
HAL Id: hal-00301484
https://hal.science/hal-00301484v1

Submitted on 3 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Steering Environment for Online Parallel
Visualization of Legacy Parallel Simulations

Aurélien Esnard, Nicolas Richart, Olivier Coulaud

To cite this version:
Aurélien Esnard, Nicolas Richart, Olivier Coulaud. A Steering Environment for Online Parallel Vi-
sualization of Legacy Parallel Simulations. 10th International Symposium on Distributed Simulation
and Real-Time Applications (DS-RT), Oct 2006, Spain. pp.7–14. �hal-00301484�

https://hal.science/hal-00301484v1
https://hal.archives-ouvertes.fr

THE 10-TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS. 1

A Steering Environment for Online Parallel
Visualization of Legacy Parallel Simulations

Aurélien Esnard, Nicolas Richart and Olivier Coulaud

Abstract—In the context of scientific computing, the com-

putational steering consists in the coupling of numerical

simulations with 3D visualization systems through the net-

work. This allows scientists to monitor online the inter-

mediate results of their computations in a more interactive

way than the batch mode, and allows them to modify the

simulation parameters on-the-fly. While most of existing

computational steering environments support parallel sim-

ulations, they are often limited to sequential visualization

systems. This may lead to an important bottleneck and

increased rendering time. To achieve the required perfor-

mance for online visualization, we have designed the EPSN

framework, a computational steering environment that en-

ables to interconnect legacy parallel simulations with par-

allel visualization systems. For this, we have introduced a

redistribution algorithm for unstructured data, that is well

adapted to the context of M × N computational steering.

Then, we focus on the design of our parallel viewer and

present some experimental results obtained with a particle-

based simulation in astrophysics.

Index Terms—Computational Steering, Numerical Simu-

lation, Data Redistribution, Parallel Visualization.

I. Introduction

In most research fields, 3D scientific visualization
plays a central role in the analysis of data generated
by numerical simulations. Nowadays, simulations are
typically running in batch mode on supercomputers, and
the analysis of the results is then performed on a local
workstation as a post-processing step, which implies to
preliminary collect all the simulation output files. In
this approach, the lack of control over the in-progress
computations might drastically decrease the profitability
of the computational resources (repeated tests with
different input files separated by excessively long waiting
periods). Computational steering is an alternative ap-
proach to the typical simulation work-flow of performing
computation and visualization sequentially. It mainly
consists in coupling a remote simulation with a graphics
system through the network in order to provide scientists
with online visualization and interactive steering. Online
visualization appears very useful to monitor the evolution
of the simulation by rendering the current results. It also
allows us to validate the simulation codes and to detect
conceptual or programming errors before the completion
of a long-running application. Interactive steering allows
the researcher to change the parameters of the simulation
without stopping it. As the online visualization provides
an immediate visual feedback on the effect of a parameter
change, the scientist gains additional insight in the
simulation, regarding to the cause-effect relationship.

Authors are members of the ScAlApplix Project at IN-
RIA Futurs and LaBRI (UMR CNRS 5800, University of Bor-
deaux I). 351, cours de la Libération, 33405 Talence, France.
E-mails: {esnard,richart,coulaud}@labri.fr.

Such a tool might help the scientist to better grasp the
complexity of the underlying models and to drive more
rapidly the simulation into the right direction.

Because the datasets produced by simulations can
be very large and complex (multivariate, multi-scale,
multidimensional), their visualization can be almost
as computationally demanding as the simulation itself,
typically with iso-surface computation, particle rendering,
volume rendering, etc.. In such a context, parallel
visualization and rendering techniques can provide the
necessary level of performance required for the online
visualization. In order to accommodate larger datasets
and higher image resolutions, the use of a PC cluster
equipped with 3D accelerated graphics cards, called
graphics cluster, is an attractive approach – both in terms
of cost and performance. Parallel rendering techniques
have already demonstrated their scalability for viewing
very large datasets on such graphics clusters. These
solutions are typically based on the sort-last algorithm
that combines the images produced independently by each
node [1]. Compared to other parallel rendering strategies
(i.e. sort-first or sort-middle), and regardless of hardware
mechanisms, the sort-last algorithm scales better for very
large datasets, but is limited by the display resolution. To
overcome this issue, Sandia National Laboratories have
recently proposed in [2] a solution based on multiple tile
displays that scales appropriately.

Even though most of existing computational steering
environments, such as CUMULVS [3], DAQV [4] or
gViz [5] support parallel simulations, they are limited
to sequential visualization systems. This leads to an
important bottleneck and increased rendering time. In the
gViz project, the IRIS Explorer visualization system has
been extended to run the different modules (simulation,
visualization, rendering) in a distributed fashion on the
Grid, but the visualization and the rendering modules
are still sequential. Recent works in the Uintah PSE
(Problem Solving Environment) [6] has addressed the
problem of massively parallel computation connected to
a remote parallel visualization module, but this latter
module is only running on a shared-memory machine.
Therefore, it would be particularly valuable for the scien-
tist if a steering environment would be able to perform
parallel visualization using a PC-based graphics cluster.
This is precisely the purpose of the EPSN environment
that enables to interconnect parallel simulations with
visualization systems, that can be parallel as well [7].
While the EPSN environment is mainly focused on the

2 THE 10-TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS.

Parallel Simulation
(M processes)

Parallel Visualization
(N processes)

Network

Steering

Data Redistribution

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 1. Overview of the EPSN infrastructure.

M×N code coupling issue, including problems of parallel
data redistribution and time-coherent transfers, this
paper presents more precisely the design of a parallel
visualization system based on the EPSN framework.

In the next section, we describe the architecture of EPSN
and the redistribution algorithm we use for unstructured
data such as particles or meshes. In section III, we detail
our solution to efficiently perform online parallel visuali-
zation with EPSN. Finally, in section IV, we validate our
approach with some experimental results obtained with a
particle-based simulation in astrophysics.

II. The EPSN Framework

EPSN is a distributed computational steering environ-
ment which allows the steering of remote parallel simula-
tions with user interfaces, which include sequential or par-
allel visualization tools [7]. This environment is based on
a coupling framework between parallel simulation compo-
nents (running on M processes) and parallel visualization
components (running on N processes). The visualization
application is viewed in EPSN as a client program that
can dynamically connect and disconnect from the simula-
tion during its execution. Once a client is connected, it
interacts with the simulation component through an asyn-
chronous and concurrent request system. We distinguish
three kinds of steering request. Firstly, the ”control” re-
quests (play, step, stop) allow to steer the execution flow of
the simulation. Secondly, the ”data access” requests (get,
put) allow to read/write parameters and data from the
memory of the remote simulation. Finally, the ”action”
requests enable to invoke user-defined routines in the sim-
ulation.

A. General Principles

In order to make a legacy simulation steerable, the
end-user annotates its simulation source-code with the
EPSN API. These annotations provide the EPSN envi-
ronment with two kinds of information: the description of
the program structure according to a Hierarchical Task
Model (HTM) and the description of the distributed data
that will be accessible by the remote clients. Thanks to
a logical date system associated to the HTM, one can
precisely follow the parallel work-flow of the simulation.

Moreover, this date system enables EPSN to efficiently
coordinate the treatment of steering requests in parallel,
and to ensure the time-coherence of parallel treatments
(see [8] for more details). Indeed, the data distributed
over parallel processes must be accessed carefully to
ensure they are presented to the visualization system in
a meaningful way. This simply means that each piece of
data collected from the simulation and transmitted to the
parallel visualization system must refer to the same logical
date. In order to ensure such a coherence, our strategy
consists in scheduling on-the-fly the next common date
where all the simulation processes can start to transfer
data in parallel. This strategy is efficient for it does not
imply to synchronize the simulation processes.

Once a simulation has been instrumented with the back-
end API, it can be launched as usually. The client lo-
cates its simulation on the network using a naming ser-
vice and then connects to it through the proxy. As re-
gards the development of client applications, we also pro-
vide a front-end API that enables to integrate EPSN in a
high-level visualization system such as AVS/Express. How-
ever, it is often more convenient to start a steering ses-
sion with our own user interface, called Simone. Thanks
to this lightweight program, the end-user can easily con-
nect any simulations and interact with them, by controlling
the computational flow, viewing the current parameters or
data on a simple data-sheet and modifying them option-
ally. Simone also includes simple visualization plug-ins to
online display the intermediate results, as shown in fig-
ure 2. Moreover, the EPSN framework offers the ability to
exploit parallel visualization techniques, as we will see in
the section III.

B. Architecture

As shown in figure 3, each parallel component in EPSN
is made up of one proxy and several ports. A port con-
sists in a thread attached to each application node (sim-
ulation or visualization), which runs a server waiting for
client requests. The proxy provides a unified access point
to the parallel component, that dispatches the client re-
quests to all nodes. These requests are forwarded to all
local ports which are in charge to perform the steering
treatments in parallel. For instance, when a request to get

Esnard, Richart and Coulaud: A STEERING ENVIRONMENT FOR ONLINE PARALLEL VISUALIZATION 3

Visualisation PluginsHierarchical Task Model

Current Date

Data Sheet

Request Panel (Control and Data Access)

List of Connected Simulations

List of Simulation Data

Fig. 2. Simone (Simulation Monitoring Interface for EPSN) connected to the Parallel Ocean Program (POP) of the Los Alamos National
Laboratory.

data is received by a simulation port, the EPSN thread
accesses the process memory and directly transfers data to
the remote component ports. This transfer occurs concur-
rently to the simulation execution, during the task of the
HTM where the data are said to be accessible for remote
clients. The use of an access area rather than a simple ac-
cess point is an important feature of the EPSN architecture
that enables to (partially) overlap the steering communica-
tion and simulation computation. As both the simulation
and the visualization can be parallel applications, EPSN
is based on the M×N redistribution library called Red-
GRID [9]. This library is firstly in charge to compute all
the messages that will be exchanged between the two par-
allel components, and secondly to perform the data trans-
fer in parallel. Thus, RedGRID is able to aggregate the
bandwidth and to achieve high performance. Moreover, it
is designed to consider a wide variety of distributed data
structures usually found in the numerical simulations, such
as structured grids, particle sets or unstructured meshes.
Both RedGRID and EPSN use an internal communication
infrastructure based on CORBA [10] which provides the
interoperability between the components running on dif-
ferent architectures. For further details about the core of
the EPSN architecture, the reader can refer to [11] and [8].

C. Redistribution Layer

Basically, the redistribution problem is decomposed
into four steps: the description of distributed data, the
message generation, the message scheduling and the
communication stage. The description of distributed data
typically involves to specify how the data are spread
through the processes and how the data are stored in the
memory of each process. Thanks to these descriptions,
the redistribution algorithm computes the communication
matrix which stores all the messages that are exchanged
between processes. At the communication stage, each pro-
cess sends several messages, either to all other processes,
or just to a subset of these. Such parallel communication
flows make it possible to aggregate the bandwidth.

request

process

EPSN thread

data

HTM

Port
EPSN

Port
EPSN

Port
EPSN

Port
EPSN

EPSN
PROXY

EPSN
PROXY

XML

Port
EPSN

P0

Port
EPSN

P1

Port
EPSN

P8

Port
EPSN

P9

external communication layer (MPI, PVM, ...)

external communication layer (MPI, PVM, ...)

CORBA

CORBA

Q0 Q1 Q2 Q3

parallel
visualization

parallel data transfer
MxN redistribution

parallel simulation

Fig. 3. Architecture of the EPSN environment.

The development of a standard solution to the problem
of the redistribution requires to define a model of data
description which is standard as well. In this context, we
have introduced a data model built upon the notion of
complex object. A complex object is made up of several
variables (e.g. position, velocity, etc.) and divided into
several element subsets or regions that are distributed
over processes.

This section presents a redistribution algorithm that
is well adapted to the context of M × N computational
steering. In this case, the data distribution on the
visualization code is not initially defined. This offers
the opportunity for the redistribution layer to choose it
at run-time in ”the best way”. In this algorithm, we
assume that the object elements are equally distributed

4 THE 10-TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS.

over the M simulation processes. Our strategy consists
in the placement of the simulation elements to the N
visualization processes. In order to equilibrate the number
of elements on the visualization code and to minimize the
number of messages, we use a split and merge strategy.
As shown in figure 4, this algorithm simply generates
M + N − GCD(M, N) messages, that result from the
intersection of the two distribution patterns.

We have implemented this algorithm in the RedGRID
library for two kinds of complex objects: particle sets and
unstructured meshes. For particles, the split and merge
operators are quite trivial, while for unstructured meshes,
they are defined thanks to graph partitioning techniques
as those provided by Metis [12].

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Code A (M = 4) Code B (N = 3)Code A (M = 4) Code B (N = 2)

(a) Simple Case (b) More Complex Case

Fig. 4. Redistribution with placement strategy in two cases.

III. Online Parallel Visualization with EPSN

This section presents the design of the parallel viewer
prototype that we have developed to efficiently produce
online visualization on a PC-based graphics cluster. As
shown in figure 3, this parallel viewer is a standard EPSN
client that can connect to any kind of simulations pre-
viously annotated with our back-end API. Basically, the
EPSN infrastructure continuously extracts new data gen-
erated by the simulation and sends them to the parallel
viewer. Then the viewer produces an image that repre-
sents the current state of the remote simulation, and so on.
Even if the visualization engine is designed according to the
SPMD programming paradigm, the parallel viewer has a
master node, where the EPSN proxy is located. This node
manages both the visualization interactive loop (mouse,
timer, etc.) and the EPSN request system. This viewer
has been designed to be modular and generic: it dynami-
cally retrieves the remote simulation description, including
the data distribution, and creates a visualization pipeline
adapted to the type of data that is considered (i.e. struc-
tured grids, particle sets or unstructured meshes). This
task is realized by the EPSN source, a particular source

that receives data from the network rather than to read
them from a file as it is usually done by classical visualiza-
tion programs. In the following section, we introduce some
useful notions for the understanding of the parallel viewer
design.

A. Preliminaries

As described in the literature [13], the pipeline of a visu-
alization system is classically based on a data-flow model.
This pipeline is based on four kinds of modules – the
source, the filter(s), the mapper and the renderer – that
are connected as shown on figure 5. The source module
typically reads data from a file and produces an output
which is then used by the filters. The filter modules can
be interconnected in a complex network which processes
the input data to generate the desired result. This result
is then converted into graphics primitives by the mapper.
Finally, the renderer module transforms those graphics
primitives into visual images that are interpretable by the
end-user.

Source MapperFilters

Display

RendererData

File

Fig. 5. The different modules in the classical visualization pipeline.

In a data-parallel visualization system, the visualization
pipeline is fully replicated on each node of the graphics
cluster and the data are typically distributed according to
a spatial constraint. The use of a parallel rendering al-
gorithm makes it possible to combine the capabilities of
several graphics nodes to produce an image, even if it is
displayed on a single screen. In the sort-last algorithm,
each node produces a full-resolution image, although pro-
cessing only a piece of the distributed data. The composite
engine is in charge of gathering all these images on a single
node and to compare the depth-values to correctly com-
bine the pixel color information (Fig. 6). More recently,
K. Moreland et al. have proposed a sort-last based paral-
lel algorithm that scales appropriately for high-resolution
tiled display wall [2].

Node 0 Node 1

Node 2 Node 3

Image Composition

Fig. 6. Principle of the sort-last strategy for parallel rendering on a
single screen.

Esnard, Richart and Coulaud: A STEERING ENVIRONMENT FOR ONLINE PARALLEL VISUALIZATION 5

Loop

Simulation
Proxy

Parallel Viewer
Proxy

Loop

Loop

Loop

Loop

EPSN
Source Filters Mapper Renderer

Visualization pipeline(8) Ack

EPSN
Source Filters Mapper Renderer

Visualization pipeline

Loop
EPSN

Source Filters Mapper Renderer

Visualization pipeline

Loop

EPSN communication layer (CORBA)

VTK communication layer (MPI)

VTK pipeline in process memory

EPSN
Source Filters Mapper Renderer

Visualization pipeline

Loop

task1 task2 task3

(6) Display

(4) Render

(7) Post−Ack

(2) Pre−Ack

(5) Composition

(3) Update

(1) Data Reception

Parallel Simulation Parallel Viewer Tiled Display Wall

Fig. 7. The different steps required to perform online parallel visualization with the EPSN framework: from the data reception to the image
composition on a 2× 2 tiled display wall.

B. From the Data Reception to the Image Update

We detail now the different steps that are required to
perform online parallel visualization: from the reception
of data by the EPSN source to the update of the image
displayed on multiple screens. These steps are represented
on figure 7.

B.1 Data Reception

Before to start the visualization pipeline, one must first
extract the data from the remote simulation. This con-
sists in requesting the EPSN infrastructure to send the
data to the parallel viewer whenever a new data release
is produced by the simulation. Thus, the parallel viewer
periodically receives new data through the EPSN source
(step 1). The data distribution on the visualization side
is automatically chosen by the viewer program according
to the redistribution strategy described in section C. This
choice depends both on the simulation data distribution,
and on the number of nodes used in the graphics cluster.

B.2 Pipeline Update Request

In a demand-driven pipeline, the request for updat-
ing the visualization pipeline occurs from the end of the
pipeline. This raises some difficulties, because the ren-
derer module is not aware when new data has been re-
ceived by the EPSN source. To overcome this, we intro-
duce a timer in the interactive loop of the master process.
It enables the EPSN framework to periodically ask if new
data are received. In this case, the EPSN proxy will ex-
plicitly request to update the parallel visualization pipeline
(step 3). In order to indicate when the data transfer is fin-
ished, a pre-acknowledgment must be preliminary sent by
each viewer node to the EPSN proxy on the master node
(step 2). When the proxy has received all these acknowl-
edgments, we assume the parallel data transfer is globally
achieved. Thus, at the next timer event, the proxy will be
able to request the full pipeline update.

B.3 Parallel Rendering and Image Composition

Once the image update has been requested on step 3, the
visualization pipeline is fully updated in parallel from all

the sources to all the renderer modules that produce partial
images of the scene (step 4). Afterward, we perform the
composition of all the partial rendered images thanks to
the sort-last algorithm (step 5). This requires to read back
the rendered images from the graphics card memory of each
node and to communicate with other nodes in order to
generate the final image (step 6). The image composition
can be either performed onto a single node and display,
or can use a more complex composite engine for tiles, as
shown in figure 7.

B.4 Request Acknowledgment

The EPSN infrastructure requires the simulation nodes
to be acknowledged. In fact, the data transfer are per-
formed asynchronously within the EPSN threads, and so
one must acknowledge the simulation that the parallel data
transfer is achieved, otherwise the simulation can remain
blocked waiting for this post-acknowledgment (step 7).
The purpose of this acknowledgment mechanism is to en-
sure the data transfer is coherent. Moreover, it is par-
ticularly useful to regulate the data transfer and to slow
down the simulation that produces new data faster than
the viewer can render them. To alleviate both the net-
work load and the viewer load, it is possible to send and
render the data at a given period by repetitively skipping
some steps. As this acknowledgment mechanism can in-
duce an important time overhead, an optimization consists
in acknowledging the simulation earlier, just after that the
transfer is done and before the render occurs. With this
approach, it is possible to overlap the visualization pipeline
update during all the next simulation step.

IV. Results

All the results presented in this section have been
performed on two clusters: one computational cluster
for the simulation, and one ”old” graphics cluster for
the visualization. The computational cluster is com-
posed of 50 bi-Opterons (2.2 GHz) connected by both a
Myrinet/MX high-speed network and a Giga-bit Ethernet
network. The graphics cluster is composed of 4 bi-Xeons
(2.8 GHz) equipped with Nvidia GeForce 4 graphics
cards (Ti 4800, AGP 4× with 128 MB of memory) and

6 THE 10-TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS.

connected by a Giga-bit Ethernet switch. These two
clusters are interconnected by a single Giga-bit Ethernet
link.

The EPSN framework is written in C++ and uses
omniORB4 [14], an high performance implementation of
CORBA. As regards the parallel viewer, our prototype is
built over the VTK library [15], that enables parallel vi-
sualization according to the SPMD paradigm and parallel
rendering with the sort-last algorithm (on a single screen).
In order to perform parallel rendering on tile displays,
we use another library, called Ice-T (Image Composition
Engine for Tiles [16]), which is developed by the Sandia
National Laboratories and is well-integrated in the VTK
framework.

A. Performance of the EPSN Framework

In order to evaluate the performance of the EPSN frame-
work, we examine in this section two different experiments.

A.1 Overlapping of the Steering Overhead

The first experiment intends to evaluate the capability of
the EPSN platform to overlap the steering communication
and simulation computation, and thus to reduce the over-
head due to the data transfer for online visualization. In
this experiment we consider a simple sequential simulation
that is composed of a single computational loop divided in
two sub-tasks named A and B. At each simulation step
the data we want to extract are updated by the simulation
during the first task, A, and so no data transfer can occur
at this moment. Then the data become accessible for re-
mote clients during all the second task, B. Let TA and TB

be respectively the time of the tasks A and B, the time
of a simulation step is defined by T = TA + TB and set at
100 ms. We measure the mean time T m of a simulation
step when data are transmitted by EPSN to a remote se-
quential client and we compare this time to the time T of
a simulation step without EPSN. This experiment is real-
ized for different amount of data and different overlapping
ratio defined by r = TB/(TA +TB). As the measured time
T m of a step includes both the simulation computation,
the data transfer to the client, and the acknowledgment of
this transfer to the simulation, it must be greater than T .
However, EPSN can alleviate this overhead thanks to its
overlapping strategy. Figure 8 shows that we obtain a good
overlapping of the communication by the simulation com-
putation when we increase the access area TB and as long
as the amount of data to transfer is not to high. As both
the simulation and the client program are sequential, no
redistribution is performed in this experiment. It simply
demonstrates the ability of EPSN to reduce the steering
overhead T m

−T by using the largest access area available
in the source-code, rather than using a sending point like
in classical steering environments.

A.2 Redistribution and Parallel Data Flow

When both the simulation and the visualization are
parallel programs, EPSN uses a redistribution algorithm

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 1 10 100 1000 10000

tim
e

(m
s/

ite
r)

size (KB)

simulation (100 ms)
overlapping 0%

overlapping 30%
overlapping 50%

overlapping 90%)
overlapping 100%

Fig. 8. Overlapping of communication by simulation computation
in EPSN.

to generate all the messages that must be exchanged
between the coupled codes. In the following experiment,
we evaluate the performance of the data transfer from a
parallel simulation of M processes to a parallel client of
N processes, both running on the same cluster. As EPSN
performs parallel data transfer between codes, it makes it
possible to aggregate the bandwidth and to achieve high
performance. We consider a test case with particle data
equally distributed between the M simulation processes.
We use the placement strategy called split and merge,
presented in section C. This experiment is performed for
different amount of data, and different M ×N configura-
tions.

Figure 9 shows that the bandwith is nearly 97 MB/s in
the 1× 1 configuration. Indeed, we almost reach the best
performance that OmniORB4 allows on giga-ethernet net-
work, except that EPSN performs a copy on the receiving
node. For more complicated M ×N cases, the bandwidth
is well aggregated, but is obviously limited by the number
of receipting nodes (N). Indeed, the aggregate bandwidth
for the case 16× 4 is almost as good as for the case 4× 4,
except that there are more shorter messages in the first
case. In our experiment, the case 8× 7 is the one which
requires to split particles on sending. So we have a more
complex communication pattern in this case. However, the
performance are as good as in the case 8× 8 because each
process almost reaches its maximum throughput rate, i.e.
∼ 97 MB/s per process.

B. Case Study: The Gadget2 Cosmological Simulation

This section presents some results obtained with a sim-
ulation in astrophysics, called Gadget2 [17]. It is a parallel
simulation written in C and using the Message Passing
Interface (MPI). Gadget2 is a legacy code publicly avail-
able on [18], that can be used to address a wide variety of
astrophysically interesting problems, ranging from collid-
ing and merging galaxies, to the formation of large-scale
structure in the Universe. It follows the evolution of a self-

Esnard, Richart and Coulaud: A STEERING ENVIRONMENT FOR ONLINE PARALLEL VISUALIZATION 7

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 100 1000 10000 100000

ag
gr

eg
at

e
ba

nd
w

id
th

 (
M

B
/s

)

size (KB)

1x1
2x2
4x4

16x4
8x8
8x7

Fig. 9. Parallel data redistribution in EPSN for different M × N

configurations.

gravitating collision-less N-body system. In our case study,
Gadget2 simulates the birth of a galaxy, which is repre-
sented by a gas cloud that collapses gravitationally until
a central shock. The gas cloud is modeled by 1,000,000
particles distributed on 60 processes (30 nodes of the com-
putational cluster) according to a domain decomposition
method based on the Peano-Hilbert curve (See [17] for
more details).

The simulation is represented in the hierarchical task
model of EPSN as a simple computational loop that is
composed of 3 sub-tasks: (1) the displacement of particles,
(2) the domain decomposition, (3) the computation of the
acceleration (Fig. 10). During the last task, we compute
the forces to move the particles and the interesting data
for visualization, such as positions and velocities, are not
modified. The ”domain decomposition” task is in charge to
dynamically balance the work-load for each domain during
the galaxy evolution, that leads to frequent particle migra-
tions between simulation processes.

Fig. 10. Representation of the Gadget2 simulation in the Hierarchical
Task Model of EPSN.

As shown in the first line of table I, one step of the
original simulation, without EPSN annotations, takes an
average time of 2150 ms. The ”acceleration” task takes
1770 ms, which roughly represents 80% of the whole
iteration time; so we have a large access area to extract
these data safely and to overlap the communication. The

integration of Gadget2 in the EPSN framework requires
to annotate its source-code. This instrumentation is
entirely negligible when there is no client connected.
Indeed, we have about 10 µs for each instrumentation
point that are used in the source-code to delimit the
tasks. The figure 12 shows that only few lines are required
by EPSN and RedGRID to integrate this simulation
compared to the 20,000 lines that represents the whole
source-code of Gadget2. The description of the HTM and
the configuration of data access is given by an auxiliary
XML file, called gadget2.xml (Fig. 13).

Here, astrophysicists want to visualize the evolution of
the galaxy in 3D (Fig.11). It requires to extract both
the particle position and the velocity, i.e. 23,438 kB of
single-precision floating-point data to transfer at each
simulation step. The particles are represented by a point
sprite technique. Here, point sprites are simple 2D objects
that represent an image of a sphere. This visualization
technique considerably increases the efficiency of the
rendering, compared to the classical glyph technique, that
represents particles by polygonal spheres.

In the sequential case (N = 1, S = 1), the visualization
time takes roughly 1160 ms and the transfer time is
about 140 ms. It should lead to a huge overhead of
1300 ms, which is 60% of the time of one simulation step.
However, the real overhead is only 21% because EPSN
has partially overlapped it. In the parallel case (N = 4),
the visualization time is roughly divided by 2, that leads
to a very small overhead, less than 2% of a simulation
step, because EPSN has fully overlapped it. As we use a
sort-last algorithm for the image composition, the parallel
rendering time is mainly limited by the global resolution
of the tiled display wall. At the same global resolution,
the number of screens (S = 1 versus 4) does not have too
much influence on the visualization time. On the other
hand, when the global resolution increases, the visualiza-
tion time increases as well and can induce an important
simulation overhead. As we can see on the last line of
table I, here we have an overhead of 24% of a simulation
step for the global resolution 3200× 2400. One track to
overcome this issue is to adjust the network bandwidth of
the graphics cluster to the maximal resolution we want to
reach.

Finally, this experiment validates our approach for com-
putational steering on a parallel legacy code and demon-
strates the interest of parallel visualization and rendering
techniques to reduce the steering overhead.

V. Conclusion

In this paper, we have presented a modern approach
for computational steering that can benefit from parallel
rendering techniques and takes advantage of redistribution
algorithm. We have detailed the architecture of EPSN and
the design of our parallel viewer prototype. This viewer en-
ables efficient online visualization on a PC-based graphics

8 THE 10-TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS.

M N S
Global

Resolution

Transfert

Time

Visualization

Time

Simulation Time

Accel. Total Overhead

60 – – – – – 1770 2150 –
60 1 1 1600×1200 140 1160 2200 2600 +21%
60 4 1 1600×1200 91 620 1800 2180 +1.4%
60 4 4 1600×1200 91 500 1775 2155 +0.2%
60 4 4 3200×2400 90 1300 2260 2670 +24%

TABLE I

Gadget2 average time for simulation computations, data transfer and visualization (in ms/iteration), obtained after 60

steps. M = number of simulation processes; N = number of visualization processes; S = number of screens.

Fig. 11. Online parallel visualization of the Gadget2 simulation on
a tiled display wall composed of 4 screens.

cluster. The solution we have retained is based on The Vi-
sualization Toolkit (VTK [15]) and uses the Ice-T library
developed by the Sandia National Laboratories to perform
scalable parallel rendering on tile displays. Finally, we have
validated our approach with a particle-based simulation in
astrophysics. In future works, we intend to integrate our
approach in a high-level visualization application like Par-
aView [19] that supports parallel rendering as well.

Acknowledgments

This project has been supported by the ACI-GRID pro-
gram from the french Ministry of Research (grant number
PPL02-03). The authors acknowledge V. Springel from
the Max-Plank Institute of Astrophysics for the simulation
code Gadget2, publicly available on [18]. In addition, the
authors would like to thank J. Biddiscombe and J. Favre
from the Swiss National Supercomputing Centre (CSCS)
for their code on sprite point.

References

[1] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Clas-
sification of Parallel Rendering. IEEE Comput. Graph. Appl.,
14(4):23–32, 1994.

[2] K. Moreland, B. Wylie, and C. Pavlakos. Sort-Last Parallel
Rendering for Viewing Extremely Large Data Sets on Tile Dis-
plays. In PVG ’01: Proceedings of the IEEE 2001 Symposium
on Parallel and Large-Data Visualization and Graphics, pages
85–92. IEEE Press, 2001.

[3] J. A. Kohl and P. M. Papadopoulos. CUMULVS: Providing
fault-tolerance, Visualization, and Steering of Parallel Applica-

tions. Int. J. of Supercomputer Applications and High Perfor-
mance Computing, pages 224–235, 1997.

[4] S. Hackstadt, C. Harrop, and A. Malony. A Framework for
Interacting with Distributed Programs and Data. In HPDC,
pages 206–214, 1998.

[5] J. Wood, K. Brodlie, and J. Walton. gViz – Visualization and
Steering for the Grid. In Proceedings of e-Science All Hands
Meeting, Nottingham, September 2003.

[6] J. Davison de St. Germain, S. G. Parker, J. McCorquodale, and
C. R. Johnson. Uintah: A Massively Parallel Problem Solving
Environment. In Ninth IEEE International Symposium on High
Performance Distributed Computing, pages 33–42, 2000.

[7] EPSN. A Computational Steering Environment for Distributed
Numerical Simulations. http://www.labri.fr/epsn.

[8] Aurélien Esnard, Michael Dussère, and Olivier Coulaud. A time-
coherent model for the steering of parallel simulations. In Euro-
Par 2004 Parallel Processing, number 3149 in Lecture Notes in
Computer Science, pages 90–97. Springer Verlag, 2004.

[9] RedGRID. Parallel Data Redistribution Library.
http://www.labri.fr/epsn/redgrid.html.

[10] OMG: Object Management Group. Common Object Request
Broker Architecture Specification. http://www.corba.org.

[11] Olivier Coulaud, Michael Dussère, and Aurélien Esnard. To-
ward a computational steering environment based on corba. In
G.R. Joubert, W.E. Nagel, F.J. Peters, and W.V. Walter, ed-
itors, Parallel Computing: Software Technology, Algorithms,
Architectures & Applications, volume 13 of Advances in Par-
allel Computing, pages 151–158. Elsevier, 2004.

[12] G. Karypis and V. Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. Technical Report 95-
035, University of Minnesota, june 1995.

[13] R.B. Haber and D.A. McNabb. Visualization Idioms: A Concep-
tual Model for Scientific Visualization Systems. IEEE Computer
Society Press, pages 74–93, 1990.

[14] OmniORB. http://omniorb.sourceforge.net.
[15] W. Schroeder, K. Martin, and B. Lorensen. The Visualisation

ToolKit. Kitware, 2002.
[16] K. Moreland and D. Thompson. From cluster to wall with VTK.

IEEE symposium on Parallel and Large-Data Visualization and
Graphics, pages 25–31, 2003.

[17] Volker Springel. The cosmological simulation code gadget-2.
Monthly Notices of the Royal Astronomical Society, 364(4):Page
1105–1134, Dev 2005.

[18] Gadget-2: A Code for Cosmological Simulations of Structure
Formation. http://www.mpa-garching.mpg.de/gadget.

[19] ParaView (Parallel Visualization Application).
http://www.paraview.org.

Esnard, Richart and Coulaud: A STEERING ENVIRONMENT FOR ONLINE PARALLEL VISUALIZATION 9

int main(int argc, char **argv)

{
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &ThisTask);

MPI_Comm_size(MPI_COMM_WORLD, &NTask);
load_configuration_file_and_init();

EPSN_init("gadget2","gadget2.xml",ThisTask,NTask,argc,argv);
RedGRID_Particles * particles = RedGRID_Particles_create("particles",ThisTask,NTask,nb_dims);

seriePos = RedGRID_Particles_addSerie(particles,"position",RedGRID_double,nb_dims);
serieVel = RedGRID_Particles_addSerie(particles,"velocity",RedGRID_double,nb_dims);
RedGRID_Particles_setCoordinateSerie(particles,seriePos);

RedGRID_Particles_setNumberOfParticles(particles,NumParticles,MaxParticles);
RedGRID_Particles_wrap(particles,seriePos,baseAddress,strideStruct,offsetPos);

RedGRID_Particles_wrap(particles,serieVel,baseAddress,strideStruct,offsetVel);
EPSN_addData(particles);
EPSN_ready(); // ready for remote client connections

EPSN_beginHTM();

init();
EPSN_beginLoop("main");
do {

EPSN_beginTask("move-particles");
move_particles();
EPSN_endTask("move-particles");

every_timestep_stuff();
EPSN_beginTask("domain-decomposition");

domain_decomposition();
// update the number of particles in case of migration
RedGRID_Particles_setNumberOfParticles(particles,NumParticles,MaxParticles);

EPSN_updateData("particles");
EPSN_endTask("domain-decomposition");
EPSN_beginTask("compute-acceleration");

compute_accelerations();
EPSN_endTask("compute-acceleration");

advance_and_find_timesteps();
} while(Time <= TimeMax);
EPSN_endLoop("main");

save();
EPSN_endHTM();

EPSN_finalize();
MPI_Finalize();

}

Fig. 12. Gadget2 instrumented pseudo-code for EPSN (main.c). The black code represents the Gadget2 main
steps; the red code describes the particle data structure used in Gadget2 thanks to the RedGRID API; the blue
code is the one required by EPSN to initialize the platform and to delimit the tasks of the HTM.

10 THE 10-TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS.

<?xml version="1.0" encoding="UTF-8" ?>

<simulation id="gadget2">

<data>
<particles id="particles">

<serie id="position"/>

<serie id="velocity"/>
</particles>

</data>

<htm>

<loop id="main">
<data-context ref="particles" context="protected"/>
<task id="move-particles">

<data-context ref="particles" context="modified"/>
</task>

<task id="domain-decomposition">
<data-context ref="particles" context="protected"/>

</task>

<task id="compute-acceleration">
<data-context ref="particles" context="readable"/>

</task>

</loop>
</htm>

</simulation>

Fig. 13. Gadget2 short XML description for EPSN (gadget2.xml).

