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Abstract

The Bayesian time-frequency detector operating on spectrogram of non stationary sig-
nals is studied. As direct evaluation of the likelihood ratio is impossible, an a priori user
parameter called focus is introduced. It is defined as a local time-frequency signal to
noise ratio at which the detection is tuned to be optimal. Leading to a unique detection
threshold, the parameter introduced is equivalent to the probability of false alarm used
in the Neyman-Pearson detection strategy. However, we expect the formulation in terms
of local signal to noise ratio to be of intuitive and practical interest.

1. Introduction

Detection procedures are used to reveal wether a signal is present in a given observation
or not. The detection may be proceeded in the temporal domain [Van Trees (1968)] or
in the time-frequency domain as studied by Altes [Altes (1980)] or Flandrin [Flandrin
(1988)]. However, the binary hypotheses test is usually formulated in terms of the tem-
poral observation. The time-frequency detection procedure we are interested in is slightly
different: it is formulated at each time-frequency location (¢, f).

The aim of this detection procedure is to extract the regions of the time-frequency plane
where some signal is present. This specific task reveals useful so as to determine whether
a signal is present or not but also provides informations about the spectral structure
of the signal and its evolution. Interpreted as a time-frequency signature of the signal,
this information may be used for further processing such as classification, time-frequency
sparse sources separation or estimation of the underlying physical process parameters.

Neyman-Pearson detection strategy has already been employed for this task [Huillery
(2006a)|. In this paper we concentrate in the possibility to use the theoretically more
optimal Bayesian approach. However due to the lack of information, a focus parameter
is introduced to solve the detection problem. It turns out that the resulting procedure
is equivalent to a Neyman-Pearson detection strategy, where the focus parameter plays
the role of the traditional Probability of False Alarm (PFA).

The paper is organized as follows: in section 2, the Bayesian time-frequency detection
procedure is introduced. In section 3, we express the probability density function (pdf)
of the time-frequency coefficients. A solution for the detection task and some results on a
real-life signal are presented in section 4. In section 5, we finally discuss the link between
the method proposed and a Neyman-Pearson detector.
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2. Bayesian Time-frequency detection task

The model of signal we are interested in is composed of a deterministic part d(t) embedded
in a centered Gaussian perturbation p(¢) with autocorrelation function I', (¢, 7) associated
with the energy time-frequency distribution ~, (¢, f). Namely,

2(t) = d(t) + p(t). (2.1)

The deterministic part contains the information under interest on which no a priori is
known. The aim of the proposed approach is to localize the time-frequency support of
this information.

The detection task consists in determining whether the energy S, (¢, f) observed at
a particular time-frequency location (t, f) originates from the perturbation only (null
hypothesis Hy) or is also due to the deterministic part of the signal (signal hypothesis
Hy). The two hypotheses test problem is thus formulated at each time-frequency locations
as

{ HO:Sz(taf):Sp(tvf)a (2 2)
H,y :Sm(taf):Sder(tvf)' .

We consider no a priori information about the probability of each hypotheses (or
equivalently, we fixe them to 1/2) and equal costs for erroneous decision. In this particular
case, the Bayesian detection strategy results in the maximum likelihood detector [Van
Trees (1968)]. It consists in the comparaison of the likelihood ratio Ag, ¢y with 1 and
writes

A _ P (S:(t, f)) . 1
D pag(Se(6.D) f

where py,(.) and py, (.) stand for the pdfs under the null and signal hypotheses respec-
tively. Finally, the time-frequency support of information, noted J, is defined as

J={(t. f)/Sa(t, f) > S™"(t, f)}, (2.4)
where S (¢, f) is the detection threshold obtained with the detector 2.3.

(2.3)

3. Time-frequency probability distributions

We use the spectrogram as the time-frequency representation of the signal. As a main
advantage, it does not display any interference terms and remains interpretable as a
physical representation of signal energy. However, these features are counterbalanced by
a poor energy concentration.

The pdf of spectrogram coefficients under the null hypothesis Hy is a central x2 laws
with 6 = 2 degrees of freedom and proportionality coefficient o = 7,(¢, f)/2 [Huillery
(2006Db)]. It writes

1 S
() = s e (——W, f)). (3.1)

Under signal hypothesis H;, the pdf of a spectrogram coefficient is a non central y?
law. The noncentrality parameter is equal to the spectrogram coefficient Sy(t, f) of the
deterministic part d(t) of the signal. At time-frequency location (¢, f), the pdf py, writes

. 1 ox 7S+Sd(t,f) 24/5.54(t, f)
o) = aoe (- >IO< Wt S ) (@2

where Ij(.) stands for the zero order modified Bessel function of the first kind.
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4. Solution to the detection problem

From the formulation given in section 2, the Maximum Likelihood (ML) detection thresh-
old S% ;, is defined as the quantile that equates the two probability distributions pg, and
p, - Using the expressions of probability distributions given in section 3, S{?; is solution

of the equation
WY, (saun) »

’Yp(ta f) ’Yp(ta f)

We solved this equation numerically and after linear regression, the ML detection thresh-
old Si, can be obtained as

St (8, f) = 0.26 x Sa(t, ) + (2, f). (4.2)

Without further developments, the detection threshold S, depends on two parameters,
namely Sq(t, f) and 7, (t, f). The deterministic contribution S4(¢, f) being precisely what
we are looking for, an ill problem is faced.

Let us define the Local Time-Frequency Signal to Noise Ratio (local-SNR), noted
p(t, f), as the ratio between the signal and perturbation energies observed at a single
time-frequency location (t,f). In linear scale, it writes

Sd(tv f)
plt. 1) = 255 (4.3)
To determine the detection threshold S*(t, f) of eq. 2.4, we propose to introduce a
focus parameter, noted pg, defined as a local-SNR for which the detector will be tuned
optimally in the ML sense. This parameter has to be fixed before the detection procedure
and leads to a detection threshold S*(¢, f) calculated as

S™(t, f) = (0.26 x po + 1) 7 (¢, [)- (4.4)

When pg is different from the local-SNR p(¢, f) (presumably most of the time), the
detection threshold S*(t, f) is not optimal. In practice, py approximately corresponds
to the minimal local-SNR on the "information support" J that is detected. We also note
the dependence of the detection threshold S*(¢, f) on the perturbation spectral power
~p(t, f) that needs to be estimated when unknown. An estimation procedure dedicated
to central x? laws can be found in [Hory (2002)].

Figure 1 displays some detection results obtained with the French speech signal "Joyeux
noél" embedded in a white gaussian perturbation of known variance. In each cases b),
c¢), d) and e), the local-SNR, of the time-frequency locations detected as "information
support" are around or greater than the focus parameter pg. We note the increasing
amount of false alarms as the focus local-SNR pg decreases.

Iy

5. Discussion

Starting from a Bayesian formulation of the detection procedure, a lack of information
imposes the introduction of a detection condition so as to determine a detection threshold.
We choose to formulate this condition as a local signal to noise ratio for which the
detection procedure is set to be optimal. The focus parameter introduced now imposes a
single value to the detection threshold (see eq. 4.4). Considering a binary hypothesis test
where the probability distribution under H; is unknown, the Neyman-Pearson detection
strategy [Van Trees (1968)] consists in fixing a priori a Probability of False Alarm (PFA).
The choice of this PFA also imposes a single value to the detection threshold. The focus
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a) Spectrogram of the signal b) p,=0dB, PFA=0.28 c) Py=7 dB, PFA=10"1
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FI1GURE 1. Detection results for different focus parameter pg. Spectrogram is constructed with
50% overlapping 512 points Hanning windows, with a zero-padding of 2.

parameter pg and the PFA thus play a similar role in the detection procedure and can
be expressed one as a function of the other. Starting from the definition of the PFA and
using equation 4.2 and 3.1, we obtain

—+o0
PFA = /Sth . (z)dx = exp (— (0.26 x py + 1)), (5.1)
with pg expressed in linear scale. In figure 1, the PFA corresponding to each focus para-
meter pg is also noted. Figure 1-f) depicts the relation between py and the PFA.

However, as the PFA is a noise dedicated detection parameter, the focus parameter
introduces a signal condition in the detection procedure. It is an answer to the problem: "I
want to detect the signal time-frequency components with energy at least pg-time higher
than the background perturbation.". We expect this formulation of detection condition
to be of practical interest.
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