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Abstract

We present measurements of stratospheric aerosol made at Aberystwyth, UK (52.4◦ N,
4.06◦ W) during periods of background aerosol conditions. The measurements were
made with a lidar system based on a 532 nm laser and two polarisation channels
in the receiver. When stratospheric aerosol amounts are very small, as at present,5

this method is, potentially, free of a number of systematic errors that bedevil more
commonly-used methods. The method rests on the assumption that the aerosol con-
sists of spherical droplets which do not depolarise the lidar signal, which is valid un-
der most conditions. Maximum lidar ratios in background aerosol of 1.03–1.06 were
measured during the period 2001–2004, with integrated backscatter in the range10

2–7×10−5 sr−1. In January 2003, depolarising aerosol was measured, which in-
validated the dual-polarisation measurements. On 10–11 January, the depolarising
aerosol was clearly a polar stratospheric cloud (the first lidar observations of such
clouds in the British Isles) but the aerosol observed on 7–8 January was too low in
altitude and too warm to be a PSC.15

1. Introduction

Since the decay of the aerosol cloud from Mt. Pinatubo there have been no major vol-
canic eruptions disrupting the stratosphere, and the aerosol layer has decreased to
very low optical depth (Jäger, 2001). Measuring the thickness of such a thin cloud ac-
curately is not easy with a visible-wavelength lidar. The standard method for retrieval20

of lidar data involves taking the ratio between the measured (elastic) lidar signal and
a synthetic backscatter profile calculated from an assumed profile of temperature and
ozone. This works well when there is plenty of aerosol (Thomas et al., 1987; Vaughan
et al., 1994) but the inevitable uncertainty in the background profile introduces signif-
icant systematic errors for very low aerosol amounts which are very difficult to quan-25

tify. An alternative approach is to measure the air scattering profile directly through
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a Raman channel to observe scattering directly from N2. Because of the wavelength
shift this method is not free of assumptions about the atmospheric density profile, and
suffers further because the very weak Raman signals limit the vertical extent of the
signals. This can be overcome by measuring the air scattering profile with a polariser,
which typically gives about ten times more signal than Raman. The basic principle is5

that air depolarises the lidar signal slightly whereas spherical liquid aerosol does not.
Thus, measuring the backscattered signals polarised parallel and perpendicular to the
laser beam gives a measure of the total backscatter and that due to air alone, which
can readily be combined to give the lidar backscatter ratio.

Beyerle (2000) gives a detailed critique of the polarisation lidar technique, empha-10

sising that it is only suitable for low aerosol loadings but that under those conditions it
can be superior to the standard or Raman techniques. One snag with the method is
that it relies on very good polarisation of the laser and very little breakthrough in the
receiver between the two polarisations, since the scattered signal perpendicular to the
laser beam is only about 1% of the signal scattered parallel to it. Here we present15

measurements of background aerosol using a polarisation lidar at Aberystwyth, UK
(52.4◦ N, 4.06◦ N), using a calibration procedure to measure the breakthrough to 10%.
The results are consistent with Jäger’s measurements of integrated backscatter, but
this method can also distinguish very clearly between background aerosol and aerosol
perturbed by a polarising component from volcanic ejecta or polar stratospheric clouds.20

2. Experimental details

The lidar used in this study is essentially the same one as used in Vaughan et
al. (1994). It uses a Nd-YAG laser at 532 nm as the source (300 mJ pulses at 10 Hz rep
rate), giving a highly polarised laser beam. A 10× expanding telescope transmits this
to the atmosphere. The system is biaxial, with complete overlap between receiver and25

transmitter above 4 km. The receiver consists of a 60 cm parabolic mirror which, with a
secondary, produces an f/4 beam brought to a focus at a field stop aperture above the
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centre of the mirror. Beyond this a prism rotates the beam through 90◦, which is col-
limated before being directed through an interference filter onto a plain glass slide as
a beamsplitter. The interference filter has a HPBW of 10 nm. Polarisers (Melles Griot
dichroic sheet type) are placed directly before the photomultiplier tubes (EMI 9902KA)
which detect the light. According to manufacturers’ data, the polarisers attenuate the5

cross-polarised component by a factor of 105 compared to the parallel-polarised com-
ponent. Photon-counting electronics (Ortec MCS-PCI cards with ORTEC 935 constant
fraction discriminators) complete the assembly.

Measurement runs are taken with 5000 laser shots (∼8 min) at a vertical resolution of
30 m. Because of the faint signals on the perpendicular channel many hours’ data need10

to be collected to provide sufficient precision for analysis. In practice, a whole night’s
observations are combined (the background being far too high for daytime operation).
At the lower levels signal overload renders the measurements unreliable below 7 km; a
correction for pulse pile-up is used for count-rates up to 20 MHz (S=S0/(1−S0τ) where
S0 is the measured count rate, S the corrected count rate and τ the deadtime of 10 ns15

set in the discriminator).

3. Data analysis and calibration

In principle the polarisation method is simple: coincident measurements are made of
the backscattered signal parallel to the laser beam, S||, and that perpendicular to it,
S⊥. It is assumed that there is no aerosol in a particular region of the atmosphere,20

which provides a reference value to which the rest of the profile is normalised. It is also
assumed that the aerosol does not depolarise the laser beam, whence the normalised
ratio directly gives the lidar backscatter ratio R.

Allowance must be made for cross-talk between the two channels. This can arise
from the laser not being perfectly polarised, depolarisation by the receiver optics, or25

transmission of the unwanted beam by the polarisers. In practice, because S||�S⊥,
this is only important for breakthrough of the parallel component on the perpendicular
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channel. To determine this crosstalk, first of all the ratio of signals is measured with
both polarisers set to pass S||. Let this ratio be K (in practice 0.03 with the present
system). This is different to the reflectivity of the beamsplitter b|| because of differences
in the sensitivity of the two receiver channels. We take the values of b|| and b⊥ as 0.02
and 0.19 respectively, appropriate to a crown glass beamsplitter.5

We can express the ratio of signals S||/ S⊥ as follows:

S ||

S⊥ = ξ
(1 − x)b||F || + xb⊥F ⊥

(1 − x)(1 − b⊥)F ⊥ + x(1 − b||)F ||
, (1)

where ξ is a system constant, F represents the flux of radiation back from the atmo-
sphere and x is the instrumental depolarisation – the fraction of the “wrong” polarisation
measured on each channel. Writing Eq. (1) for the case when both polarisers are set10

to parallel (i.e. ratio of signals=K) and substituting for ξ we find:

S ||

S⊥ = K
(1 − x)F || + x b⊥

b|| F
⊥

(1 − x) (1−b⊥)
(1−b||)

F ⊥ + xF ||
. (2)

In this derivation depolarisation of the laser beam is included implicitly, because its
effect in practice is simply to increase the value of x. Thus F can be simply related to
the backscatter coefficients of the atmosphere as15

F ||,⊥ ∝ β||,⊥
M + β||,⊥

A , (3)

where subscript M denotes molecular (Rayleigh) scattering and A denotes aerosol
scattering. Here we assume that β⊥

A=0, i.e. the aerosol is in the form of liquid droplets
which do not depolarise.

Now x�1 and F⊥�F||. Omitting second-order terms in Eq. (2) and writing20
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(1−b)=(1−b⊥)/(1−b||), we find:

S ||

S⊥ = K
(1 − x)(β||

M + β||
A)

(1 − x)(1 − b)β⊥
M + x(β||

M + β||
A)

. (4)

The quantity (β||
M+β||

A)/β||
M is effectively the lidar backscatter ratio R, so Eq. (4) simpli-

fies to:

S ||

S⊥ = K
(1 − x)R

(1 − x)(1 − b)δ + xR
, (5)

5

where δ is the depolarisation due to air, β⊥
M/β||

M . For the present system we take this
to be 0.0142 (Cairo et al., 1999), reduced by 5% to allow for the transmission of the
rotational Raman lines through the interference filter (most of the depolarisation due to
air is in fact due to rotational Raman scattering). The 5% figure was calculated from
the measured filter transmission profile and a model of the rotational Raman spectrum10

at stratospheric temperatures (Vaughan et al., 1993). Writing y=x/(1−x) this further
simplifies to:

S ||

S⊥ = K
R

δ(1 − b) + yR
. (6)

We now assume that there is a height in the atmosphere where no aerosol is present
(either above 28 km or in the mid-troposphere, as shown below). The ratio of signals is15

then due only to air, and the value of R is identically 1. Then(
S ||

S⊥

)
ref

=
K

δ(1 − b) + y
(7)

6112

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/6107/acpd-4-6107_p.pdf
http://www.atmos-chem-phys.org/acpd/4/6107/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 6107–6126, 2004

Stratospheric aerosol
measurements by

dual polarisation lidar

G. Vaughan and
D. P. Wareing

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

from which y may be determined. Dividing Eq. (6) by Eq. (7), and writing RM for the
measured value of R before taking system depolarisation into account, i.e. the nor-
malised ratio of parallel to perpendicular signals:

RM = R
δ(1 − b) + y
δ(1 − b) + yR

=
R

1 + (R−1)y
δ(1−b)+y

. (8)

Inverting Eq. (8) we find:5

R =
RM

1 − (RM − 1) yδ
(9)

with the obvious caveat that this equation applies only when R-1 is small (<0.1).
For this system y was found to be 0.4±0.1%. Tests were also done with a narrow-

band filter passing only the Cabannes (elastic) backscatter, which gave the same value
of y but with a smaller error bar (0.04%). This value has been adopted for the results10

presented here.

4. Results

4.1. Measurements of background aerosol

As mentioned above, the aerosol signal is faint compared to the molecular backscatter
and lidar returns over a whole night have to be combined to get sufficient signal-to-15

noise. This in turn means that measurements are effectively confined to clear nights in
winter – not an especially frequent occurrence at Aberystwyth. An example from the
night of 11 to 12 December 2001 is shown in Fig. 2. The profile has been normalised
at 8 km because the signal at the top of the profile was too noisy; this introduces an
uncertainty of ∼0.01 to the peak value of R. Below 8 km cirrus cloud and counter over-20

load render the measurements unreliable. The profile shows almost no aerosol up to
17 km, with a increase to a peak value of 1.065 at 20 km.
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The second examples are from 18 and 22 February 2004 (Fig. 3). Here the profiles
have been normalised to the ratio at 30 km, but they show that the mid-troposphere is
aerosol-free (some cirrus affects the measurements on both days). The aerosol layer
now extends lower than in December 2001 and, interestingly, extends higher on 18
February than on 22 February. The latter profile was taken in a more polar airmass5

than the former, which indicates that the polar air contained less background aerosol
than the midlatitude air.

In all, in the period April 2001–February 2004 sixteen nights’ data were obtained with
the lidar; data are summarised in Table 1. The maximum lidar ratio in these profiles
varied between 1.03 and 1.06, with the exception of January 2003 which is discussed10

below. Much of this variation can be accounted for by the statistical uncertainty in fitting
the profiles above the aerosol layer. The integrated backscatter from these profiles (cal-
culated using the CIRA standard atmosphere) was in the range 2–7×10−5 sr−1. This
is in agreement with Jäger et al. (2001), and using a ratio of extinction to backscat-
ter appropriate to post-Pinatubo aerosol of 50 sr (Jäger and Deshler, 2002, 2003) it15

corresponds to an optical depth of 1–3.5×10−3.

4.2. Depolarising aerosol

On most occasions the assumption that the aerosol does not depolarise appeared
valid. However, this was not always the case. On 7/8 January and 8/9 January 2003
profiles were measured with a clear layer of depolarising particles in the lower strato-20

sphere (Fig. 4). The ratio R was now <1 between 11 and 15.5 km, showing the pres-
ence of depolarising aerosol. Near 20 km, the lidar backscatter ratio of 1.04 was con-
sistent with the profiles measured on 6/7 January. During this period, the polar vortex
was approaching Aberystwyth, and indeed reached it on 10 January (see below). The
greater amount of aerosol above 20 km on 6/7 January is therefore consistent with the25

observations of February 2004, since it corresponds to a less polar air mass.
To demonstrate that the depolarising aerosol are real (rather than an instrument mal-

function), the data for the 8/9 January were also analysed using the “standard method”
6114
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of taking the ratio to a synthetic density profile. This profile was generated from the ra-
diosonde ascent at 00:00 UT on 9 January from Valentia (51◦ N, 10◦ W) up to its burst
height of 23 km, then extended to 33 km using the ozonesonde package launched from
Aberystwyth at 16:00 UT on 10 January. A correction was applied to the Valentia profile
to allow for the temperature gradient in the lower stratosphere between Valentia and5

Aberystwyth, taken from ECMWF charts. The synthetic density was also corrected
for attenuation by Rayleigh scattering and for ozone absorption using the ozonesonde
profile. The results are shown in Fig. 5, normalised to a backscatter ratio of 1 be-
tween 8 and 10 km. There is a clear scattering layer on the ⊥ channel between 10 and
16 km, reaching a scattering ratio of 1.085. The corresponding value on the || channel10

is 1.031, corresponding to an aerosol depolarisation of (8.5/3.1×1.4%)=3.8%. Above
the depolarising layer, the peak backscatter ratio on the || channel is also around 1.04
– consistent with the 1.038 derived from the two-polarisation method.

Unlike the observations a few days later (see next section) the depolarisation layer on
7 and 8 January cannot be attributed to a polar stratospheric cloud. From the Valen-15

tia radiosondes during the 7 and 8, temperatures were >205 K at the altitude of the
depolarising layer – 14 km (134 mb or 380 K) – far too warm for PSCs. The amount
of depolarisation – 4% – is also rather small for PSCs. The tropopause during this
period was at 10 km, so cirrus cloud is unlikely; a contrail cloud is a possible source
but would not persist for 36 h. Alternative origins for depolarising aerosol are fires or20

volcanic eruptions (Siebert et al., 2000), but fires are an unlikely source in the depth
of winter. The air reaching Aberystwyth during this period had travelled along the flank
of the polar vortex, with back-trajectories tracing back to the region of Sakhalin and
northern Japan (50◦ N) 10–15 days earlier. This is a volcanic region, but there is no
evidence in the Smithsonian/USGS volcanic activity reports for a eruption in late De-25

cember 2002. The Alaska Volcano Observatory reported activity at three Kamchatka
volcanoes: Bezmianny (55◦58′ N, 160◦36′ E), Kluychevskoy (56◦3′ N, 160◦ 39′ E) and
Sheveluch (56◦38′ N, 161◦19′ E), but the maximum plume altitudes were around 6 km,
well below the tropopause over Kamchatka at that time. We are therefore unable to
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give an explanation of the depolarising aerosol, and must note that measurements of
stratospheric aerosol by the depolarisation method must be carefully scrutinised for the
presence of depolarising particles.

4.3. Observations of polar stratospheric clouds

The lidar profile of 10/11 January 2003 is shown in Fig. 6. This shows two profoundly5

depolarising layers – a cirrus layer below the tropopause (13 km) and a further layer
between 18 and 22.5 km. This profile has again been analysed using the standard
method (Fig. 7, using the Aberystwyth ozonesonde profile at 16:00 UT on 10 January)
and shows a layer of aerosol with parallel backscatter ratio up to 1.12 and a perpendicu-
lar backscatter ratio of up to 2.5 above 18 km, consistent with an aerosol depolarisation10

of 18%.
These values are consistent with a Type 1a PSC (Toon et al., 1990), where a small

number of relatively large particles give high depolarisation but little backscatter. This
time, the minimum temperatures between 100 and 30 mb were <194 K, and maps of
the 50 mb temperature field from ECMWF (obtained from the NADIR data base, NILU,15

Norway) showed an extension of the polar vortex swinging east over the UK between 9
and 10 January; indeed, the ozonesonde launched on the 10 January resulted from an
alert issued by the Match project (Rex et al., 2002). Observations on the following night
(11/12 January) showed clear PSCs at the beginning of the night but not at the end,
consistent with the retreat of the vortex northward during the 11 January. We believe20

these to be the first lidar observations of PSCs reported from the UK.

5. Conclusions

We have used the dual polarisation method to infer lidar backscatter ratios in the lower
stratosphere during background conditions. The method offers definite advantages
over the “standard” method because uncertainty in the temperature profile can over-25
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whelm the tiny amount of aerosol scattering, leading to an ill-characterised systematic
error. With the system used here, several hours’ data must be collected to give enough
signal at high altitude, but with a more powerful system this time could be reduced ten-
fold. The system depolarisation was determined to be around 0.4±0.04%, a significant
correction which must be measured each time an aerosol measurement is made.5

We have shown that the background aerosol layer is quite variable – the few pro-
files presented here show definite differences, even over a few days (other exam-
ples, not shown here, support this assertion). On the whole, the peak lidar ratio at
20 km is around 1.03–1.06 and the integrated backscatter in background conditions
2–7×10−5 sr−1.10

We have also shown examples where the lidar encountered depolarising aerosol.
Under such conditions the measurements cannot be used to derive a lidar ratio purely
from the two lidar channels, emphasising that care is needed with this method. On the
other hand, these observations are of geophysical interest, recording as they do the
observation of Type 1A PSCs over the UK for the first time using a polarisation lidar.15

Acknowledgements. We thank the NILU data base, Norway and the NERC BADC for provision
of meteorological data for this study, and to the EC EARLINET project (EVRI-CT-1999-40003)
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Jäger, H.: European Research in the Stratosphere 1996–2000, Figure 2.27, edited by Amana-

tidis, G. T. and Harris, N. R. P., EUR19867, European Commission DGXII, Brussels, 2001.25
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Table 1. Summary of stratospheric aerosol measurements

Max lidar ratio Integrated Backscatter, Comment
(±0.01) 10−5 sr−1(±2)

April 2601 1.04 6
May 0301 1.03 3
May 1201 1.03 3
May 22–2401 1.03 2 Combined 3 nights’ data
December 1101 1.06 4
December 1201 1.06 5
October 0402 1.04 7
January 0603 1.06 7
January 07–0803 1.04 6 Depolarising aerosol
January 1003 1.12 10 PSCs
February 1804 1.06 7
February 2004 1.05 7
February 2204 1.04 7
March 0904 1.05 7
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Fig. 1. Schematic of lidar receiver.
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Fig. 2. Aerosol scattering 11/12 December 2001. Error bars denote the precision at each point
(1 standard deviation). Vertical resolution is 150 m.
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Fig. 3. Aerosol scattering 18 and 22 February 2004. Error bars denote the precision at each
point (1 standard deviation). Vertical resolution variable.
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Fig. 4. Lidar ratio as derived from the two polarisations, 6–8 January 2003, showing aerosol
depolarisation in the lower stratosphere on 7 and 8 January. Each curve is derived from over
12 h continuous data. Error bars denote the precision at each point (1 standard deviation).
Vertical resolution variable.
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Fig. 5. Ratio of lidar signals to synthetic density profiles, 8 January 2003. Solid line: ratio of ⊥
signal; dashed line: ratio of || signal. Error bars omitted for clarity.
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Fig. 6. Lidar backscatter ratio measured 10–11 January 2003, showing two depolarising layers:
cirrus below 12 km and PSCs between 18.5 and 21.5 km. Error bars denote the precision at
each point (1 standard deviation). Vertical resolution is 150 m, no smoothing.
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Fig. 7. Ratio of lidar signals to synthetic density profiles, January 10-11th 2003.  Left panel: ratio of 
⊥ signal; right panel: ratio of || signal.  Fig. 7. Ratio of lidar signals to synthetic density profiles, 10–11 January 2003. Left panel: ratio
of ⊥ signal; right panel: ratio of || signal.
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