3), by the relation (Rinaldo and Rodriguez-Iturbe, 1996):

〈cs(x, t; t0)〉 = ms(t − t0, t0) g(x, t − t0) (6)

where the similarity of structure with respect to passive transport stems from the fact25

that ms is unaffected by ensemble averaging. Thus we obtain a generalization of Tay-
lor’s theorem for reactive transport problems. The displacement distribution g defines

1619
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the structure of the carrier residence time distribution within the control volume and
thus epitomizes the complex chain of events determining the hydrologic flow. The
mass function ms(t−t0, t0) accounts for all sorption/desorption processes which de-
termine the temporal variability of the solute mass transported by the moving water
particles. The decoupling of the reaction component from the transport problem is5

quite expedient because the displacement and the travel time distributions derived in
the previous Section may be employed.

The solute mass instantaneously stored in the water carrier within the transport vol-
ume V (as a result of a solute injection occurring at t=t0) may be thus expressed by
the use of Eq. (6) as:10

Ms(t) =
∫
V
< cs(x, t; t0) > dx

= ms(t − t0, t0)P (T ≥ t − t0) (7)

where P (T≥t) is the probability that the residence time is larger than the current time
t. Thus, deriving Eq. (7) with respect to t, one has:

dMs(t)
dt

=
dms

dt
P (T ≥ t − t0) −ms(t − t0, t0)f (t − t0) (8)15

where the last term of the above equation represents the rate of solute, say R
([M][T ]−1), transferred from the immobile phase to the water carrier due to the active
reaction processes. Since for t > t0 by continuity one has dMs/dt=−Qs+R (where Qs

[M][T ]−1 is the solute flux at the outlet of V), by comparison with Eq. (8) we obtain:

Qs(t; t0) = ms(t − t0, t0) f (t − t0) for t > t0 (9)20

Equation (9) expresses the solute flux at the outlet due to the injection within the control
volume at t=t0 of an instantaneous water pulse carrying a solute mass ms which is
time-dependent owing to mass exchange processes.

In what follows, we assume that the solutes transported by the carrier undergo sorp-
tion phenomena with other immobile phases in contact with the water flow (e.g. soil25
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grains, bed sediment, dead-end zones). The mass transfer between the phases is
therefore driven by the difference between the solute concentration sorbed in the im-
mobile phase and the solute concentration, say C, characterizing the water particles
moving along the control volume (solute mass for unit water volume) (Van Genuchten,
1981). The latter may be straightforwardly derived by use of Eqs. (2) and (6) as:5

C(t − t0, t0) = ρ
〈cs(x, t; t0)〉
〈cw (x, t; t0)〉

= ρ
ms(t − t0, t0)

mw
(10)

where ρ is the (constant) water density ([M][L]−3). Notice that in Eq. (10) the capital
letter C is employed for the solute concentration of the water particles (solute mass
for unit water volume), so as to highlight the difference with respect to the volumet-
ric concentration of solute cs (mass for unit transport volume). Notice that at a given10

time t, the water particles injected into the system at the same injection time t0 are all
marked by the same resident concentration C(t−t0, t0), independently from their trajec-
tory. This is, of course, an important assumption which nonetheless seems applicable
to most cases where rainfall is the driving factor (Botter et al., 2005).

Note that it is appropriate to state clearly the mathematical analogies that stem from15

the position

τ = t − t0 (11)

where τ is the travel time of a single particle within the control volume after injection at
time t0, thereby the contact time between phases, and t is chronological time. Thus,
one may easily express the solute concentration of the water carrier as a function of20

only two of the above timescales (e.g. C=C(τ, t0), or C=C(τ, t), see below).
Within the above framework, solute mass transported by the water carrier, ms, is

thus defined by the rate of change of the scalar property C(t−t0, t0) attached to the
mobile phase. Incidentally, when the scalar is simply the density of the carrier i.e.
C(t−t0, t0)=const=ρ, the above derivation reduces to the description of flowrates. In25

the general case, instead, the temporal variability of the function C (which retains all
1621
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sorption/desorption processes determining the temporal variability of the mass trans-
ported by the moving particles) is related to the active reaction processes between
the phases. For the sake of simplicity, linear rate-limited kinetics are assumed to drive
the temporal evolution of the concentration function C(t−t0, t0) (Rinaldo and Marani,
1987):5

∂C(τ, t0)

∂τ
= k

(
N(t)
kD

− C(τ, t0)
)

(12)

where N ([MM−1]) is the concentration in the immobile phase (properly transformed by
kD ([L3M−1]), the equivalent of a partition coefficient) and k ([T−1]) is the overall rate
coefficient of the reaction kinetics between mobile and immobile phases. Accordingly
with the well-mixed assumption, the concentration in the immobile phase N is assumed10

to solely depend on time and not on the position x. The temporal evolution of the
function N(t) may be thus described on the basis of a global (rather than local) mass
balance, applicable to each ’state’ which is physically meaningful to identify. This is not
the case, for instance, in the other approaches well known from the literature (Cvetkovic
and Dagan, 1994).15

An important indicator of the validity of the above assumptions comes from an appli-
cation where the carrier flow is in steady state, which is a particular case of the above
framework for constant input flowrates (Botter et al., 2005). Consider a steady-state
flow through a generic heterogeneous medium and assume that the underlying Eule-
rian velocity field is a stationary random vectorial function v(x). The ensemble mean of20

the local velocity v is assumed to be positive (i.e. a mean flow direction is determined)
and – without loss of generality – aligned with one axis. Under the above assumptions,
the transport domain may be thought of as a collection of independent and stationary
streamlines, which are characterized by different residence times owing to the hetero-
geneity of the transport properties involved. Solute particles injected within the flow25

field, or released from the soil, are simultaneously advected by the carrier and affected
by sorption-desorption processes with immobile phases in contact with the water flow.

1622
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In this context, a noteworthy simplification of the transport problem may be achieved
by projecting the transport equation along a single streamline and embedding all the
heterogeneities of the transport properties within a single variable, the travel time τ
(for details see e.g. Cvetkovic and Dagan, 1994). If we assume that linear and re-
versible sorption processes occur between the mobile and the immobile phases, mass5

conservation yields:

∂C(τ, t)
∂t

+
∂C(τ, t)

∂τ
= R = k2N(τ, t) − k1C(τ, t) (13)

and

∂N(τ, t)
∂t

= k1C(τ, t) − k2N(τ, t) (14)

where C [ML−3] represents the solute concentration in the mobile phase, N [ML−3] is10

the solute concentration in the immobile phase (mass of solute per unit fluid volume),
R [ML−3T−1] is the sink/source term due to chemical and/or physical reactions and
k1,k2 [T−1] are the forward and backward reaction coefficients, respectively. It is worth
mentioning that τ is the time needed for a particle injected in x0 at t=0 (i.e. X(0)=x0,
with X(t)=(X (t), Y (t), Z(t)) as usual the trajectory of the particle) to reach a control15

plane, perpendicular to the mean flow direction, located at a distance x (measured
along the mean flow direction) from the injection site (Cvetkovic and Dagan, 1994):

τ(x) =
∫ x

0

dξ
u(ξ, η(ξ), ζ (ξ))

(15)

The quantities η and ζ in Eq. (15) are the transversal displacements of the considered
particle, i.e. η(x)=Y (τ(x)) and ζ (x)=Z(τ(x)) (for a complete treatment, only sketched20

here, see Cvetkovic and Dagan (1994, 1996)). It should be noted that Eq. (13) is actu-
ally fully three dimensional, since the Lagrangian variable τ retains the 3D structure of
the velocity field. Furthermore, in Eq. (13) we neglect pore-scale dispersion; in hetero-
geneous formations, in fact, pore scale dispersion may only affect the local values of
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resident concentrations but bears a negligible overall effect on global quantities, such
as mass fluxes and the spatial/temporal plume moments (Dagan, 1989), particularly in
the case of reactive solutes (see the discussion e.g. in Botter et al., 2005).

When considering basin scales, it has been shown that ensemble averaging over dif-
ferent injection points x0 embedding source areas larger than the scales characteristic5

of heterogeneous properties (thereby typically for particles injected by rainfall patterns)
smooth out the dependence on the features of the single trajectory and that the above
framework forced to steady state often gives negligible differences with respect to the
full Lagrangian framework, and that in practice one has N(t, τ) ∼ N(t) (Botter et al.,
2005). This leads to the simplified formulation provided by Eq. (12), where the spatial10

gradients of immobile concentration are neglected (for a detailed discussion, see e.g.
Botter et al., 2005).

The solute mass flux [M/T] due to an instantaneous injection of a water flux
J(t)=(mw/ρ)δ(t−t0) ([L]3[T ]−1) may be thus expressed by the use of Eqs. (9) and
(10) as:15

Qs(t, t0) =
mw

ρ
C(t − t0, t0)f (t − t0)

= J(t0)∆t0C(t − t0, t0)f (t − t0) (16)

where J(t0)∆t0=mw/ρ is the water volume injected in the system during the time inter-
val ∆t0. Equation (16) states the equality between the mass response function (i.e. the
solute release corresponding to a unit water input) and the product between the car-20

rier transfer function f (i.e. the travel time distribution for the water flow) and its solute
concentration C.

Flowrates [L3/T ] (constant mw ) and mass fluxes [M/T ] (variable ms) generated by
an arbitrary sequence of rainfall volumes J(t) [L3/T ] (which we may treat as clean for
τ=0, i.e. C(0, t0)≡0) are thus derived, for a single transport volume, from Eqs. (4) and25
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(16):

Qw (t) =
∫ t

0
dt0J(t0)f (t − t0) [L3/T ] (17)

and

Qs(t) =
∫ t

0
dt0J(t0)C(t − t0, t0)f (t − t0) [M/T ] (18)

in the two respective cases.5

It is important to notice that in the case of unsteady forcing one may also need to
distinguish resident concentrations, C(t−t0, t0), from flux concentrations, say CF (t), at
the outlet of single transport volumes (thereby only a function of current time t):

CF (t) =
Qs(t)

Qw (t)
(19)

CF (t) being the solute concentration at the outlet resulting from the simultaneous ar-10

rival of water particles which have experienced different travel times and have come
into contact with different immobile phases concentrations. The distinction between
resident and flux concentrations for non-steady advection is indeed well known (e.g.
Rinaldo and Marani, 1987). Flux concentrations are needed, in particular, when con-
sidering serial transport volumes (see e.g. Eq. 29).15

3. Generalized applications

In general, the determination of travel time distributions must be accomplished fol-
lowing an analysis of the detailed motion of water particles in space and time over a
channel network. Indeed a complex catchment entails a nested structure of geomor-
phic states, quite different from one another, where hydrologic transport occurs. Typ-20

ically one thinks of hillslopes (where solute generation within hydrologic runoff mostly
1625
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occurs) and channel states (where usually routing occurs, though exchanges with hy-
porheic zones or riparian vegetation or biologic decays may be significant, especially
if travel times therein become large). We thus need to define the collection Γ of all
individual paths γ∈Γ that a particle may follow up to the basin outlet. The collection of
connected paths γ=x1, x2, · · ·xΩ (where we define Ω as the closure of the catchment)5

consists of the set of all feasible routes to the outlet, that is x1→x2→· · ·→xΩ. A differ-
ent notation clarifies the above geomorphic framework. If Ai , i=1, N is the number of
overland states whose total area covers the entire catchment (say, we neglect the ac-
tual surface of channelized patterns), and ci defines any channel link of the catchment
(N is the total number of links), all the paths are supposed to originate within hillslopes10

i.e. Ai→ci→· · · → cΩ, where Ω is the conventional notation for the outlet of the basin.
The above rules specify the spatial distribution of pathways available for hydrologic

runoff through an arbitrary network of channel and overland regions. The travel time
spent by a particle along any one of the above paths is composed by the sum of the
residence times within each of the states actually composing the considered path.15

Nevertheless, the time Tx that a particle spends in state x (x=Ai or x=ci ) is a random
variable which can be described by probability density functions (pdf’s) fx(t). Obviously,
for different states x and y , Tx and Ty can have different pdf’s fx(t)6=fy (t) and we assume
that Tx and Ty are statistically independent for x 6= y . For a path γ∈Γ defined by the
collection of states γ=〈x1, ..., xk〉 (where, in turn, x1, · · · , xk∈(A1, .., AΩ, c1, .., cΩ)) we20

define a travel time Tγ through the path γ as:

Tγ = Tx1
+ ..... + Txk (20)

From the statistical independence of the random variables Txi it follows that the derived
distribution fγ(t) of the sum of the (independent) residence times Txi is the convolution
of the individual pdf’s:25

fγ(t) = fx1
∗ · · ∗fxk (21)

where the asterisk ∗ denotes the convolution operator.
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Travel time distributions f (t) at the outlet of a system whose input mass is dis-
tributed over the entire domain are obtained by randomization over all possible paths
(Rodriguez-Iturbe and Valdes, 1979; Gupta et al., 1980):

f (t) =
∑
γ∈Γ

p(γ)fγ(t) (22)

where γ is the arbitrary path constituted of states 〈x1, ..., xk〉, fγ is the path travel time5

distribution as given by Eq. (21) and γ is the arbitrary path from source to outlet; fur-
thermore, p(γ) is the path probability, i.e.

∑
γ∈Γ p(γ)=1, defining the relative proportion

of particles in γ.
We now define (and generalize) different types of path probabilities. In the simplest

case, the path probabilities may be simply defined as p(γ)=Aγ/A, where Aγ is the10

contributing area draining into the first channel state of any given path γ. In such a
case

∑
γ∈Γ Aγ=A, where A is the total area drained by the channel network, and the

path probability is solely determined by geomorphology. The above time-independent
determination of the path probabilities is tantamount to assuming uniform rainfall in
space, and this severely constrains the size of the catchment to be modeled, which is15

related to the basic scale of spatial heterogeneity of rainfall patterns.
Where rainfall patterns, say j (x, t), are distributed in space and time, the path prob-

abilities would be simply dictated by the relative fraction of rainfall, i.e.

p(γ, t) =

∫
Aγ

j (x, t) dx∫
A j (x, t) dx

=
J(γ, t)
J(t)

(23)

(where J(γ, t)dt=dt
∫
Aγ

j (x, t) dx is the total quantity of rainfall entering the system in20

(t−dt, t) through the path γ, and J(t)dt the total rainfall injected in the same period
over the entire watershed) which allows to embed any rainfall pattern in space and time
routing them through the catchment at each time interval. This capability is central to
the innovation contained in our model, and constitutes a new and relevant extension of
traditional GIUH approaches.25
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Whether a pattern in space and time of j (x, t) derives from the characters of rainfall
or of runoff production will be seen elsewhere. Notice that we may derive arbitrary
rainfall fields either by kriging of point rainfall measurements, or by assuming stochastic
patterns derived from theoretical models. Hence one might derive the rainfall-weighted
path probabilities in the general case by simple quadratures. A reliable operational5

procedure consists of isolating through suitable drainage directions on digital terrain
maps a spanning set of subbasins of size considerably smaller than the macroscales
of intense rainfall patterns, thereby defining spanning sets of landing areas γ where
one can assume locally constant rainfall intensity J(γ, t). This procedure is tantamount
to a coarse-graining of the original rainfall patterns from the pixel size to that of a10

collection of thousands of them, with much improved computational efficiency at no
cost of predictive loss. Moreover, any spatially distributed model of runoff production
would result in distributions of input j (x, t) more markedly heterogeneous in space.

Moreover, whether or not one needs to modify travel times depending on the intensity
of the hydrologic events (e.g. geomorphoclimatically) depends by the modes of hydro-15

logic transport, say when dominated by storage rather than kinematic effects, but the
basic formal machinery remains unaffected. Many papers have addressed the charac-
terization of travel times and the related hydrologic response. We will not review them
here. Suffice here to say that the description of hillslope transport is of great importance
(e.g. Rinaldo et al., 1995; Robinson and Sivapalan, 1995; Botter and Rinaldo, 2003). In20

fact, hillslope residence times are responsible not only for key lags (and rather complex
mechanisms like preferential pathways to runoff) in the overall routing, but are also im-
portant to the understanding of derived transport processes, chiefly solute generation
and transport to runoff waters. The above matter, jointly with the physical problem of
characterizing well where channels begin, still needs to be resolved satisfactorily.25

In the framework previously depicted, flowrates are obtained by propagating spatially
distributed, time-dependent net rainfall impulses by the use of linear invariant hydro-
logic responses. The basic formulation of the geomorphologic theory of the hydrologic
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response is thus given by the following convolution integral:

Qw (t) =
∫ t

0
dt0 J(t0)

∑
γ∈Γ

p(γ, t0) fγ(t − t0) (24)

In the occurrence of spatially uniform, time varying net rainfall intensity J(t) one has

Qw (t) =
∫ t

0
dt0 J(t0)

∑
γ∈Γ

p(γ) fγ(t − t0)

=
∫ t

0
dt0 J(t0) f (t − t0) (25)

5

because f (t)=
∑

γ∈Γ p(γ) fγ(t), and we recover the usual GIUH relationship (Gupta
et al., 1980) which is employed in several practical cases. It should be stressed that
the general formulation of Eq. (24) uses rainfall patterns in space and time both for
determining the path probabilities p(γ, t) and for filtering the net contribution J(t).

The convolution integrals up to Eqs. (24) and (25) may be solved exactly for a num-10

ber of cases (Rinaldo et al., 1991) where the dynamical parameters determining the
propagation of the flood wave are assumed to be uniform. Alternatively, we may allow
arbitrary variations in celerity and hydrodynamic dispersion, and thus numerical convo-
lutions are often in order. In such cases, arbitrary travel time distributions may be used
depending on the hydraulics and suitable numerical techniques (typically employing15

integral transforms) are used to accurately convolute in time. A strong control over the
numerical machinery is obviously provided by continuity, given that

∫∞
0 fγ(τ)dτ≡1 ∀γ.

We note that the key identification of the paths γ∈Γ may be done directly from digital
terrain maps, hence exploiting our capabilities of extracting useful geomorphic informa-
tion from them and chiefly the extent of the channelized portion of the basin (see e.g.20

Rodriguez-Iturbe and Rinaldo, 1997).
From the results of the previous Section, solute mass discharge is given in the fol-
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lowing form:

Qs(t) =
∫ t

0
dt0J(t0)

∑
γ∈Γ

p(γ, t0)Cγ(t − t0, t0)fγ(t − t0) (26)

where Cγ is a “path” resident concentration. In the case of water flow one simply has

Cγ=ρ, the density of water. In this case Qs(t)/ρ becomes a flowrate, Qw [L3/T ], and
Eqs. (24) and (25) are straightforwardly recovered.5

The particular formulation of a mass-response function (MRF) approach depends on
the number and the arrangement of the reacting states. A (relatively) simple case is
that of a path (say γ = x1→... → xΩ, where xΩ denotes, as usual, the terminal reach of
the catchment), where the state x1 generates solute mass to the mobile phase (hence
one has a mobile and immobile concentrations in x1 denoted by Cx1

(t, τ), Nx1
(t)), and10

all other states (from x2 to xΩ) route the transported matter without further exchanges.
In this case one has in Eq. (26):

Cγ(t, 0) fγ(t) = fx1
Cx1

(t, 0) ∗ fx2
∗ · · · ∗ fxω (27)

In the general case where x1 is a “generation” state (wherein solutes are transferred
from the immobile to the mobile phase) and x2,x3, ..., xΩ are reactive states where the15

solutes transported by the carrier may be retarded owing to chemical processes occur-
ring with other immobile phases (e.g. bed sediment or dead zones that define chemical,
biological or physical reactions), the mass response function may be expressed as:

Cγ(t, 0) fγ(t) = fx1
Cx1

(t,0) ∗ fx2
λx2

∗ · · · ∗ fxΩλxΩ (28)

where λxi (i = 2, k) represents the gain/loss function within each reactive state forced20

by a non-null input flux concentration of solute CF,in
xi

(t)6=0:

λxi (t − t0, t0) =
Cxi (t − t0, t0)

CF,in
xi

(t0)
(29)
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Obviously when downstream states route the matter without sorption we have λxi≡1.
The notation Cxi and λxi should not surprise, as we argued that for each state where
gain/loss processes occur one needs to carry out a global mass balance to determine
the instantaneous fraction of matter stored in immobile phases Nxi (t). We argue that
Eq. (28) is the general form of Mass Response Function (MRF) which, in different forms5

that reduce to particular cases of Eq. (28), has been known for some time (see e.g.
Rinaldo and Marani, 1987).

On this basis alone one needs to weigh carefully the spatial and temporal scales
relevant to a mathematical model of transport at catchment scales. All possible com-
binations of states generating, losing or simply routing solutes may thus be explored,10

thus straightforwardly extending the geomorphic theory of the hydrologic response to
solute transport.

4. Discussion

The linkage of travel times with the global, basin-scale contact times between phases
controlling mass exchanges provides a quantum leap in our operational capabilities15

of describing large-scale transport processes. Indeed a complex catchment entails a
nested structure of geomorphic states where the spatial pathways of any rain-driven
particle moving through the network of channel and overland regions define the control
volumes for which one needs to carry out mass balances and compute travel and
lifetime distributions.20

We shall discuss a few examples with the scope of clarifying the structure of mass re-
sponse functions. The examples are kept to a minimum of geomorphic and hydrologic
complexity to avoid clouding the main issue. Rainfall is assumed constant in space, i.e.
p(γ, t) = p(γ). Figure 1 shows the chosen setup, composed of five source areas and
five channels. Overall, the topological order is Ω = 2.25
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The complete set Γ of paths to the outlet (see Fig. 1) is the following:

A1 → c1 → c3 → c5

A2 → c2 → c3 → c5

A3 → c3 → c5

A4 → c4 → c5

A5 → c5

The states where paths originate are labeled by an area Ai , so that the total catch-
ment area A obeys the relation A=A1+ · · ·+A5 and path probabilities are defined by
p(1)=A1/A; . . .; p(5)=A5/A, thereby assuming that the rainfall is spatially uniform – this
is tantamount to assuming that the watershed “width” is smaller than the correlation
scale of rainfall events. Under the circumstances shown in Fig. 1, Eqs. (22) and (27)
apply with:

f (t) =
A1

A
fA1

∗ fc1
∗ fc3

∗ fc5
+

A2

A
fA2

∗ fc2
∗ fc3

∗ fc5
+

A3

A
fA3

∗ fc3
∗ fc5

+

+
A4

A
fA4

∗ fc4
∗ fc5

+
A5

A
fA5

∗ fc5

where we have neglected for the sake of simplicity the probability for a particle to land
directly on a channel state).

Figure 2a shows the individual and compounded travel time distributions for the path
γ1 defined by the transitions: A1→c1→c3→c5. Also shown (Fig. 2b) is a comparison
of the path, fγ(t), and the basin, f (t), travel time distributions needed for the general5

definition of fluxes. The comparison shows the obvious blending of different arrivals
that reflect the geomorphological complexity of the pathways to the outlet.
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Mass response functions are easily determined when parallel generation states oc-
cur. If we assume that every hillslope Ai acts as a generator of solute matter to runoff
(an usual assumption in nonpoint source pollution studies), we have, for the water pulse
injected at t0=0 (i.e. τ=t):∑

γ

p(γ)Cγ(t,0)fγ(t) =
A1

A
fA1

CA1
(t,0) ∗ fc1

∗ fc3
∗ fc5

+

+
A2

A
fA2

CA2
(t,0) ∗ fc2

∗ fc3
∗ fc5

+
A3

A
fA3

CA3
(t,0) ∗ fc3

∗ fc5

+
A4

A
fA4

CA4
(t, 0) ∗ fc4

∗ fc5
+

A5

A
fA5

CA5
(t,0) ∗ fc5

which defines the mass-response function for the basin shown in Fig. 1. Note that for
a unit pulse of rainfall one has Qs(t)=

∑
γ p(γ)Cγ(t,0)fγ(t) and the flux concentration is

CF (t)=Qs/Qw , while for compounded inputs of rainfall J(t) one has to solve Eq. (26).
Examples of computations are shown in Fig. 3, where results for an instantaneous

unit pulse of effective rainfall J(t)=δ(t) are reported in a and b. Figure 3a shows the5

connected behavior of the resident mobile, C, and immobile, N, concentrations in state
A1 obtained by solving Eq. (12) with a given initial concentration N(0) and initially zero
concentration in mobile phase C(0, 0)=0. Note that the particular choice of numerical
value of N(0) (here about 5,5 [kg/ha]) is immaterial. The flux concentration at the out-
let is obtained by solving five mass balance equations of the type (Eq. 12) for the five10

generating states Ai to determine five different path concentrations Cγ(τ, t0), and then

posing Qs(t)=
∑

γ p(γ)Cγ(t,0)fγ(t) and CF (t)=Qs/Qw , which is the final result shown in
Fig. 3b. Notice the difference in the timescales with respect to the travel time f (t) shown
in Fig. 2 due to chromatographic effects induced by the reaction kinetics. Figure 3c,
instead, describes a case where a sequence of rainfall inputs J(t) (shown in the upper15

plot) drives a complex chain of events, thus requiring more complex computations. In
the lower plot of Fig. 3c we show the behavior of N(t) in one of the generating states,
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evidencing the effect of solute leaching due to the sequence of rainfall impulses. One
may also notice the reduced rates of solute generation to runoff for the late-coming
pulses (most of the mass had been leached previously), which reflect the lack of trans-
lational invariance postulated by the dependence of resident concentrations onto two
different timescales, i.e. C=C(τ, t0). The plot reported in Fig. 3d has been obtained by5

solving Eq. (26) with the sequence of J(t) reported in Fig. 3c, in the case of parallel
generation and transport of solutes.

A second example, involving serial transport, is more complex. If we assume that
mass loss/gain processes are significant in serial states (two hillslopes and a stream
channel, see Fig. 4), one may specifically assume that: i) the overland states A1 and10

A4 are generation states, like e.g. agricultural areas where fertilization occurs; ii) the
stream channel c5 is a relatively vegetated, high-residence time channel reach where
reaction processes matter. In this case the travel time distributions is the same of the
case above, whereas the MRF for the water pulse injected at t0=0 (τ = t):∑

γ

p(γ)Cγ(t,0)fγ(t) =
15

=
A1

A
fA1

CA1
(t, 0) ∗ fc1

∗ fc3
∗ fc5

Cc5

CF,in
c5

+
A4

A
fA4

CA4
(t, 0) ∗ fc4

∗ fc5

Cc5

CF,in
c5

(30)

where the resident concentrations in states that follow generation (the channel 5) are
properly normalized by the inflowing flux concentrations. Note that only the contribu-
tions of “source” states explicitly appear in the MRF, whereas large dilutions determined20

by all the states generating clean runoff are reflected by lower flux concentration along
the stream network. Needless to say, the serial arrangement is considerably more
involved computationally.

Every possible combination is thus tackled, and a suitable extension of the geo-
1634
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morphic theory of the hydrologic response to transport at basin scales is therefore
achieved.
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Fig. 1. (a) Parallel transport. Sample of a relatively simple geomorphological structure of a
river basin and notation for the theoretical models. The basic elements of the MRF approach
for basin scale solute transport are provided. Notice that the set Γ of all possible paths to
the outlet defined by the geomorphic structure is made up by 10 states, five overland states
and five channels (e.g. transitions to overland areas Ai to their outlet channel ci and then to
ensuing transitions (ci → ck → · · · → c5) towards the closure – the endpoint of channel c5).
Notice the treatment of the i -th source area Ai as a well-mixed reactor. Here we assume that
all sources areas A1 to A5 act as generators of solutes to the mobile phase emphasizing their
independent role possibly related to land use; (b) The set of independent paths available for
hydrologic runoff is enumerated and shown.
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Fig. 2. (a) Individual travel time distributions along the path A1 → · · · → c5; (b) Travel time
distribution fγ1

(t) obtained by convolution of the individual pdfs, and catchment travel time dis-
tribution f (t).
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Fig. 3. Parallel transport: (a) Resident concentration CA1
(t,0) and its corresponding immobile

phase concentration NA1
(t) (expressed in kg/ha) vs. t for an instantaneous pulse; (b) flux con-

centration at the outlet of the basin CF
c5

(t); (c) temporal evolution of the rainfall depths (upper
plot) and corresponding immobile phase concentration NA1

(t) for a sequence of intermittent
rainfall pulses, a case typical of transport in the hydrologic runoff. Also shown in (d) is the
corresponding flux concentration at the outlet of the catchment, CF

c5
(t).
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Fig. 4. Serial transport: (a) geomorphological structure of the test catchment: here we assume
that only sources areas A1 and A4 act as generators of solutes to the mobile phase. Moreover,
we assume that mass transfer processes also occur in state c5 owing to its travel times and
nature. Reactive states (A1, A4 and c5) are properly isolated in (b).
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