
HAL Id: hal-00301468
https://hal.science/hal-00301468

Submitted on 30 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Computational Steering Environment for
Legacy Coupled Simulations

Nicolas Richart, Aurélien Esnard, Olivier Coulaud

To cite this version:
Nicolas Richart, Aurélien Esnard, Olivier Coulaud. Toward a Computational Steering Environment
for Legacy Coupled Simulations. 6th International Symposium on Parallel and Distributed Computing
(ISPDC), Jul 2007, Austria. pp.43, �10.1109/ISPDC.2007.55�. �hal-00301468�

https://hal.science/hal-00301468
https://hal.archives-ouvertes.fr

Toward a Computational Steering Environment for Legacy Coupled Simulations

Nicolas Richart Aurélien Esnard Olivier Coulaud
Projet ScAlApplix, INRIA Futurs and LaBRI UMR CNRS 5800,

351, cours de la Libération, F-33405 Talence, France
Email: {richart, esnard, coulaud} at labri.fr

Abstract

In this paper, we present an abstract model to steer
legacy coupled simulations that follow the Multiple-SPMD
paradigm or the client/server paradigm. This model extends
our previous work for the steering of classical SPMD sim-
ulations. It describes the application in terms of execution
flow, complex distributed data objects and user interactions.
Thanks to this abstraction, we define a coordination algo-
rithm that allows us to efficiently interact with the simula-
tion and to overcome the time-coherence problem raised by
coupled simulations.

1. Introduction

Thanks to the constant evolution of computational ca-
pacity, numerical simulations are becoming more and more
complex; it is not uncommon to couple different models in
different distributed codes running on heterogeneous net-
works of parallel computers (e.g. multi-physics simula-
tions). These simulations are HPC software that have a
high degree of internal complexity. For years, the scientific
community has expressed the need for new computational
steering tools in order to better grasp the complex internal
structure of large-scale scientific applications.

A computational steering environment is defined in [15]
as a communication infrastructure, coupling a simulation
with a remote user interface, called steering system or steer-
ing client. This interface usually provides on-line visualiza-
tion and user interaction. Over the last decades, many stee-
ring environments have been developed; they distinguish
themselves by some critical features such as the simulation
representation or the interaction mechanism used to ensure
the simulation coherence. Magellan [20] represents a sim-
ulation as a simple collection of instrumentation points. To
notify the time evolution, a timestamp is explicitly speci-
fied by the end-user on each instrumentation point but noth-
ing ensures the interaction coherence over the parallel pro-
cesses. CUMULVS [12] considers parallel simulations as

single-loop programs with a unique instrumentation point.
Thanks to this simplification, it implements synchronization
mechanisms relying on the internal loop counter and pro-
vides time-coherent accesses to distributed data. VASE [9]
proposes a high-level model for the representation of sim-
ulations based on a control-flow graph (CFG) and provides
a data-flow coupling model. However, this environment is
only intended for sequential simulations. All these environ-
ments are representative of the state-of-the-art: however ef-
forts have to be done to steer more complex simulations that
are not limited to the classic SPMD execution paradigm.

We have developed in previous works, the EPSN frame-
work [4], that introduces an abstract representation of par-
allel SPMD [6] simulations in order to capture its execution
flow and to allow safe steering interactions. With few anno-
tations in the source code with the EPSN API, we can steer
interactively a legacy parallel simulation. A steering client
can connect to the simulation, perform different kinds of
steering requests, and finally disconnect. We distinguish
three types: the control requests which allow to control
the execution flow (play, step, pause) of the simulation, the
data requests which allow to access data values (get, put),
and the user-defined interactions which are functions of the
simulation that can be remotely invoked. In our case the
steering is driven by the client requests. In this way, if the
simulation doesn’t receive any request, it is not disturbed
by the steering framework. The execution of the interac-
tion request is defined by an abstract representation of the
simulation. Up to now this abstraction can only represent
parallel SPMD simulations. But modern scientific simula-
tions to model complex phenomena like earth system mod-
eling, biology, solid-fluid interactions are typically made up
of several parallel codes interconnected together. So a natu-
ral evolution for our steering environment is to manage this
type of simulations.

Such coupled simulations are more and more common
because the complexity of the multiphysics or multiscale
models can not anymore be handled by simple and mono-
lithic parallel codes. Those simulations can be divided in
two main classes. One approach couples different SPMD

codes, leading to Multiple-SPMD code (M-SPMD). Such
codes are typically characterised by an explicit time loop,
that describes the evolution of the whole simulation. A sec-
ond approach considers codes built upon the client/server
paradigm where the servers or/and the client could be par-
allel, as in the case of GRID RPC [18] applications. In this
approach, only the client has an actual time loop, and it per-
forms remote procedure calls on different servers.

In domains like meteorology or solid-fluid interactions,
we found lots of M-SPMD codes that often rely on ded-
icated high-level coupling frameworks like ESMF [8],
Prism [19], or more generic coupling frameworks like
PCI [3], or MCT [10]. There are also simulations coupled
by ad-hoc solutions based on communication frameworks,
which handle data redistribution like MpCCI [11], Inter-
Comm [13], or RedGRID [17]. These coupled simulations
can also be based on Grid infrastructure: in this case, they
are built over framework such as Cactus [1], CCA [14], or
RealityGrid [16]. These frameworks offer some light steer-
ing functionalities such as the control of execution flow or
simple monitoring capabilities. However, most of these so-
lutions does not propose a sufficient abstraction to allow the
steering of the simulation.

In this paper, we extend the model we proposed in [6],
based on a hierarchical task representation. This new model
allows to capture the complexity of coupled simulations,
hence giving us the means to safely steer them. We first in-
troduce the notion used in our previous model to represent
parallel SPMD simulations. Then we propose an extension
to this model for M-SPMD and client/server paradigms. Fi-
nally, we valid the capability of the proposed model to steer
M-SPMD simulations on a multiscale application, with a
prototype based on the current EPSN implementation.

2. Model for the Steering of Parallel SPMD
Simulations

In order to efficiently steer parallel simulations, we have
introduced in [6] a high-level description model, that pro-
vides a uniform view of a parallel simulation in terms of
execution flow, data and user actions. This model requires
to annotate the source code with the EPSN API [7] (instru-
mentation phase). It is divided in three parts: a descrip-
tion of the data (distribution, storage) that the user want to
access, a description of the structure of the simulation to
capture the execution flow, and a description of the possi-
ble steering interactions (control, data access, user-defined
actions). All the high-level description information are pro-
vided by a XML file associated with a simulation. It allows
us to build a light API for the source-code annotation. In
the following subsection we will present in more detail the
different parts of the model.

2.1. Abstract Model

Data description. Not all the data in a simulation are rel-
evant from the steering point of view. So, during the in-
strumentation phase, one must select the data that the client
want to interact with. This can be quite complex because,
in order to access to the data in parallel codes, we have
to describe how the data are spread between all processes
(distribution) and how they are mapped in the memory of
each process (storage). To do that, we have introduced a
generic data model [17] that allows to describe complex ob-
jects such as structured grids, unstructured meshes, particle
sets and scalar parameters. In a complex object, one must
specify several variables, called series, like pressure, veloc-
ity, etc. The different data series within a complex object
share some common information, such as distribution or ac-
cess permissions.

Simulation description model. The structure of a SPMD
simulation is described by means of a Hierarchical Task
Model (HTM) [6]. The HTM is a task tree that describes
only the tasks that we want to steer in the simulation. We
distinguish three kinds of task (Fig. 1(a-c)): basic task for
logical block of code, conditional task for conditional struc-
ture (if-then-else, switch-case) and loop task for iterative
structure (for, while). A task is simply delimited by two
instrumentation points with the same ID in the code: the
begin and the end point. These points are precisely located
in the source code by calls to the EPSN API. In addition, we
consider a degenerated task, called the point task (Fig. 1d)
where the begin point and the end point are merged in a sin-
gle point. All tasks (except point task) can contain other
sub-tasks and the entire simulation is represented by a sim-
ple task that contains all the hierarchy as shown in figure 2.

0

1

(a) basic tasks

i++

(b) loop tasks

0 1 2

(c) conditional tasks (d) point tasks

Figure 1. Different kinds of task (blue zones)
and instrumentation points (black dots).

User-defined interactions. In addition to the control and
the data request, we consider another kind of interactions
called user-defined interaction. It associates a callback
function in the simulation code with an interaction ID in
the XML file. Thus, this function can be called by a remote
steering client.

1.i.0.e

i++

j++

e

0

1

1.i

1.i.1

1.i.2

2

1.i.1.j

1.i.0.1

1.i.0.0

1.i.0

Figure 2. Example of a basic HTM with the
corresponding dates.

2.2. Coherence Solution

The steering of parallel simulations come up against a
serious coherence problem. Indeed, data distributed over
processes must be accessed carefully to ensure they are pre-
sented to the visualization system in a meaningful way. In
other words, the problem is to guarantee, that a steering re-
quest is executed at the same time by all the processes. So,
in addition to the HTM, we have introduced a date system,
and notion of task context that precises on which task an in-
teraction is allowed. Finally, we present an algorithm that
determines when a request will be treated on each process.

Date system. It is based on the notion of point date de-
fined as a n-tuples (d0, d1, ..., dn−1) in N

n−1×{b, e}, noted
d = d0·d1· . . . ·dn−1. The index i for i < n − 1, refers to
the depth in the task hierarchy and the value di is the num-
ber of the task at this depth as illustrated in figure 2. The
last element corresponds to a point information: its value
is b for a begin point and e for an end point. For example,
the date 1.i.0.e in figure 2 means that we are at the end of
the first task (depth 3) at the (i + 1)th iteration (depth 2) of
the second task (depth 1). In [5], we have defined an strict
order on these dates which reflects the order of apparition
of instrumentation points during the execution.

Task context. In addition to the date system, we enrich
the model with a context associated to each task. This con-
text consists of information about possible interaction on
this task. For user-defined interactions, we describe if the
interaction is allowed or not during the task. For data, this
context specifies if we can read or write the data in the task
(readable, writable), if a new release of the data is produced
(modified) or if the data is not accessible (protected).

Coordination algorithm . Thanks to the date system that
allows to follow the execution flow, one can define a coor-
dination algorithm to solve the coherence problem. Our al-
gorithm schedules the treatment of requests and thus avoids
strong synchronization between processes. The algorithm
starts when each process locally receives a request. It is
then divided in four main phases:

1. On each process, we freeze all instrumentation points
which are now blocking. This is called the freeze or-
der. Therefore, the simulation cannot run over the next
task and stays at the same date.

2. It consists in determining the current date on each pro-
cess. All current local dates which are not necessarily
the same, are centralized on a particular node (called
proxy).

3. The proxy determines the scheduling date that is de-
fined as the greatest current date relatively to the order
on point dates.

4. This date is then broadcasted to all nodes, and once it
is received by the nodes, they release the freeze order.

Finally, the request will be executed in parallel by all
processes at the first date after the scheduling date that sat-
isfies a local condition that depends both on the request kind
and the task contexts. The fact that the simulation follows
a SPMD execution ensures that all processes will do their
treatments at the same date.

2.3. Limitation of this Model

This model has been designed to represent SPMD simu-
lations. We can also represent M-SPMD simulations if all
SPMD codes have an identical HTM, but we reach the limit
of the model when we want to represent more complicated
distributed simulations. Indeed we cannot ensure the time
coherence between the codes because they do not have a
common representation, so they do not share the same date
system. Furthermore, our model cannot manage data that
are distributed over several parallel codes. To overcome
those limitations, we will describe in the next section an
extension to our model.

Y = g(Z)

X = f(Z)

1.j.0

Server A

1.i.0

Concurent : Z= X+Y

Server BMain Loop

Client

Task : X+Y
Task : Z=X+Y

Task : X=f(Z)
Task : Y=g(Z)

Figure 3. View of a distributed HTM with both remote and concurrent tasks.

3. New Model for the Steering of Parallel-
Distributed Simulations

To steer parallel-distributed simulations such as M-
SPMD and client-server simulations, we decide to extend
our previous model in two ways. First, we enrich the de-
scription of the simulation structure to take into account
more complex tasks; second we extend the description of
data objects when they are defined across several codes. As
a consequence, one must also adapt the coordination algo-
rithm to provide the required coherence for the steering re-
quests in the parallel-distributed case.

3.1. Simulation Description Model

The extended model is based on the HTM previously de-
scribed. In order to capture the complexity of M-SPMD
and client/server simulations, we introduce two new kinds
of task: the remote task and the concurrent task. A remote
task is a task that is not defined in the same code as the main
HTM but in another HTM located on a remote code. This
is illustrated in the figure 3 by the tasks named X = f(Z),
Y = g(Z), and Z = X + Y which are called by the client,
but defined in partial HTMs for servers A and B. A con-
current task is a meta-task that is created to specify that
the sub-tasks inside can be executed simultaneously on dif-
ferent codes. For instance, the tasks Z = X + Y of the
servers A and B in figure 3 are executed at the same time by
the client. The XML file corresponding to this example is
given in figures 4 and 5. All the dark blue keywords are the
ones added in the new model.

In the case of a client/server simulation, our approach
fits well because it is based on a client that realizes remote
calls to one or several server codes. We describe the client
with a classical HTM in which we add remote tasks that are
defined on the servers. In the server codes, we define a set

< s i m u l a t i o n id="client">
<htm>
< tas k id="init" />
< l oop id="main-loop">
< tas k id="body">
< tas k id="X=f(Z)" remote="yes" l o c a t i o n ="ServerA"/>
< tas k id="Y=g(Z)" remote="yes" l o c a t i o n ="ServerB"/>

<concurrent - t a s k s>
< tas k id="Z=X+Y" remote="yes" l o c a t i o n ="ServerA"/>
< tas k id="Z=X+Y" remote="yes" l o c a t i o n ="ServerB"/>

</concurrent - t a s k s>
</ tas k>

</ l oop>
< tas k id="finalize" />

</htm>
</ s i m u l a t i o n>

Figure 4. XML describing the main HTM of
the figure 3.

< s i m u l a t i o n id="ServerA">
< f u n c t i o n id="X=f(Z)">
< s wi tc h id="switch1">
< tas k id="switch-task1" />
< tas k id="switch-task2" />

</ s wi tc h>
< l oop id="loop1">
< tas k id="body" />

</ l oop>
</ f u n c t i o n>

< f u n c t i o n id="Z=X+Y">
< tas k id="task1" />
< tas k id="task2" />

</ f u n c t i o n>
</ s i m u l a t i o n>

Figure 5. XML describing the Server A
shown in figure 3.

of tasks in a partial HTM, that could be remotely called by
the client code (cf. function keywords in the XML).

In a M-SPMD simulation the correspondence is not so
obvious because all codes have an explicit loop and then
we have potentially as many HTMs as codes. In this case,
our approach consists in building a virtual HTM that rep-
resents the main loop and the “common” tasks shared be-
tween those codes. The virtual HTM acts as the main HTM
except there is no code associated with. The concurrent
tasks are defined as “common” tasks that contain sub-tasks
which grasp the fine-grain differences between codes. On
the codes, we have only to describe the sub-tasks in a partial
HTM as for a server. The aim of the virtual HTM construc-
tion is to provide a common representation for client/server
and M-SPMD simulations.

3.2. Data Description

< s i m u l a t i o n id="client">
<data>
<meta-o b j e c t id="D_dist">
< s e r i e id="s1" d a t a i d="D_a" s e r i e i d ="s2"

f u n c t i o n="X=f(Z)" t a s k i d="switch1"
l o c a t i o n ="ServerA" />

< s e r i e id="s2" d a t a i d="D_b" s e r i e i d ="s1"
f u n c t i o n="Y=g(Z)" t a s k i d="finalize"
l o c a t i o n ="ServerB" />

</meta-o b j e c t>
</data>

</ s i m u l a t i o n>

Figure 6. Description of the meta-object.

< s i m u l a t i o n id="ServerA">
<data>
<mesh id="D_a">
< s e r i e id="s1" />
< s e r i e id="s2" />

</mesh>
</data>

</ s i m u l a t i o n>

Figure 7. Description of data of Server A.

When we visualize online results of a distributed simula-
tion, we may want to see data that are for example, on two
codes: so we need to have a precise description of data to
get a coherent version from these two coupled codes. In-
deed when we want to access such a data object, we have to
know in which code it is mapped, and when it is coherent.
To do that, we define a meta-object that rely on the existent
data description. This meta-object is composed by several
series from different objects that may be on different codes.
For all series, one must also give the task in which it is co-
herent with other variables of the meta-object. For example
in the simulation described in figure 3, we consider a data

object DA with two variables DA(s1) and DA(s2) in the
server A, and a data object DB with one variable DB(s1)
in the server B. We define Ddist as the meta-object com-
posed by DA(s2) in the first sub-task of the task X = f(Z)
and DB(s1) in the last sub-task of Y = g(Z). An illustra-
tion of this example is given by the XML in figure 6 and 7.
With such information, we know precisely when we can ac-
cess the data in order to have a global coherence for the
meta-object.

3.3. Coordination Algorithm

In order to define the new coordination algorithm, one
must first extend the date system to take into account the
extra complexity introduced by the new classes of task. The
global current date of a task, is defined as the current date
in the main HTM (common current date concatenated with
local current date in the partial HTM). For example, if we
are in the task X = f(Z) of the server A (Fig. 3), the date
in the main HTM is something like 1.i.0 and the date on the
server A is something like 1.j.0; hence the global current
date is 1.i.0.1.j.0. For concurrent tasks, one must consider
different dates for each task, but one cannot compare those
dates for it has no sense.

The new coordination algorithm is roughly the same as
the one described for SPMD simulations. But here we come
up against new difficulties. Firstly the dates are not as eas-
ily determined as before, particularly for remote tasks. Sec-
ondly the meta-objects cannot be easily accessed, because
they could be shared between different objects and different
codes. We distinguish two types of coordination, one for
control requests and the other for data requests that will be
presented in the next sub-sections.

As in the SPMD model, we introduce a unique access
point for each parallel code and a main proxy for the whole
coupled simulation as shown in figure 8. The main proxy
which is the unique access to the coupled simulation, has
the knowledge of the main loop (main HTM), and sub-
proxies only know the local tasks (partial HTMs).

Code BCode BCode B

Code ACode ACode ACode A

Proxy

Proxy

Steering
Client

Simulation Proxy
Main

Figure 8. A logical view of a parallel-
distributed simulation in the EPSN frame-
work.

Control Request. This algorithm is used for the pause re-
quest. In order to ensure the time coherence for this request,
we limit the pause to the only points of the main HTM. Our
algorithm is divided in three steps:

1. The steering client sends the control request to the
main proxy. Then the proxy broadcasts a freeze order
to all the codes through their sub-proxies.

2. The main proxy determines the current common date
restricted to the main HTM. In the M-SPMD case, this
is the date of the next point reached on the main HTM.
In the client/server case, we determine this date with
the SPMD algorithm on the client code that could be
parallel (Sec. 2.2).

3. The point corresponding to the scheduling date is set
to be blocking.

The play request simply consists to release the blocking
points, so it does not require any coordination. In the case
of a non-concurrent remote task, one can improve our algo-
rithm by finding a coherent pause point in this task.

Data Request. In this case, it is more complicated as for
control request, because we must consider the information
about coherence given by the meta-objects. We have di-
vided our algorithm in six steps as follows:

1. The steering client sends the data request to the main
proxy. Then the proxy broadcasts a freeze order to all
the codes through their sub-proxies.

2. The main proxy determines the current common date
restricted to the main HTM as in the previous algo-
rithm.

3. The main proxy sends the data request and the current
common date to all processes that have a piece of the
requested data, through their sub-proxies.

4. When receiving the requests, the processes determine
their local current date with the previous SPMD algo-
rithm.

5. The sub-proxies concatenate the current common date
with their current local date to determine the schedul-
ing date that is local to all codes.

6. The request is executed after the scheduling date on
each code, at the first date that fulfills the local condi-
tion enriched by the meta-object.

These algorithms have been integrated in the EPSN frame-
work as a preliminary prototype in order to experiment the
different aspects of the model.

4. Example

In order to validate our approach, we will see how the
M-SPMD code called LibMultiScale [2] is steered by our
model. LibMultiScale simulates crack propagation by a
multi-scale approach coupling an atomistic model and a
continuum model. The material is described at the atom-
istic level by a crystal of atoms and its evolution is given
by molecular dynamics, while at the continuum level the
material is described by the elastodynamics model which is
discretized by the finite element method. The two codes,
molecular dynamics and elastodynamics, are parallel and
follow the SPMD execution model.

Figure 9. Online visualisation of a LibMulti-
Scale 2D case study.

On the domain where the two different scales are cou-
pled, a set of constraints is applied to ensure that the dis-
placements of the two models are the same. Then, a set
of algebraic differential equations is obtained, which are
solved by the SHAKE algorithm on each code.

A step of the time integration is decomposed in two main
tasks as follows:

1. Leapfrog

• V n+ 1
2 = V n + ∆t

2 Fn

• Xn+1 = Xn + ∆tV n+ 1
2

• evaluate the force Fn+1 = F (Xn+1)

• V ∗ = V n+ 1
2 + ∆t

2 Fn+1

2. Constraint

• solve the constraint problems
G(V n+1 + λ ∂G

∂X) = 0

• update the velocity

Velocity correction Velocity correction

Position (n+1)

Forces (n+1)

Velocity (n+1)

Velocity (n+1/2)

Position (n+1)

Forces (n+1)

Velocity (n+1)

Velocity (n+1/2)

Access
For V For X

Access Access
For V For X

Access

Velocity
access

Velocity
access

Modified

Readable

Protected

Main Loop

LibMultiscale

Initalization

Finalization

solve

Finite elements

Constraint system Constraint system
solve

Task : Constraint Task : Constraint

Task : LeapfrogTask : Leapfrog

Atoms

Leapfrog

Constraint

Figure 10. Abstract view of LibMultiscale in our extended model.

where Xn (resp. V n) is the atomistic or FE displacements
(resp. its velocity) at the time tn, Fn the force applied on
the system and G the constraint.

To capture cleverly the flow of this algorithm one con-
sider two main tasks: the Leapfrog and the constraint task.
The first task is decomposed in four sub-tasks to follow the
different steps of this algorithm. The second task is then
decomposed in two sub-tasks. As shown in figure 10, we
introduce two concurrent tasks corresponding to the main
tasks in the time loop. In that particular example, the high-
level HTM description is the same for each code.

The data that are important to extract are the displace-
ment and the velocity. In the atoms code, we define the
complex object Atoms (see figure 11) in which there are the
initial position X0 (at time t = 0), the current position X ,
and the velocity V . The distribution of the atoms on the pro-
cesses is based on the position series X . The displacement
is defined by X − X0

< s i m u l a t i o n id="Atoms">
<data>
<points id="Atoms">
< s e r i e id="X0" />
< s e r i e id="X" />
< s e r i e id="V" />

</points>
</data>

</ s i m u l a t i o n>

Figure 11. Description of the Atoms complex
object.

In the finite element code, we define the complex object
FE (see figure 12). This object is distributed over the pro-
cesses by a mesh partitioning. We consider the following
series in the object: vertex position, velocity (located on the
vertex) and stress (located on the mesh element).

For online visualization (Fig. 9), we are interested to see

< s i m u l a t i o n id="FiniteElements">
<data>
<mesh id="FE">
< s e r i e id="vertex" />
< s e r i e id="connectivity" />
< s e r i e id="displacement" />
< s e r i e id="velocity" />
< s e r i e id="stress" />

</mesh>
</data>

</ s i m u l a t i o n>

Figure 12. Description of the FE complex ob-
ject.

the displacement in all the material, this means that we want
to extract from the simulation the series of position X0 and
X in the object Atoms located on code Atoms and the se-
ries displacement in the FE object located on code Finite
Elements. To do that we construct the meta-object shown
in figure 13. For the velocity meta-object, we have a sim-
ilar description as for the displacement, except for the task
context as shown in figure 10.

In meta-objects, one must define for each data series a
task where the data will be globally coherent with other se-
ries. The choice of this task depends on the user needs. For
instance, an end-user only wants to visualize the final result
(the corrected velocities), so he will access the velocity se-
ries at task Velocity access. In the case of a developer who
needs to evaluate the impact of the correction, he wants to
see the velocities before and after the correction step.

5. Conclusion

In this paper, we propose a new steering model that ad-
dresses modern scientific simulations such as the multiscale
simulations presented in the final example. This model

< s i m u l a t i o n id="LibMultiScale">
<data>
<meta-o b j e c t id="displacement">
< s e r i e id="atoms-displacement" d a t a i d="Atoms"

s e r i e i d ="X"
f u n c t i o n="Leapfrog" t a s k i d="Forces(n+1)"
l o c a t i o n ="Atoms" />

< s e r i e id="fe-displacement" d a t a i d="FE"
s e r i e i d ="displacement"
f u n c t i o n="Leapfrog" t a s k i d="Forces(n+1)"
l o c a t i o n ="FiniteElement" />

</meta-o b j e c t>
</data>

</ s i m u l a t i o n>

Figure 13. Description of the meta-object dis-
placements.

introduces a common abstraction for both M-SPMD and
client/server applications. Thanks to this abstraction, we
define a new coordination algorithm that allows to perform
time-coherent interactions over the whole coupled simula-
tion. Our prototype is currently available at INRIA Gforge
web site as a private project for internal members and will
be soon publicly accessible.

Acknowledgments

This works has been supported by the ANR program
(grant number ANR-05-MMSA-0008-03) and by the Con-
seil Regional d’Aquitaine (PhD. grant). The authors also
would like to thank G. Anciaux for the LibMultiScale code
used in this article.

References

[1] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu,
E. Seidel, and B. Toonen. Supporting Efficient Execu-
tion in Heterogeneous Distributed Computing Environments
with Cactus and Globus. In Proceedings of Supercomputing
2001, Denver, USA, 2001.

[2] G. Anciaux, O. Coulaud, and J. Roman. High Performance
Multiscale Simulation for Crack Propagation. In Procceed-
ings of the 8th Workshop on High Performance Scientific
and Engineering Computing, Columbus, Ohio, USA, Au-
gust 2006.

[3] T. Bulatewicz, J. Cuny, and M. Warman. The potential cou-
pling interface: metadata for model coupling. In Proceed-
ings of the 2004 Winter Simulation Conference, volume 1,
pages 175–182, Washington D.C., USA, 2004.

[4] EPSN. A Computational Steering Environment for Dis-
tributed Numerical Simulations.

[5] A. Esnard. Analyse, conception et réalisation d’un environ-
nement pour le pilotage et la visualisation en ligne de sim-
ulations numériques parallèles. Informatique, Université de
Bordeaux 1, décembre 2005.

[6] A. Esnard, M. Dussere, and O. Coulaud. A Time-Coherent
Model for the Steering of Parallel Simulations. In Euro-Par
2004 Parallel Processing, pages 90–97, Pisa, Italy, 2004.
Springer-Verlag.

[7] A. Esnard, N. Richart, and O. Coulaud. A Steering Envi-
ronment for Online Parallel Visualization of Legacy Paral-
lel Simulations. In Proceedings of the 10th International
Symposium on Distributed Simulation and Real-Time Appli-
cations (DS-RT 2006), pages 7–14, Torremolinos, Malaga,
Spain, October 2006. IEEE Press.

[8] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. da Silva.
Architecture of the Earth System Modeling Framework.
Computing in Science and Engineering, 6(1), 2004.

[9] D. Jablonowski, J. Bruner, B. Bliss, and R. Haber. VASE:
The Visualization and Application Steering Environment. In
Proceedings of Supercomputing’93, pages 560–569, 1993.

[10] E. O. Jay Larson, Robert Jacob. The Model Coupling
Toolkit: A New Fortran90 Toolkit for Building Multiphysics
Parallel Coupled Models. International Journal of High Per-
formance Computing Applications, 19(3):277–292, 2005.

[11] W. Joppich and M. Kürschner. Mpcci-a tool for the simu-
lation of coupled applications. Concurr. Comput. : Pract.
Exper., 18(2):183–192, 2006.

[12] J. Kohl, P. Papadopoulos, and G. Geist. CUMULVS: Col-
laborative Infrastructure for Developing Distributed Simula-
tions. In Proceedings of the 8th SIAM Conference on Paral-
lel Processing for Scientific Computing, Minneapolis, Mars
1997.

[13] J.-Y. Lee and A. Sussman. Efficient Communication Be-
tween Parallel Programs with InterComm. Technical Re-
port CS-TR-4557 and UMIACS-TR-2004-0, University of
Maryland, Department of Computer Science and UMIACS,
January 2004.

[14] S. Lefantzi, J. Ray, and H. N. Najm. Using the Common
Component Architecture to Design High Performance Sci-
entific Simulation Codes. In IPDPS ’03: Proceedings of the
17th International Symposium on Parallel and Distributed
Processing. IEEE Computer Society, 2003.

[15] J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey
of computational steering environments. Future Generation
Computer Systems, 15(1):119–129, 1999.

[16] RealityGrid. Moving the bottleneck out of the hardware and
back into the human mind.

[17] RedGRID. Parallel Data Redistribution Library.
http://www.labri.fr/ esnard/Research/RedGRID.

[18] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova. GridRPC: A Remote Procedure Call API
for Grid Computing, june 2002.

[19] S. Valcke, D. Declat, R. Redler, H. Ritzdorf, T. Schoene-
meyer, and R. Vogelsang. The PRISM Coupling and I/O
System. In VECPAR’04, Proceedings of the 6th Interna-
tional Meeting, volume VOL. 1 : High performance com-
puting for computational science, Universidad Politecnica
de Valencia, Valencia, Spain., 2004.

[20] J. Vetter. Experiences using computational steering on ex-
isting scientific applications. In Ninth SIAM Conf. Parallel
Processing, 1999.

