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Abstract

In December 2001 and 2002 in situ aerosol measurements were made from balloon-
borne platforms within polar stratospheric clouds (PSC) consisting of supercooled
ternary solutions, nitric acid trihydrate and ice. Particle size (radius >0.15 µm) and
number concentrations were measured with two optical particle counters. One of these5

included an ∼80 cm inlet heated to >244 K to obtain measurements, within PSCs, of
the size distribution of the stratospheric particles upon which the PSC particles con-
densed. These measurements are compared to models that calculate the evaporation
of PSC particles. The modeled evaporation for supercooled ternary solutions is in
good agreement with the measurements. For nitric acid trihydrate it is uncertain what10

happens to the particle as it is brought to temperatures >50 K above its equilibrium
temperature at stratospheric partial pressures. Here the modeled evaporation show
too low evaporation compared to the measurements.

1. Introduction

In the stratosphere, chemical reactions occur on PSC particles, leading to ozone de-15

pletion (Solomon et al., 1986; Tolbert et al., 1988). These particles are composed of
water and nitric acid and are observed in three phases in the stratosphere: 1) Nitric
acid trihydrate (NAT), a stable solid particle (Hanson and Mauersberger, 1988b; Voigt
et al., 2000), 2) Supercooled ternary solution (STS), a liquid particle (Tabazadeh et al.,
1994; Carslaw et al., 1994; Schreiner et al., 1999), 3) Ice. All these particles form on20

the ubiquitous stratospheric sulfate aerosol (SSA) which consist of water and sulfuric
acid. This paper seeks to contribute to our understanding of the growth of these parti-
cles by an analysis of in situ PSC measurements in the Arctic in December 2001 and
2002 (Deshler et al., 2003b; Larsen et al., 2004). Size (radius >0.15 µm) and num-
ber concentrations were measured with two optical particle counters (OPC) (Deshler25

et al., 2003a). One OPC provided PSC particle size distribution measurements. The
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second OPC included either an 82 cm inlet, with a 90◦ bend, heated to between 244 K
and 256 K (2001), or a 75 cm straight inlet heated to between 262 K and 300 K (2002).
The heated inlet was used to obtain measurements, within PSCs, of the size distribu-
tion of SSA. This size distribution is required to initialize microphysical models of PSC
growth. Here we have developed STS- and NAT- evaporation models which simulate5

the evaporation in the heated inlet. The differences in these models compared to other
PSC growth/evaporation models is that the particles are brought suddenly to high tem-
peratures in the inlet, and that nucleation is not required. Results from this model are
compared with the heated inlet OPC observations.

2. Model description10

Evaporation of PSC particles is controlled by diffusion of two molecular species (H2O
and HNO3) away from the particle. The governing equation is

a
da
dt

=
C
Rρ

∑
i

D?
i Mi

(
Pp,i
T∞

−
Ps,i
Ta

)
. (1)

Here a is the radius of the particle, D? the modified diffusion coefficient, C the capac-
itance, M the molecular weight of the evaporating species, R universal gas constant,15

ρ the density of the particle, Pp the partial pressure of the evaporating species from
the particle and Ps the saturation vapor pressure of the same particle. T∞ is the mean
temperature of the air in the inlet and Ta is the temperature of the evaporating particle.
The subscript i stands for the evaporating species H2O or HNO3. In this paper the
subscripts n = HNO3, w = H2O and s = H2SO4. The modified diffusion coefficient D?

20

accounts for molecular discontinuities near the particles with a multiplicative function,
Γ(Kn), where

Γ(Kn) =
1

1 + Cλ(Kn)Kn
. (2)
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This approach to find D? is described by Fuchs and Sutugin (1971). Here Kn = Λ/a
is the Knudsen number for diffusion and Λ is the mean free path of the evaporating
species. The mean free path is found by multiplying the mean free path of air with a
correction factor Θ (Hamill et al., 1977; Larsen, 2000). For H2O, Θw=0.820 and for
HNO3, Θn=0.857. The function λ(Kn) in Eq. (2) is given by5

λ(Kn) =
1.33 + 0.71

Kn

1 + 1
Kn

(3)

(Fuchs and Sutugin, 1971). The sticking- and thermal- accommodation coefficients are
here assumed to be unity and are not included in Eq. (3) (Pruppacher and Klett, 1997).

As the particle evaporates, the particle temperature, Ta, decreases due to release
of latent heat L. If T∞≈Ta, the Maxwell-Mason equation can be used to calculate the10

evaporation rate analytically (e.g. Pruppacher and Klett, 1997). However, in our case
Ta is significantly lower than T∞ in most of the inlet and the particle temperature must
be calculated numerically. Ta is calculated from the conductive heat transfer equation:

dq
dt

= 4πak?(T∞ − Ta) = −4ρπLa2da
dt

. (4)

Here k? is the modified thermal conductivity. Inserting Eq. (1) into Eq. (4) gives15

T∞ − Ta +
C

Rk?

∑
i

D?
i wiLiMi

(
Pp,i
T∞

−
Ps,i
Ta

)
= 0 (5)

where w is the mass fraction of the evaporating species and arrives from the weighting
of the latent heat for the different evaporating species.

The latent heat of vaporization and sublimation is calculated from the Clausius-
Clapeyron equation. As for the diffusion coefficient, the thermal conductivity, k, must20
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also be modified due to discontinuities near the particle and k is multiplied with the
Γ-function given in Eq. (2). The Knudsen number for thermal conductivity is:

Knt =
3kMa

ρava(
cp

Rd
− 0.5R)a

(6)

(e.g. Toon et al., 1989). Here Ma and ρa are the molecular weight and density of air, va
the thermal velocity of air molecules, cp the specific heat at constant pressure and Rd5

the gas constant for dry air. For particles less than approximately 0.05 µm the Kelvin
effect on the vapor pressure must be included.

The air entering the inlet is increasing in temperature as it is brought through the
inlet. The mean air temperature, Tm, as a function of location in the inlet (x) can be
expressed10

Tm(x) = Tw − (Tw − Ti )e
−hpx/ṁcp (7)

(e.g. Bejan, 1984). Here Tw is the temperature of the inlet wall, Ti the temperature of
air as it enters the inlet, p the perimeter, ṁ the mass flow rate and h is the heat transfer
coefficient.

The heated inlet in 2001 had a 90◦ bend. As particles flow through the bend, the15

largest particles will be deposited on the wall. The fraction of particles not lost in the
bend, B is given by

B = 1 − π
2

(Stk(ρ, a,Cc, u, ν, d )), (8)

where Stk is the Stokes number (Hinds, 1999) and Cc the pressure dependent slip
correction factor. The expression for Cc used here is also given in Hinds (1999). u is20

the mean air velocity in the inlet, ν the viscosity of the air and d is the diameter of the
inlet. The flow in the inlet is laminar and deposition in the straight part of the inlet is not
expected.

5811

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/5807/acpd-4-5807_p.pdf
http://www.atmos-chem-phys.org/acpd/4/5807/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 5807–5829, 2004

Evaporation of PSC
particles in a heated

inlet

T. Eidhammer and
T. Deshler

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

In applying this model, most parameters and variables are well known or specified.
The primary exceptions are vapor pressures of HNO3 and H2O over NAT for high tem-
peratures, but with stratospheric partial pressure in the ambient air.

3. Results and discussion

In December 2001 the balloon-borne gondola, released from Esrange, Sweden (68◦ N,5

21◦ E), flew through a PSC located between 22 and 26 km (Deshler et al., 2003b). This
cloud consisted of distinct layers of NAT, STS and a thin layer of ice. Below 24.5 km
the particles were mainly STS and above they were mainly NAT. In December 2002
the balloon-borne gondola flew through a PSC located between 20 and 26 km. This
cloud consisted mainly of STS particles (Larsen et al., 2004). Measurements with the10

ambient inlet OPC in these PSCs indicate bimodal size distributions in both NAT and
STS layers. Some size distributions have a well developed second mode and a first
mode which differs only slightly from SSA. Such distributions were observed at cloud
top in both 2001 and 2002 and we believe they consist almost exclusively of NAT and
SSA. In contrast, in a PSC with STS, the distribution is well developed in both the15

first and second mode. Deshler et al. (2003b) provide examples of both these types
of distributions as well as intermediate distributions. Size distributions similar to the
2001 cases were also observed in 2002. The predominately STS and the intermediate
distributions are probably characteristic of mixed phase clouds. The difference in the
distributions dominated by NAT and by STS are due to a nucleation barrier that exists20

for NAT particles (Zhang et al., 1996; Koop et al., 1997; Carslaw et al., 1998). STS
particles do not have this barrier thus all small particles can grow into STS particles.
Measurements from the heated inlet OPC in 2001 indicated bimodal size distributions
if the PSC layer contained a second mode in its size distribution. This means that
the largest particles did not evaporate back to SSA. In the 2002 flight, when the inlet25

temperature was increased, the evaporated size distribution consisted mostly of one
mode, indicating complete evaporation of the condensed water and nitric acid.
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There were two temperature sensors along the heated inlet. The first sensor was on
the wall at the center of the heated inlet and was used to control the inlet temperature.
The second temperature sensor was fixed to the inlet wall at the end of the inlet just
before the optical chamber. In 2001, at the times we are interested in, the center
temperature was about 255 K. The temperature at the end of the inlet decreased from5

about 251 K to about 243 K. In 2002 the center temperature was around 303 K and the
temperature at the end of the inlet was about 270 K. In the models we have assumed
that the particles experience a mean wall temperature which lies between the two
temperatures.

Measurements outside of a PSC with the two OPCs offer a good test of the precision10

of the OPC measurements, since, if SSA are relatively unaffected by the heating, the
heated and ambient inlet measurements should differ only slightly. At 247 K, ws∼0.86
(Steele and Hamill, 1981) while ws at ambient temperatures is lower. Thus SSA in the
heated inlet will be slightly smaller than ambient SSA since water has evaporated; how-
ever, the difference is expected to be small. This slight difference in size will slightly15

reduce the concentrations from the heated inlet measurements when the two mea-
surements are compared at the same size. The agreement of aerosol volume from
heated and ambient measurements on the boundaries of the PSC measured in 2001
(Deshler et al., 2003b) and the concentration profiles at 4 sizes in Fig. 1 from the 2002
heated and ambient measurements support these expectations. The 2002 measure-20

ments in Fig. 1 are in good agreement below 16 km with the heated inlet concentrations
slightly less than the ambient concentrations. The PSC is clearly evident between 20
and 26 km. Between 16 and 20 km the heated inlet measurements show a decrease
of ∼50% in concentration at the smaller sizes. While there is minimal evidence for
PSC particles between 16 and 20 km, the temperature is below the NAT point, so the25

presence of PSC particles can not be ruled out.
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3.1. STS

To model the evaporation of STS, a thermodynamic model developed by Carslaw et al.
(1995) and Clegg et al. (1998) is used to calculate the vapor pressure of H2O and
HNO3 over the STS particle. As the STS evaporates it will reach a binary mode when
all the HNO3 is evaporated. The same model is used for ws<0.8 in the binary mode.5

For ws>0.8 the expression given by Gmitro and Vermeulen (1964) and tabulated data
from Giaugue et al. (1960) are used. The density of STS particles is found from Luo
et al. (1996). For the smallest particles (a<0.05 µm) the Kelvin effect, a function of
the surface tension between the particle and the air, is included. The surface tension
between STS and air is calculated from a molality weighted average of the binary10

sulfuric acid solution surface tension (Tabazadeh et al., 2000) and the binary nitric
acid solution surface tension (Granzhan and Laktionova, 1975). Since STS are liquid
particles, the capacitance C (included in Eq. 1 and in the modification of D and k) is 1.
The diffusion coefficient of HNO3 is given as Dn=0.559Dw (Larsen, 2000) where Dw is
the diffusion coefficient of H2O. The mass fraction (w) of H2O and HNO3 in the STS15

particle, required as initial conditions, is available from measurements in the PSC with
a mass spectrometer (Schreiner et al., 2002; Deshler et al., 2003b). ws in the particles
was calculated based upon measurements from the two OPCs and the assumptions
that for SSA at 247 K, ws=0.86 (Steele and Hamill, 1981), and that the size distribution
of SSA has a single mode. The size distributions used to initialize the model are the20

bimodal lognormal fits from observed distributions with the ambient inlet OPC.
As the STS evaporates, wn, ww and ws will change. This leads to changes in the sat-

uration vapor pressures and latent heat. The decrease in radius also leads to changes
in the modified diffusion coefficient and the modified thermal conductivity. Evaporation
of mass requires latent heat thus the temperature of the particle changes during the25

evaporation.
Equation (1) is a complicated function of radius and must be solved numerically. We

here integrate Eq. (1) over small time steps (dt on the order of 10−4 s) and assume
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that ada
dt = K (dt) is constant over this time step:∫ ai

a0

ada =
∫ dt
0

Ki (dt)dt

⇓

ai =
√
a2

0 + 2Ki (dt)dt. (9)

Here i is H2O or HNO3 and ai is the radius the particle would have if only the i species5

evaporated. The amount of mass of species i that is evaporated, dmi , is then cal-
culated from (4/3)πρ(a3

i −a
3
0). The new total mass and radius of the STS particle are

now

m = m0 +
∑
i

dmi a = 3

√
m

4πρ
. (10)

Equations (9) and (10) are calculated x times until xdt equals the time the particles10

spend in the inlet. For each time step the new vapor pressure, density, latent heat,
modified diffusion coefficient, modified thermal conductivity and particle temperature
are calculated. For any one initial size, the model preserve the initial concentration
as that size is reduced by evaporation. This model is therefore Lagrangian in radius
space.15

Figure 2 shows the mass fraction of HNO3, H2O and H2SO4 for a 1 µm STS particles
as it passes through the inlet. This illustrate the large variations in weight fraction, with
implications for saturation vapor pressure, over the lifetime of a particle in the inlet. The
mass fraction of HNO3 increases in the start as more of the H2O evaporates. As the
HNO3 mass fraction increases, the saturation vapor pressure of HNO3 will increase20

and evaporation of HNO3 will also increase. Beyond 25% of the distance along the
inlet the mass fraction of HNO3 decreases rapidly. The shape of this figure resembles
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the shape of STS models by Tabazadeh et al. (1994) and Carslaw et al. (1994, 1995)
for weight fraction as a function of temperature.

Strict comparisons between model and observations are possible for cases when
PSC particles do not evaporate completely to SSA. Particles that evaporate completely
may be checked against the model to see that it also predicts complete evaporation,5

but a strict test of the model requires measurements at a point in the heated inlet or at
temperatures where evaporation is incomplete. Measurements in 2001 represent the
latter case while particles in 2002 were completely evaporated.

3.1.1. STS, incomplete evaporation (2001)

Figure 3 shows ambient and evaporated STS particle measurements for four STS re-10

gions sampled in 2001 compared to the modeled evaporation. The particle measure-
ments collected every 10 s were averaged over homogeneous regions of the PSC.
Averaging of the data is especially important for measurements from the heated inlet.
The flow is assumed to have a Poiseuille flow distribution. Thus particles will expe-
rience different evaporation rates depending on where in the inlet the particles are15

situated. A particle closer to the center of the inlet will have a higher velocity, and thus
evaporate less, than a particle closer to the wall that has a lower velocity. Averaging
measurements over homogeneous cloud regions results in size distributions represen-
tative of about 40 samples and these particles will presumably be distributed similarly
across the inlet for each sample. Thus the mean velocity of 7.8 m s−1 that the particles20

experience in the inlet is used.
The model fits well with observations in Figs. 3a, 3c and 3d. For Fig. 3b the model

shows too much evaporation compared to observations in the size range 0.2 to 1.0 µm.
This may result if some of the particles are NAT, which evaporate slower than STS.
Note that the heated inlet instrument did not measure particles larger than 1.25 µm.25

The fitted cumulative size distribution for particles larger than 1.25 µm is estimated,
thus modeled and fitted size distribution can not be compared in this region.

Observations in 2001 showed that the second mode median radius of the predomi-
5816
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nantly STS cloud decreased by 55–80% after passing through the heated inlet. In con-
trast, for measurements in predominantly NAT clouds, the median radius of the second
mode decreased by 30–40%. This suggests that NAT particles evaporate slower than
STS particles. Therefore Fig. 3b is probably not a representation of a homogeneous
STS region in the cloud.5

3.1.2. STS, complete evaporation (2002)

In 2002 the temperature in the center of the inlet was increased to about 300 K. The
temperature at the end of the inlet was about 270 K. The reason to increase the tem-
perature for the 2002 case was to evaporate all PSC particles to SSA for microphysical
modeling. The bend was also removed to omit any loss in the bend. In 2002 the PSC10

consisted mostly of STS droplets (Larsen et al., 2004). Figure 4 shows the comparison
between the measurements and model at two different times during the flight. Fig-
ure 4a shows a measurement of PSC particles evaporating to SSA and is typical of
over 80% of the measurements. In about 20% of the measurements, large particles
did not evaporate completely even though the model predicted complete evaporation15

(see Fig. 4b). Attempts to explain these observations by assuming that the inlet tem-
peratures were at the minimum of the range measured, or that particles experienced
the maximum flow, which is twice the mean flow, were unsuccessful. The second mode
shown in the heated inlet observations are also not likely to be SSA. Above and be-
low the cloud all Arctic OPC size distributions show only one mode or a weak second20

mode (Deshler et al., 2000, 2003b). The large particles are probably NAT particles
which need a longer time to evaporate, suggesting that about 20% of the observations
in 2002 were in a mixed phase cloud.

3.2. NAT (2001)

At low temperatures the growth and evaporation of NAT particles is governed by HNO325

partial pressure as long as H2O is supersaturated with respect to NAT. In this region it
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can be assumed that for every HNO3 molecule that evaporates, three H2O molecules
evaporate. Equation (1) can now be written:

a
da
dt

=
CD?

nMn

Rρ

(
Pp,n
T∞

−
Ps,n
Ta

)
3Mw +Mn

Mn
. (11)

At warmer temperatures the same assumption is made although it is less certain.
Laboratory investigations of a NAT particle as it is brought to temperatures much higher5

than its equilibrium temperature at stratospheric temperature and partial pressures
are not available. From the point where the temperature is high enough that H2O is
no longer supersaturated with respect to NAT and the saturation ratio of H2O is less
than the saturation ratio of HNO3 we assume that as three H2O molecules evaporate,
one HNO3 molecule evaporates. The rate of evaporation is thus only dependent on10

evaporation of H2O and Eq. (1) is now

a
da
dt

=
CD?

wMw

Rρ

(
Pp,w
T∞

−
Ps,w
Ta

)
Mw + 1

3Mn

Mw
. (12)

The capacitance factor C in Eqs. (11) and (12) is here 1.61 (Larsen, 2000) and
the density of the NAT particles is assumed to be 1620 kg m−3 (Taesler et al., 1975).
Surface tension (used in the Kelvin effect) between NAT and air is taken from Drdla and15

Turco (1991). The vapor pressure of H2O and HNO3 over NAT at low temperatures are
well documented (e.g. Hanson and Mauersberger, 1988b,a; Worsnop et al., 1993). An
expression for vapor pressure of HNO3 as a function of temperature and H2O partial
pressure in the temperature range 180 to 200 K is given in Hanson and Mauersberger
(1988b). This expression can be used as long as H2O is saturated with respect to NAT.20

However, as far as we know, there are no vapor pressure expressions as a function
of only temperature based on experiments at higher temperatures for NAT particles.
Therefore, we have developed an expression based on Toon et al.’s (1986, Fig. 1.)
extrapolation of vapor pressure curves from measured partial pressures of H2O and
HNO3 over a liquid solution (Clavelin and Mirabel, 1979). Below the melting point the25
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slopes of the partial pressure curves were changed in proportion to the latent heat of
fusion for the trihydrate. This results in lower vapor pressures than for the liquid particle
with mass-fraction of 0.54 HNO3. Toon et al. (1986) also extrapolated vapor pressures
from the melting point by using the latent heat of the pure material (H2O or HNO3).
This approach gives slightly higher vapor pressures than by using the latent heat of5

the trihydrate. Toon et al. (1986) mentioned that the correct vapor pressure may lie
between the two cases.

Figure 5 shows averages of measured ambient and evaporated particle size distri-
butions over two NAT layers sampled in 2001. The modeled evaporation is calculated
for the two extreme assumptions for HNO3 and H2O vapor pressures. The dashed10

line shows the modeled evaporation using the vapor pressures extrapolated from the
latent heat of trihydrate. This modeled evaporation of NAT particles from about 1 to
3 µm shows insufficient evaporation compared to observations. The dotted line shows
the result for vapor pressures extrapolated using the latent heat of the pure materials.
In this case the model is closer to the measurements, however, the correct evapora-15

tion may lie between these extreme assumptions about the vapor pressures. The two
models converge for evaporated particles larger than 1.5–2 µm. In this size region,
the change of radius due to evaporation is low and the apparently large decrease in
radius is due to loss of particles in the bend. Thus the concentration of large particles
decreases, but not due to evaporation.20

It has been suggested that rapid heating in the inlet could cause solid NAT particles
to instantaneously melt; however, this is not supported by the model. Using the STS
model for predominately NAT distributions, assuming that the NAT particles liquefy,
causes an over prediction of measured evaporation.

Evaporation of a solid NAT particle that does not maintain its 3:1 stoichiometry is not25

considered since we are not aware of an expression for vapor pressures for a frozen
HNO3−H2O−H2SO4 particle as a function of temperature and weight fraction.
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4. Conclusions

Models have been developed to simulate evaporation of STS and NAT particles at high
temperatures but stratospheric partial pressures. The models were initialized with in
situ size distribution measurements of STS and NAT particles and compared to mea-
surements of evaporated STS and NAT particles.5

When the evaporation chamber was heated to about 250 K (2001), PSC particles do
not completely evaporate to SSA and the model reproduces the observations in pre-
dominately STS layers. There is, however, some discrepancy for the largest particles
in these layers which are most likely NAT particles. The NAT model, however, cal-
culates insufficient evaporation compared to observations even when the vapor pres-10

sures, found by extrapolating vapor pressure from the melting point using latent heat
of pure materials, were used.

For an evaporation chamber at about 280 K (2002), STS particles were expected to
completely evaporate to SSA. This was confirmed by measurement and model. The
model, however, can only confirm that complete evaporation occurred. Since it is im-15

possible to know where in the inlet complete evaporation occurred this case is a less
stringent test of the model. For ∼20% of the measurements at 280 K there were a
few large particles which did not completely evaporate. These probably represent the
measurements of a few large NAT particles in these regions of the cloud.

For NAT particles in the 2001 case we are still uncertain how the particles behave at20

high temperatures but with stratospheric partial pressures. When it is assumed that the
composition of the trihydrate does not change, the model shows insufficient evaporation
compared to measurements. To model this case properly requires an expression for
H2O and HNO3 vapor pressure as function of temperature and mass fraction for the
frozen HNO3−H2O−H2SO4 particle.25

Overall the heater was found to do an adequate job of evaporating PSC particles
back to their SSA origins, and the model developed here to do an adequate job of
reproducing the observations within reasonable assumptions. The evaporation and our
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understanding of it becomes relatively less certain for NAT than for STS. The largest
unknowns for the model are the actual temperature the particles experience as they
pass through the inlet and the vapor pressures over NAT particles at high temperature.
One surprising result is the observation that the evaporation measurement may be able
to uncover a small fraction of NAT particles embedded in predominantly STS clouds.5
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Fig. 1. Vertical profiles, 5–27 km, of ambient temperature and of aerosol concentration for par-
ticles >0.15, 0.25, 0.30, 0.50 µm, as measured by the ambient (lines) and ∼290 K heated (lines
and data points) inlet OPCs flown on 021206. The temperature is compared to equilibrium
temperatures for NAT and STS using the measured H2O concentration (Deshler et al., 2003b)
and 11 ppbv HNO3.
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Fig. 2. Weight fraction of H2O, H2SO4 and HNO3 as a function of distance along the inlet for a
1 µm STS particle.
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Fig. 3. Cumulative size distributions fitted to measured ambient STS particles, and to evapo-
rated (measured and modeled) STS particles. The solid lines are the fitted size distributions.
All measurements are averages over homogeneous cloud regions. The error bars are the stan-
dard deviation of the averaged measurements. Half error bars are used when the lower half of
the error bar extends to the abscissa.
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Fig. 4. Same as Fig. 3 but for measurements in 2002. (a) shows an example of STS particles
that have evaporated back to SSA while (b) shows an example of STS particles that have
not evaporated completely. This part of the cloud did probably also contain a few large NAT
particles. The error bars for the 2002 case represent the Poisson counting error since these
measurements are not averaged over homogeneous regions of the PSC, but rather represent
a single measurement.

5828

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/5807/acpd-4-5807_p.pdf
http://www.atmos-chem-phys.org/acpd/4/5807/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 5807–5829, 2004

Evaporation of PSC
particles in a heated

inlet

T. Eidhammer and
T. Deshler

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

0.01 0.1 1 10 
 

10-4

10-3

10-2

10-1

100

101

102

N
(c

m
-3
)

a 25.5 km

Ambient NAT

Evaporated
NAT

0.01 0.1 1 10 
 

 

 

 

 

 

 

 

b
25.5 km

Radius (µm)

011209 Esrange, Sweden

Fig. 5. Same as Fig. 3 but for averages over NAT layers sampled in 2001. Dashed line is
modeled evaporation using vapor pressure for HNO3 and H2O extrapolated in proportion to
the latent heat of fusion for the trihydrate. Dotted line is modeled evaporation where the vapor
pressure for HNO3 and H2O is extrapolated for pure HNO3 and H2O.
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