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Abstract

The Match method quantifies chemical ozone loss in the polar stratosphere. The basic
idea consists in calculating the forward trajectory of an air parcel that has been probed
by an ozone measurement (e.g., by an ozone sonde or satellite) and finding a sec-
ond ozone measurement close to this trajectory. Such an event is called a “match”. A5

rate of chemical ozone destruction can be obtained by a statistical analysis of several
tens of such match events. Information on the uncertainty of the calculated rate can
be inferred from the scatter of the ozone mixing ratio difference (second measurement
minus first measurement) associated with individual matches. A standard analysis
would assume that the errors of these differences are statistically independent. How-10

ever, this assumption may be violated because different matches can share a common
ozone measurement, so that the errors associated with these match events become
statistically dependent. Taking this effect into account, we present an analysis of the
uncertainty of the final Match result. It has been applied to Match data from the Arctic
winters 1995, 1996, 2000, and 2003. For these ozone-sonde Match studies the effect15

of the error correlation on the uncertainty estimates is rather small: compared to a
standard error analysis, the uncertainty estimates increase by 15% on average. How-
ever, the effect is more pronounced for typical satellite Match analyses: for an Antarctic
satellite Match study (2003), the uncertainty estimates increase by 60% on average.

1. Introduction20

The Match method was developed to quantify chemical ozone loss in the Arctic strato-
sphere (von der Gathen et al., 1995; Rex et al., 1998, 1999). The basic idea is the
following: After an air parcel has been probed by an ozone sonde, its forward trajectory
is calculated. If a second ozone sonde comes close to this trajectory, i.e. its distance
from the trajectory is smaller than a pre-defined threshold, then the measurements of25

the two ozone sondes form a “match”. This can happen by chance or may be attained
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by launching the second sonde intentionally so that it approaches the trajectory at the
appropriate time. In the final analysis, backward trajectories may also be applied to de-
termine matches. It is possible that an ozone measurement forms matches with more
than one other ozone measurement.

A variant of the original Match method uses satellite data instead of ozone sonde5

measurements (Sasano et al., 2000; Terao et al., 2002; and Sects. 8.4 and 8.5 of the
present paper). Although all formulae derived in the present paper are also applicable
to satellite or other data, we will prefer the terminology of the original Match method
(e.g., “first sonde” and “second sonde” of a match).

Under ideal circumstances (no measurement errors, no trajectory error, zero dis-10

tance of the second sonde from the trajectory), the difference of the ozone mixing ratios
measured by the first and second sonde would be equal to the change of the ozone
mixing ratio along the trajectory. Under the assumption that mixing can be neglected,
this is equal to the chemical ozone loss in the corresponding air parcel.

As the above-listed errors are non-zero in reality, it is not possible to draw conclu-15

sions from a single pair of ozone observations. However, if several tens of such pairs
are available, then an ozone loss rate can be obtained by statistical methods. For this,
the differences between the ozone mixing ratio of the first and second measurement
of several pairs of “matching” sondes are plotted versus a variable that is expected to
correlate with ozone destruction, usually the time that the corresponding trajectories20

spent in sunlight. Then a linear fit, which is forced through the origin (0,0) of the co-
ordinate system, is performed. The slope of that line yields an estimate of the mean
ozone loss rate, e.g., ozone loss per hour of sunlight. An example is given in Fig. 1.

A standard assumption of a linear regression analysis is the statistical independence
of the errors of the quantities entering the analysis. In the case of the Match method,25

these quantities are the ozone mixing ratio differences of several matches. As one
ozone measurement may enter several matches, the errors of those matches will not
be uncorrelated. The influence of this effect on the Match analysis will be investigated
in this paper. It turns out that the linear regression still yields an unbiased estimate of
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the mean ozone loss rate (Sect. 5), but the calculation of the corresponding uncertainty
(“error bars”) is affected.

First, the effect of the use of correlated ozone data on the uncertainty of the Match
results is illustrated with the help of a highly simplified example in Sect. 2. Then the un-
certainties associated with the Match method are reviewed in Sect. 3. The formulae for5

the exact numerical treatment of this effect are derived in Sects. 4–6 and summarised
in algorithmic form in Sect. 7. Finally, results of the application of the new formulae to
data from five Match campaigns are presented in Sect. 8.

2. Illustration of the effect of correlated matches

As mentioned in Sect. 1, the ozone mixing ratio differences (second measurement10

minus first measurement) associated with individual match events, like in Fig. 1, may
be correlated, because one ozone measurement may be part of several match events.
This will influence the estimation of the precision of the slope of the regression line
(cf. Fig. 1), i.e. of the ozone loss rate. In order to illustrate this effect, we consider a
highly simplified example: We assume that only two matches occurred and that there15

was no ozone loss along the corresponding two trajectories. Furthermore, the sunlit
times associated with the two matches are assumed to be equal and will be denoted
by t0. Then the ozone loss rate determined by the linear regression is equal to the
mean of the ozone loss rates calculated for the individual match events. In order to
simplify the situation further, we assume that only one ozone measurement per match20

has a measurement error and that this error can only assume two values (+δ and −δ)
of equal probability. All other errors associated with the Match method are assumed to
vanish. Now we consider three cases:

1) The two matches are independent: If we assume that the measurements of the sec-
ond sondes of these matches are associated with an error, then the ozone mixing ratio25

differences measured in the two match events, d1 and d2, may assume the following
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values (with equal probabilities):

d1 = +δ, d2 = +δ or

d1 = +δ, d2 = −δ or

d1 = −δ, d2 = +δ or

d1 = −δ, d2 = −δ .5

The mean ozone destruction rate will be δ
t0

in the first case, 0 in the second and third

case, and − δ
t0

in the fourth case. This is illustrated in Fig. 2.

2) The two matches have a common second sonde: If we assume that this sonde
is associated with an error, then the ozone mixing ratio differences measured may
assume the following values (with equal probabilities):10

d1 = +δ, d2 = +δ or

d1 = −δ, d2 = −δ .

The mean ozone destruction rate will be δ
t0

in the first case, and − δ
t0

in the second
case. This is illustrated in Fig. 3. As the extreme values of the ozone destruction rate
( δt0 ,−

δ
t0

) of case 1 still occur, but the middle value (0) does not appear, the variance of15

the estimated ozone loss rate has increased compared to case 1.

3) The two matches have a common sonde, which is second sonde for the first match
and first sonde for the second match: If we assume that this sonde is associated with
an error, then the ozone mixing ratio differences measured may assume the following
values (with equal probabilities):20

d1 = +δ, d2 = −δ or

d1 = −δ, d2 = +δ .
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The mean ozone destruction rate will be 0 in both cases. This is illustrated in Fig. 4. In
this example the variance of the ozone loss rate is zero, i.e. clearly smaller than in the
first case.

The results of these three very simple examples are summarised in Fig. 5. They illus-
trate that pairs of matches with a common second (or first) sonde will increase the vari-5

ance of the estimated ozone loss rate, compared to the case of independent matches.
Pairs of matches with a common sonde, that is first sonde for one of the matches and
second sonde for the other one, will decrease the variance of the estimated ozone loss
rate. These simple considerations will be confirmed by the calculations in Sect. 6.

3. Uncertainties associated with the Match method10

3.1. Random errors versus systematic errors

In general, measurement errors can be classified as systematic (“accuracy”) or random
errors (“precision”).

Systematic errors are inherent in the measurement technique and can only be es-
timated by an investigation of this technique itself. Systematic errors of the Match15

method can be caused, e.g., by approximations in the code that calculates the vertical
position of trajectories. For a discussion of systematic errors see Rex et al. (1998),
Morris et al. (2004).

Random errors can be estimated by statistical methods from the scatter of mea-
surements. The errors of the Match method contain a significant random component,20

arising, e.g., from random errors of the ozone measurements and of the meteorological
data that enter the trajectory calculations. Information on the magnitude of the random
errors associated with individual match events can be obtained from the scatter of the
corresponding ozone mixing ratio differences around the regression line describing the
mean ozone loss (cf. Fig. 1). Then straight-forward statistical methods allow to esti-25
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mate the random error of the slope of the regression line itself, i.e. of the ozone loss
rate determined by the Match method.

This paper will deal exclusively with random errors, i.e. with the precision of the
Match method. The term “uncertainty” will be used in this sense.

Precision may be quantified by the standard deviation of the random variable de-5

scribing the quantity of interest. This standard deviation is usually unknown, but an
estimate may be obtained from realisations of the random variable. Error bars are a
graphical representation of the precision, in the above-cited Match publications they
represent one standard deviation. Similarly, here we will use the term “precision esti-
mate”, or alternatively “error bar”, for denoting an estimate of the standard deviation of10

the random errors of the Match results.

3.2. Sources of uncertainties associated with the Match method

The uncertainties associated with the Match method have the following sources, which
are schematically depicted in Fig. 6:

a) measurement error of the first and second ozone sonde of a match; this includes15

the error of the ozone measurement itself and the errors of the pressure and
temperature measurements, which are translated into an error of the potential
temperature level to which an ozone measurement is assigned; furthermore, the
ozone mixing ratio at the point of the sonde measurement may deviate from the
mean mixing ratio in a larger air parcel, e.g. within the match radius, due to small-20

scale ozone variations;

b) trajectory error (horizontal and vertical), which results in an ozone measurement
displaced from the required position;

c) match radius, i.e. the distance of the measurement of the second sonde from the
trajectory at the time of the measurement; this also results in an ozone measure-25

ment displaced from the required position;
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d) deviation of the ozone loss rate on an individual trajectory from the mean loss rate
in a region of interest.

The Match method attempts to limit the above-listed error sources if possible (Rex et
al., 1998, 1999):

a) Standard operation procedures for participating ozone sonde stations have been5

worked out. However, certain measurement errors are inevitable, unless improved
ozone sondes become available.

b) The Match method includes procedures to limit the effect of the trajectory error:
A cluster of trajectories around the trajectory of interest is calculated. If these
trajectories diverge significantly, it is assumed that the main trajectory is more10

error-prone. In this case it is discarded, i.e. not used for establishing a match. In
order to ensure that vertical trajectory errors are not translated into large errors of
the ozone mixing ratio, only ozone profiles with vertical gradients below a certain
threshold are used.

c) In order to limit the error of the ozone mixing ratio resulting from a non-zero match15

radius, a suitable maximum match radius is applied.

d) The variability of the ozone loss rate on different trajectories is determined by
the inhomogeneity of the chlorine activation in the region of interest and also by
differences of the solar zenith angle during solar illumination along the trajectories.
It is thus objectively present, but it may, to some degree, be influenced by the20

choice of the region of interest (whole polar vortex, vortex core etc.).

Error a) is an instrumental error, whereas errors b)–d) are related to the technique of
Match. We will denote the combined effect of b)–d) as “net match error” (“net”, because
the measurement errors a) are not included).

The exact knowledge of the sources of errors will not be of relevance for the deriva-25

tions in the subsequent sections. However, this work will be based on the fact that
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there are two categories of random errors: those associated with the ozone measure-
ments, which may be shared by several matches, and individual net errors of each
match. All of these errors will be assumed to be statistically independent from each
other. This assumption needs some discussion: Two match events having a common
first sonde also share a common trajectory segment, starting at the position of the5

first sonde measurement. That is why their trajectory errors can be correlated, which
may lead to correlated net match errors. If this effect was significant, then it would be
reflected in the covariance (of the ozone mixing ratio difference) of pairs of matches
sharing a common first sonde. It would have a larger absolute value than the corre-
sponding covariance for pairs of matches that share a common ozone sonde, but no10

common trajectory segment, i.e. for the case “second sonde of first match = first sonde
of second match”. However, for the ozone-sonde data analysed in Sect. 8, this was not
the case, so that we can conclude that the correlation between the net match errors is
negligible.

4. Statistical description of the uncertainties associated with the Match method15

As a basis for estimating the uncertainty of the final Match result, we are going to
provide a statistical description of the uncertainties discussed in Sect. 3. First we
introduce the following notations:

n = number of ozone observations,

m = number of match events,20

r̄ = mean ozone loss rate (loss per sunlit time) for the atmospheric region
probed by the matches under consideration [ppb/h] (to be estimated),

ck = ozone mixing ratio determined by the k-th sonde measurement, k = 1, ..., n,

di = difference of the ozone measurements of the i -th match, i = 1, ...,m,

ti = sunlit time of the i -th match, i = 1, ...,m,
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δk = error of the k-th ozone measurement, k = 1, ..., n,

∆i = net match error of the i -th match event, resulting from the combined ef-
fect of the trajectory error, the non-zero match radius, and the deviation
of the ozone loss rate on the i -th trajectory from the mean ozone loss
rate r̄ , i = 1, ...,m,

εi = total error associated with the i -th match, i = 1, ...,m,

k1(i ) = index of the first sonde measurement of the i -th match, i = 1, ...,m,

k2(i ) = index of the second sonde measurement of the i -th match, i = 1, ...,m.5

In order to simplify the notation, we define the following vectors:

c = (c1, ..., cn)T , d = (d1, ..., dm)T , t = (t1, ..., tm)T ,

δ = (δ1, ..., δn)T , ∆ = (∆1, ...,∆m)T , ε = (ε1, ..., εm)T ,

where T denotes the transpose of a vector (or matrix).
For storing the information which sonde measurement contributes to which match10

events, we define the following m × n matrix M (“Match matrix”), each row of which
corresponds to a match event and each column of which corresponds to an ozone
observation:

mik =


1 if the second sonde of the i -th match is sonde k,
−1 if the first sonde of the i -th match is sonde k,
0 if the i -th match does not use sonde k.

(1)

For example, the matrix describing a first match between the ozone observations num-15

ber 1 and 2 and a second match between the ozone observations number 2 and 3
is

M =
(
−1 1 0
0 −1 1

)
. (2)
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The ozone mixing ratio difference di associated with the i -th match event is the differ-
ence between two ozone mixing ratios measured by the second and by the first sonde
of this match event:

di = ck2(i ) − ck1(i ) (3)

or, in matrix form,5

d = M · c .

The ozone mixing ratio difference di deviates from the ozone loss r̄ · ti expected from
the mean loss rate by the total match error εi :

di = r̄ · ti + εi . (4)

The total match error εi may be expressed by the errors of the ozone sonde measure-10

ments and the net match error of the i -th match as follows:

εi = δk2(i ) − δk1(i ) + ∆i . (5)

Taking into account the definition of the Match matrix M, we may write Eqs. (4) and (5)
in vector form:

d = r̄ · t + ε , (6)15

ε = M · δ + ∆ . (7)

We assume that the errors δk of all individual ozone observations and the net match
errors ∆i are unbiased, i.e. do not comprise a systematic error:

E(δ) = 0, (8)

E(∆) = 0, (9)20

where E(.) denotes the expected value of a random vector, and 0 is the null vector of
appropriate size. From these two equations and Eq. (7) it follows that the total match
errors are also unbiased:

E(ε) = 0. (10)
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We assume that the errors δk of all individual ozone observations are statistically in-
dependent and their variances are identical, namely σ2

δ . Analogously, the net match
errors ∆i are assumed to be statistically independent of each other and independent
of the measurement errors δk (cf. Sect. 3.2); their variance, which is assumed to be
independent of i , is denoted by σ2

∆. Then the corresponding covariance matrices can5

be written as:

Cov(δ) = σ2
δ · I , (11)

Cov(∆) = σ2
∆ · I , (12)

where the matrices I are identity matrices of appropriate size (n × n or m ×m). From
these two equations and the statistical independence of the errors δk , k = 1, ..., n,10

and ∆i , i = 1, ...,m, we can obtain an expression for the covariance matrix of the total
match errors:

Cov(ε) = M · Cov(δ) · MT + Cov(∆) , because of Eq. (7),

= M · σ2
δ · I · MT + σ2

∆ · I , because of Eqs. (11) and (12),

= σ2
δ · M · MT + σ2

∆ · I . (13)15

The elements µi j of the matrix M · MT are:

µi j =


2 if i = j,
1 if the matches i and j (j 6= i ) have a common first or a common second sonde,
−1 if the second sonde of match i is the first sonde of match j (j 6= i ) or vice versa,
0 else.

For the example in Eq. (2) we obtain

M · MT =
(

2 − 1
−1 2

)
. (14)
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In order to show the effect of the off-diagonal elements of M · MT more clearly, we split
this matrix into two matrices containing the diagonal and the off-diagonal elements of
M · MT , respectively:

M · MT = 2 · I +Ω , (15)

where the elements ωi j of the matrix Ω are:5

ωi j =


1 if the matches i and j (j 6= i ) have a common first or a common

second sonde,
−1 if the second sonde of match i is the first sonde of match j (j 6= i )

or vice versa,
0 else. (16)

From this definition it is evident that Ω is symmetric. Replacing M · MT in Eq. (13) by
the expression in Eq. (15), we obtain:

Cov(ε) = (σ2
∆ + 2σ2

δ) · I + σ2
δ ·Ω . (17)10

After defining

σ2 = σ2
∆ + 2σ2

δ , (18)

we can write Eq. (17) in the form

Cov(ε) = σ2 · I + σ2
δ ·Ω . (19)

5. The linear regression for calculating the ozone loss rate15

In order to obtain an estimate r̂ of the mean ozone loss rate r̄ , a linear regression of
the ozone mixing ratio differences di on the corresponding sunlit times ti is performed.
The fit is forced to pass through the origin (0, 0) of the coordinate system, because in
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a time interval of zero length no ozone destruction can occur. This linear regression
analysis determines the value of r that minimizes the expression

m∑
i=1

(di − r · ti )2 = (d − r · t)T (d − r · t) . (20)

The solution r̂ of this minimization problem is

r̂ =

∑m
i=1 ti · di∑m
i=1 t

2
i

=
1

tT t
· tTd . (21)

5

Together with Eq. (6) this yields

r̂ =
1

tT t
· tT · (r̄ · t + ε)

=
1

tT t
· tT t · r̄ + 1

tT t
· tT · ε

10

= r̄ +
1

tT t
· tT · ε . (22)

This proves that the estimate r̂ is unbiased, because E(ε) = 0 according to Eq. (10).
Furthermore, it leads to the following equation for the variance of the estimate r̂ :

σ2
r̂
=
(

1

tT t
· tT
)
· Cov(ε) ·

(
1

tT t
· tT
)T

15

=
(

1

tT t
· tT
)
·
(
σ2 · I + σ2

δ ·Ω
)
·
(

1

tT t
· tT
)T

, because of Eq. (19),
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=
1

tT t
· σ2 +

t
TΩt(
tT t
)2 · σ2

δ . (23)

After defining

ω =
t
TΩt

tT t
=

∑
i j ωi j · ti · tj∑m

i=1 t
2
i

, (24)

we can rewrite Eq. (23) in the form

σ2
r̂
=

1

tT t
· (σ2 +ω · σ2

δ) . (25)
5

6. Estimation of uncertainties

The variances σ2 = σ2
∆ + 2 · σ2

δ and σ2
δ in Eq. (25) are unknown. In this section we are

going to derive estimates for them.

6.1. Information on σ2

Taking into account that the diagonal elements of Ω are zero, we see from Eq. (19) that10

the diagonal elements of Cov(ε) are σ2, i.e. together with Eq. (10) we obtain

E(ε2
i ) = σ2 , (26)

and thus, because of Eq. (4),

E
{

(di − r̄ · ti )2
}
= σ2 . (27)

This means that (di − r̄ · ti )
2 , i = 1, ...,m, are unbiased estimates of σ2. Consequently,15

the expression 1
m ·
∑m

i=1(di − r̄ · ti )
2 is also an unbiased estimate of σ2, but with a

3239
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smaller variance than the individual terms. As r̄ is unknown, we have to replace it by
the estimate r̂ . This has the consequence that the arising estimate for σ2 will no longer
be unbiased. However, it should still contain much information on σ2. That is why we
consider the following sum and calculate its expected value:

s1 =
m∑
i=1

(di − r̂ · ti )2 . (28)
5

The sum s1 is also known as “chi-square” (χ2). After recalling the definition of ω in
Eq. (24), we can write the expected value of s1 as follows (see Appendix B):

E(s1) = (m − 1) · σ2 −ω · σ2
δ . (29)

For the data analysed in Sects. 8.1–8.3, the mean values of m− 1 and ω are 41.3 and
1.1, respectively. This means that E(s1) is dominated by the term containing σ2.10

6.2. Special case: σδ = 0

If σδ = 0, i.e. if the sonde measurement errors vanish and thus the (total) match errors
are uncorrelated , then Eq. (29) reduces to

E(s1) = (m − 1) · σ2 . (30)

This means that an unbiased estimate ŝ2 of σ2 can be obtained from15

ŝ2 =
s1

m − 1
. (31)

Substituting this value for σ2 in Eq. (25), we obtain the “classical” error estimate

ŝ2
r̂
=

1

tT t
·

s1

m − 1
=

1
m − 1

·
∑m

i=1(di − r̂ · ti )
2∑m

i=1 t
2
i

. (32)
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6.3. Special case: σ∆ = 0

If σ∆ = 0, i.e. if the net match errors vanish, then σ2 = 2 · σ2
δ , and Eq. (29) reduces to

E(s1) = {2 · (m − 1) −ω} · σ2
δ . (33)

Thus an unbiased estimate ŝ2
δ of σ2

δ can be obtained from

ŝ2
δ =

s1

2 · (m − 1) −ω
. (34)

5

Substituting this value for σ2
δ in Eq. (25), we obtain the error estimate

ŝ2
r̂ =

1

tT t
· (2 +ω) ·

s1

2 · (m − 1) −ω

=
1 + ω

2

m − 1 − ω
2

·
∑m

i=1(di − r̂ · ti )
2∑m

i=1 t
2
i

, (35)

This is identical to Eq. (32) if ω = 0, e.g. if the covariance matrix Cov(ε) is diagonal
and hence the match errors are uncorrelated.10

For the derivation of Eq. (35) the effect of the correlation between the ozone data
used in different match events, due to the multiple use of the same ozone measure-
ments in several matches, has been taken into account. As the estimate ŝ2

r̂ in Eq. (35)

has been derived under the assumption σ2
∆ = 0, i.e. the ozone measurement errors

δi alone determine the total match error, it may provide an upper bound of the ef-15

fect of taking into account the above-mentioned correlation. For the data analysed
in Sects. 8.1–8.3, the error bar ŝr̂ from Eq. (35) is, on average, 24% larger than the
“classical” estimate according to Eq. (32).
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6.4. Information on σ2
δ

If we compare the off-diagonal elements in Eq. (19), we obtain for i 6= j :

E(εi · εj ) = ωi j · σ2
δ , (36)

and thus, because of Eq. (4),

E
{
(di − r̄ · ti ) · (dj − r̄ · tj )

}
= ωi j · σ2

δ . (37)5

If ωi j 6= 0, then ωi j = 1 or ωi j = −1 and consequently ω2
i j = 1, so that we obtain from

Eq. (37) by multiplication by ωi j :

E
{
ωi j · (di − r̄ · ti ) · (dj − r̄ · tj )

}
= σ2

δ . (38)

Now we proceed as in Sect. 6.1: Eq. (38) means that ωi j · (di − r̄ · ti ) · (dj − r̄ · tj ), with i , j
such that ωi j 6= 0, are unbiased estimates of σ2

δ . Consequently, the arithmetic mean of10

these expressions is also an unbiased estimate of σ2
δ , but with a smaller variance than

the individual terms. As r̄ is unknown, we have to replace it by the estimate r̂ . This has
the consequence that the arising estimate for σ2

δ will no longer be unbiased. However,
it should still contain much information on σ2

δ . That is why we consider the following
sum and calculate its expected value:15

s2 =
m∑
i=1

m∑
j=1(ωi j 6=0)

ωi j · (di − r̂ · ti ) · (dj − r̂ · tj ) . (39)

As adding the zero terms corresponding to ωi j = 0 does not alter this sum, we can
write s2 also in the form

s2 =
m∑
i=1

m∑
j=1

ωi j · (di − r̂ · ti ) · (dj − r̂ · tj ) . (40)
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After defining

ω1 =
m∑
i=1

m∑
j=1

ω2
i j , (41)

ω2 =
(Ω · t)T · (Ω · t)

tT t
, (42)

we can obtain the following expression for the expected value of s2 (see Appendix C):

E(s2) = −ω · σ2 +
(
ω1 − 2 ·ω2 +ω2

)
· σ2

δ . (43)5

As ωi j = 0 or ωi j = ±1, i , j = 1, ...,m, the value ω1 is equal to the number of non-zero
elements of the matrix Ω. For the data analysed in Sects. 8.1–8.3, the mean values of
ω1, ω2, and ω, are 179, 5.5, and 1.1, respectively. This means that E(s2) is dominated
by the term containing σ2

δ .

6.5. Estimates for σ2 and σ2
δ10

If we define the 2 × 2 matrix A by

A =
(
m − 1 −ω
−ω ω1 − 2 ·ω2 +ω2

)
, (44)

then Eqs. (29) and (43) may be written as

E
(
s1
s2

)
= A ·

(
σ2

σ2
δ

)
. (45)

Consequently,15

E
{

A−1 ·
(
s1
s2

)}
= A−1 · A ·

(
σ2

σ2
δ

)
=

(
σ2

σ2
δ

)
. (46)
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This means that ŝ2 and ŝ2
δ given by(

ŝ2

ŝ2
δ

)
= A−1 ·

(
s1
s2

)
(47)

are unbiased estimates of σ2 and σ2
δ , respectively. The inverse of the matrix A is

A−1 =
1
D

·
(
ω1 − 2 ·ω2 +ω2 ω

ω m − 1

)
(48)

with5

D = (m − 1) · (ω1 − 2 ·ω2 +ω2) −ω2 = (m − 1) · (ω1 − 2 ·ω2) + (m − 2) ·ω2 . (49)

Thus we finally obtain from Eq. (47):

ŝ2 =
1
D

·
{

(ω1 − 2 ·ω2 +ω2) · s1 +ω · s2

}
, (50)

ŝ2
δ =

1
D

· {ω · s1 + (m − 1) · s2} . (51)

6.6. Estimate for σ2
r̂10

If we substitute the estimates ŝ2 for σ2 and ŝ2
δ for σ2

δ from Eqs. (50), (51) in Eq. (25),
then we obtain the desired estimate ŝ2

r̂ of σ2
r̂ :

ŝ2
r̂
=

1

tT t
·
(
ŝ2 +ω · ŝ2

δ

)
=

1

tT t
· 1
D

·
{

(ω1 − 2 ·ω2 +ω2) · s1 +ω · s2 +ω2 · s1 + (m − 1) ·ω · s2

}
=

1

tT t
· 1
D

·
{

(ω1 − 2 ·ω2 + 2 ·ω2) · s1 +m ·ω · s2

}
. (52)

15
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It might be desirable to calculate the standard deviation of this estimate, i.e. the “error
bars of the error bars”, and investigate whether it is a minimum-variance estimate.
However, this remains beyond the scope of the present paper.

6.7. Avoidance of unfeasible values

It cannot be excluded that the estimate ŝ2
δ of the variance σ2

δ becomes negative. As5

a negative variance is unrealistic, this case will be treated by assuming σ2
δ = 0 and

applying Eq. (32). If on the other hand, ŝ2
δ > ŝ2, which corresponds to a negative

estimate for the variance σ2
∆, then it will be assumed that σ2

∆ = 0 and Eq. (35) will be
applied. These modifications might, in principle, destroy the unbiasedness of the final
estimate ŝ2

r̂ . However, for the 96 match ensembles investigated in Sects. 8.1–8.3, the10

introduction of the above-described sign-restrictions changed the mean value of the
estimate ŝ2

r̂ by only 0.04%.
In order to prevent a division by zero in Eqs. (50) and (51), the complete algorithm in

the next section will check whether D according to Eq. (49) is zero. If this is the case,
then the “classical” error estimate Eq. (32) will be applied. This might occur, e.g., if15

Ω = 0, i.e. if all match events use independent sonde measurements, in which case
the application of Eq. (32) yields the correct estimate. However, in the examples of
Sect. 8 this never occurred.

7. Complete formulae for estimating the precision of Match

Summarising the results of the previous sections, we obtain the following algorithm for20

the calculation of estimates for the precision of the Match results. For these estimates
we will also use the more illustrative denotation “error bars”.
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Input:

m = number of match events,

di = difference of the ozone mixing ratio (second minus first sonde measure-
ment) of the i -th match, i = 1, ...,m,

ti = sunlit time of the i -th match, i = 1, ...,m,

k1(i ) = identifier of the first sonde of the i -th match, i = 1, ...,m,5

k2(i ) = identifier of the second sonde of the i -th match, i = 1, ...,m,

Output:

r̂ = estimated ozone loss rate,

ŝ2
r̂ = estimated variance of r̂ .

Algorithm:10

1. Calculate an estimate of the ozone loss rate by linear regression:

r̂ =

∑m
i=1 ti · di∑m
i=1 t

2
i

.

2. Set up the matrix Ω that stores the information on ozone sondes shared by two or
more match events:15

ωi j =


1 if k1(i ) = k1(j ) or k2(i ) = k2(j ), and i 6= j,
−1 if k2(i ) = k1(j ) or k1(i ) = k2(j ), and i 6= j,
0 else.

3. Calculate the auxiliary expressions s1, s2, ω, ω1, ω2, and D:

s1 =
m∑
i=1

(di − r̂ · ti )2 , (53)
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s2 =
m∑
i=1

m∑
j=1

ωi j · (di − r̂ · ti ) · (dj − r̂ · tj ) , (54)

ω =

∑
i j ωi j · ti · tj∑m

i=1 t
2
i

, (55)

ω1 =
m∑
i=1

m∑
j=1

ω2
i j , (56)

ω2 =
(Ω · t)T · (Ω · t)

tT t
, where t = (t1, ..., tm)T , (57)

D = (m − 1) · (ω1 − 2 ·ω2) + (m − 2) ·ω2 . (58)5

4. If D = 0, then use the “classical” error bars:
If D = 0, then goto step 8.
5. Calculate estimates ŝ2 for σ2 and ŝ2

δ for σ2
δ :

ŝ2 =
1
D

·
{

(ω1 − 2 ·ω2 +ω2) · s1 +ω · s2

}
, (59)

ŝ2
δ =

1
D

· {ω · s1 + (m − 1) · s2} . (60)10

6. Sign check for ŝ2
δ and ŝ2

∆ = ŝ2 − 2 · ŝ2
δ :

If ŝ2
δ < 0, then goto step 8.

If ŝ2
δ > 1

2 · ŝ2, then goto step 9.
7. Calculate error bar:

ŝ2
r̂
=

1∑m
i=1 t

2
i

·
(
ŝ2 +ω · ŝ2

δ

)
. (61)

15
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stop.
8. “Classical” error bar (zero sonde measurement errors):

ŝ2
r̂ =

1
m − 1

·
∑m

i=1(di − r̂ · ti )
2∑m

i=1 t
2
i

. (62)

stop.
9. Error bar for zero net match errors, i.e. only sonde measurement errors occur:5

ŝ2
r̂
=

1 + ω
2

m − 1 − ω
2

·
∑m

i=1(di − r̂ · ti )
2∑m

i=1 t
2
i

. (63)

stop.

8. Examples

8.1. Data: ozone-sonde Match campaigns10

The analysis in the following Sects. 8.2 and 8.3 is based on all data from the Arctic
Match campaigns of the winters 1994/95 (potential temperature levels 450 K, 475 K,
500 K; Rex et al., 1999), 1995/96 (475 K; Rex et al., 1997), 1999/2000 (450 K, 475 K,
500 K; Rex et al., 2002), and 2002/03 (475 K; Streibel et al., 2005). These data cor-
respond to 96 match ensembles, i.e. the calculation of 96 ozone loss rates by the15

application of a linear regression like in Fig. 1.

8.2. Estimates of the measurement errors and the net match errors

For the data introduced in the previous subsection, the mean values of the estimates ŝ2
δ

and ŝ2
∆ are 2.4 · 104 ppb2 and 2.7 · 104 ppb2, respectively. This means that the errors of

the ozone measurements and the net match errors are of the same order of magnitude.20

3248

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/3225/acpd-5-3225_p.pdf
http://www.atmos-chem-phys.org/acpd/5/3225/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 3225–3268, 2005

Precision of the
Match method

R. Lehmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Extracting the square root from the mean value of ŝ2
δ yields ŝδ = 156 ppb, which

corresponds to 6% of the mean ozone mixing ratio (of all sonde measurements en-
tering the mentioned matches). This is consistent with the precision of ozone sonde
measurements of 5.7%, obtained during the Jülich Ozone Sonde Intercomparison Ex-
periment (quadratic mean of the precision values for SPC-6A and ENSCI sondes with5

a 1% KI solution in the height range of 15–25 km given by Smit and Straeter, 2004a,
Table 9, and Smit and Straeter, 2004b, Table 14).

8.3. Comparison of new and old error bars

Up to now the “classical” error bars, according to Eq. (62), have been used in the Match
analysis. Figure 7 shows both the new error bars, according to ŝr̂ in Eq. (61), and the10

old ones. It can be seen that the new error bars are slightly larger on average. For
ozone loss rates greater than approximately 2 ppb/h, the loss rates are greater than
the old error bars, so that the ozone loss can be considered significant. This does not
change when the new error bars are used instead of the old ones.

Figure 8 displays the ratio of the new error bars to the old ones. It varies between15

0.96 and 1.68. The 90%-quantile is 1.32, i.e. for 90% of the data points the ratio is less
than 1.32. The mean value of the ratio is 1.15.

On average every ozone sonde measurement was used in slightly more than 2 match
events (see triangular arrowhead in Fig. 8). In order to express statements like the latter
one more concisely, we introduce the following term:20

oversampling rate := average number of matches to which an ozone measurement contributes.

The new error bars have been constructed, in order to account for the multiple use
of ozone sonde measurements in several match events. It can be expected that, on
average, the new error bars deviate more from the old ones if the oversampling rate
increases. This is indeed the case, as can be seen from the regression line added in25

Fig. 8. The slope of this line is 0.12, i.e. an increase of the oversampling rate by 1
results in an average increase of the ratio “new error bar/old error bar” by 12%. The
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regression line almost crosses the point (1,1). This means that the old and new error
bars coincide if each sonde measurement is used in only one match event, i.e. if all
sondes used in the matches are different from each other. This is also an expected
result.

8.4. Data: satellite Match study5

In order to test the formulae of Sect. 7 for larger oversampling rates, i.e. in order to
extend Fig. 8 to the right, we consider an additional Match study, which is based on
satellite data. The analysis in the following Sect. 8.5 uses data from an Antarctic Match
study based on ozone observations by the Polar Ozone and Aerosol Measurement
III (POAM III) instrument in 2003 (potential temperature level 475 K). These data cor-10

respond to 15 match ensembles, i.e. the calculation of 15 ozone loss rates by the
application of a linear regression like in Fig. 1.

8.5. Comparison of new and old error bars

For the satellite Match study, the oversampling rate is approximately 5 (cf. Fig. 9), i.e.
it is significantly larger than for the ozone-sonde Match campaigns. An extrapolation15

of the results of Fig. 8 suggests that this leads to larger ratios of the new errors bars
to the old ones. As can be seen in Fig. 9, this is indeed the case. The slope of the
regression line added in Fig. 9 is 0.14, i.e. an increase of the oversampling rate by 1
results in an average increase of the ratio “new error bar/old error bar” by 14%, which
is rather similar to the corresponding value for the ozone-sonde Match campaigns in20

Sect. 8.3. For the satellite Match study, the ratio of the new error bars to the old ones
varies between 1.1 and 2.8, the mean value is 1.6.
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9. Conclusions

A detailed analysis of the random errors of the ozone loss rate calculated by the Match
method has been presented. It differs from a standard analysis by taking into account
that the same ozone sonde measurement may be used in several matches, so that
the ozone mixing ratio differences (second minus first sonde measurement) of these5

matches become statistically dependent. For four Arctic ozone-sonde Match cam-
paigns, this effect leads to changes of the error bars between −4% and +68%. On
average, the error bars increase by 15%. This does not change the conclusions about
the statistical significance of the ozone loss rates observed. For an Antarctic satellite
Match study, the error bars increase by 10% to 180%, on average by 60%.10

Appendix A General matrix identities

Let us assume that ei ∈ Rm denotes the i -th unit vector, i.e. its i -th element is 1, all
other elements are zero. Then we obtain:
m∑
i=1

ei · eT
i = I . (64)

This can be easily proven, because ei ·e
T
i is an m×m matrix, the i -th diagonal element15

of which is 1, all other elements are zero.

Let us assume that A is an m ×m matrix, a,b ∈ Rm are vectors. Then we obtain:

m∑
i=1

eT
i · A · a · bT · ei =

m∑
i=1

bT · ei · eT
i · A · a , because b

T · ei is a real number,

= bT ·
(

m∑
i=1

ei · eT
i

)
· A · a
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= bT · A · a , because of Eq. (64). (65)

Further we obtain:
m∑
i=1

eT
i · A · a · bT · A · ei =

m∑
i=1

eT
i · A · a · (AT · b)T · ei

= (AT · b)T · A · a , because of Eq. (65) with b =̂ AT · b,

= bT · A2 · a . (66)5

Appendix B Calculation of E (s1)

The sum s1 defined in Eq. (28) can be written in vector notation as

s1 = (d − r̂ · t)T · (d − r̂ · t) . (67)

The term (d − r̂ · t) occurring in this expression may be transformed as follows:

d − r̂ · t = d − t · r̂10

= d − t · 1

tT t
· tTd , because of Eq. (21),

=
(

I − 1

tT t
· t · tT

)
· d . (68)

Let us define the matrix

J = I − 1

tT t
· t · tT . (69)
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It is symmetric and fulfills the following equations:

J · t =
(

I − 1

tT t
· t · tT

)
· t = t − 1

tT t
· t · tT t = t − t = 0 , (70)

JT · J = J · J = J ·
(

I − 1

tT t
· t · tT

)
= J − 1

tT t
· (J · t) · tT = J . (71)

Now Eq. (68) can be written as

d − r̂ · t = J · d5

= J · (r̄ · t + ε) , because of Eq. (6),

= J · ε , because of Eq. (70). (72)

Then the expected value of s1 defined in Eq. (67) can be calculated:

E(s1) = E
(

(d − r̂ · t)T · (d − r̂ · t)
)

= E
(
εT · JT · J · ε

)
, because of Eq. (72),10

= E
(
εT · J · ε

)
, because of Eq. (71),

= E
{
εT ·
(

I − 1

tT t
· t · tT

)
· ε
}

= E
(
εTε
)
− 1

tT t
· E
(
εT · t · tT · ε

)
15

= E

(
m∑
i=1

ε2
i

)
− 1

tT t
· E
(
tT · ε · εT · t

)
because ε

T · t = t
T · ε

=

(
m∑
i=1

E
(
ε2
i

))
− 1

tT t
· tT · E

(
ε · εT

)
· t
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=

(
m∑
i=1

Var (εi )

)
− 1

tT t
· tT · Cov(ε) · t , because of E(ε) = 0,

=

(
m∑
i=1

σ2

)
− 1

tT t
· tT ·

(
σ2 · I + σ2

δ ·Ω
)
· t , because of Eq. (19),

5

= m · σ2 − t
T
t

tT t
· σ2 − t

TΩt

tT t
· σ2

δ

= (m − 1) · σ2 − t
TΩt

tT t
· σ2

δ . (73)

Together with the definition of ω in Eq. (24) we thus obtain

E(s1) = (m − 1) · σ2 −ω · σ2
δ . (74)10

Appendix C Calculation of E (s2)

The sum s2 defined in Eq. (40) can be transformed to vector notation as follows:

s2 =
m∑
i=1

m∑
j=1

ωi j · (di − r̂ · ti ) · (dj − r̂ · tj )

=
m∑
i=1

m∑
j=1

eT
i Ωej · eT

i (d − r̂ · t) · eT
j (d − r̂ · t)

=
m∑
i=1

m∑
j=1

eT
i Ωej · eT

j (d − r̂ · t) · (d − r̂ · t)Tei
15
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=
m∑
i=1

eT
i Ω ·

 m∑
j=1

ej · eT
j

 · (d − r̂ · t) · (d − r̂ · t)Tei

=
m∑
i=1

eT
i Ω · (d − r̂ · t) · (d − r̂ · t)Tei , because of Eq. (64).

Thus we obtain:

E(s2) =
m∑
i=1

eT
i Ω · E

{
(d − r̂ · t) · (d − r̂ · t)T

}
· ei

=
m∑
i=1

eT
i ·Ω · E

(
J · ε · εT · JT

)
· ei , because of Eq. (72),

5

=
m∑
i=1

eT
i ·Ω · J · Cov(ε) · J · ei , because of E(ε) = 0 and the symmetry of J,

=
m∑
i=1

eT
i ·Ω · J · (σ2 · I + σ2

δ ·Ω) · J · ei , because of Eq. (19),

=

(
m∑
i=1

eT
i ·Ω · J · J · ei

)
· σ2 +

(
m∑
i=1

eT
i ·Ω · J ·Ω · J · ei

)
· σ2

δ . (75)

The expressions in front of σ2 and σ2
δ are evaluated separately:

m∑
i=1

eT
i ·Ω · J · J · ei

10

=
m∑
i=1

eT
i ·Ω · J · ei , because of Eq. (71),
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=
m∑
i=1

eT
i ·Ω ·

(
I − 1

tT t
· t · tT

)
· ei , because of the definition of J in Eq. (69),

=
m∑
i=1

eT
i ·Ω · ei −

1

tT t
·

m∑
i=1

eT
i ·Ω · t · tT · ei

=
m∑
i=1

ωi i −
1

tT t
· tT ·Ω · t , because of Eq. (65),

= − 1

tT t
· tT ·Ω · t , because all diagonal elements of Ω are zero, cf. Eq. (16),

= −ω , because of the definition of ω in Eq. (24). (76)5

The expression in front of σ2
δ in Eq. (75) is

m∑
i=1

eT
i ·Ω · J ·Ω · J · ei

=
m∑
i=1

eT
i ·Ω ·

(
I − 1

tT t
· t · tT

)
·Ω ·

(
I − 1

tT t
· t · tT

)
· ei ,

because of the definition of J in Eq. (69),

=
m∑
i=1

eT
i ·Ω ·Ω · ei −

1

tT t
·

m∑
i=1

eT
i ·Ω ·Ω · t · tT · ei

10

− 1

tT t
·

m∑
i=1

eT
i ·Ω · t · tT ·Ω · ei +

1(
tT t
)2 ·

m∑
i=1

eT
i ·Ω · t · tT ·Ω · t · tT · ei . (77)

We are going to evaluate the four sums occurring in Eq. (77) separately:
m∑
i=1

eT
i ·Ω ·Ω · ei =

m∑
j=1

(Ω · ej )
T ·Ω · ej , because Ω is symmetric,
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=
m∑
j=1

 ω1j
...
ωmj

T

·

 ω1j
...
ωmj


=

m∑
i=1

m∑
j=1

ω2
i j . (78)

m∑
i=1

eT
i ·Ω ·Ω · t · tT · ei = tT ·Ω2 · t , because of Eq. (65). (79)

5

m∑
i=1

eT
i ·Ω · t · tT ·Ω · ei = tT ·Ω2 · t , because of Eq. (66). (80)

m∑
i=1

eT
i ·Ω · t · tT ·Ω · t · tT · ei = tT ·Ω · t · tT ·Ω · t , because of Eq. (65),

=
(
tT ·Ω · t

)2
. (81)

By substituting the expressions of Eqs. (78)–(81) in Eq. (77) we obtain:10

m∑
i=1

eT
i ·Ω · J ·Ω · J · ei

=
m∑
i=1

m∑
j=1

ω2
i j −

1

tT t
· tT ·Ω2 · t − 1

tT t
· tT ·Ω2 · t + 1(

tT t
)2 ·
(
tT ·Ω · t

)2

=
m∑
i=1

m∑
j=1

ω2
i j − 2 · t

T ·Ω2 · t
tT t

+

(
t
T ·Ω · t
tT t

)2
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=
m∑
i=1

m∑
j=1

ω2
i j − 2 ·

(Ω · t)T ·Ω · t
tT t

+

(
t
T ·Ω · t
tT t

)2

, because Ω is symmetric,

= ω1 − 2 ·ω2 +ω2 , because of the definition of ω1, ω2, and ω in Eqs. (41), (42),

(24). (82)

By substituting the expressions of Eqs. (76) and (82) in Eq. (75) we obtain:

E(s2) = −ω · σ2 +
(
ω1 − 2 ·ω2 +ω2

)
· σ2

δ . (83)5
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Fig. 1. Difference ∆O3 of the ozone mixing ratio determined by the second and first sonde of
matches in dependence on the time ts that the corresponding trajectory spent in sunlight. The
slope of the regression line is the mean ozone loss rate, expressed as ozone loss per sunlit
time. The data represent all Arctic match events of 14–28 January 1995, 475 K.
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Fig. 2. Illustration of the uncertainty of the slope of the linear regression line in the case of
two independent matches. Full circles denote the ozone mixing ratio at the position of the first
and second sonde of the corresponding match. Empty circles indicate the ozone mixing ratio
obtained by sonde measurements, having an error ±δ. The ozone loss rate derived from the
measurements is represented by the slope of the straight line in each panel. t0 denotes the
time ts that the corresponding trajectory spent in sunlight.
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Fig. 3. Illustration of the uncertainty of the slope of the linear regression line in the case of two
matches having a common second sonde. Symbols are as in Fig. 2.
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Fig. 4. Illustration of the uncertainty of the slope of the linear regression line in the case of two
matches sharing one sonde that is first sonde for one of the matches and second sonde for the
other match. Symbols are as in Fig. 2.
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Fig. 5. Illustration of the uncertainty of the slope of the linear regression line for the three cases
displayed in Figs. 2–4.
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Fig. 6. Schematic representation of the uncertainties associated with the Match method.
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Fig. 7. The new (crosses) and old (circles) estimate of the precision of the ozone loss rate
obtained by Match, expressed as one standard deviation, versus the corresponding ozone loss
rate. Regression lines for the new and old results have been added (dotted lines). Moreover,
the vertical line corresponding to zero ozone loss and the bisecting line (uncertainty = ozone
loss) have been highlighted. The data represent all match ensembles of the Arctic winters
1994/95, 1995/96, 1999/2000, 2002/03.
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Fig. 8. The ratio “new precision estimate/old precision estimate” versus the oversampling rate
(= the average number of matches to which an ozone measurement contributes). A regression
line and the horizontal line corresponding to a ratio of 1 (new error bars = old error bars) have
been added. Moreover, the mean values of the abscissae and the ordinates of the data points
have been highlighted by triangular arrowheads. The same data as in Fig. 7 have been used.
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Fig. 9. The ratio “new precision estimate/old precision estimate” versus the oversampling rate,
as in Fig. 8. The data represent match ensembles of an Antarctic satellite (POAM III) Match
study in 2003.
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