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A parallelisable multi-level banded di�usionsheme for omputing balaned partitions withsmooth boundariesFrançois PellegriniENSEIRB, LaBRI and INRIA FutursUniversité Bordeaux I351, ours de la Libération, 33405 TALENCE, FRANCEpelegrin�labri.frAbstrat. Graph partitioning algorithms have yet to be improved, be-ause graph-based loal optimization algorithms do not ompute smoothand globally-optimal frontiers, while global optimization algorithms aretoo expensive to be of pratial use on large graphs. This paper presentsa way to integrate a global optimization, di�usion algorithm in a bandedmulti-level framework, whih dramatially redues problem size whileyielding balaned partitions with smooth boundaries. Sine all of thesealgorithms do parallelize well, high-quality parallel graph partitionersbuilt using these algorithms will have the same quality as state-of-the-art sequential partitioners.1 IntrodutionGraph partitioning is an ubiquitous tehnique whih has appliations in many�elds of omputer siene and engineering, suh as workload balaning in parallelomputing, database storage, VLSI design or bio-informatis. It is mostly usedto help solving domain-dependent optimization problems modeled in terms ofweighted or unweighted graphs, where �nding good solutions amounts to om-puting, eventually reursively in a divide-and-onquer framework, small vertexor edge uts that balane evenly the weights of the graph parts.Many algorithms have been proposed to ompute e�ient partitions of anygraphs, suh as graph or evolutionary algorithms, spetral methods, or linearoptimization methods. Basially, all of these methods belong to two distintlasses: global methods, whih onsider all of the graph data, and loal opti-mization heuristis, whih try to improve loally a preexisting partition. Globalmethods often yield better results, but their osts dramatially inreases alongwith problem size, whih makes them pratially impossible to use for graphsomprising several tens million verties, whih are the graphs now being onsid-ered in many sienti� engineering problems.The multi-level approah [5, 6℄ has been a quite suessful attempt to om-bine both approahes. It onsists in repeatedly omputing a set of inreasinglyoarser albeit topologially similar versions of the graph to partition, by �nding
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Fig. 1. Multi-level framework for omputing a bipartition of a graph.mathings whih ollapse verties and edges, until the oarsest graph obtainedis no larger than a few hundreds of verties, then omputing a separator on thisoarsest graph, and projeting bak this separator, from oarser to �ner graphs,up to the original graph. Most often, a loal optimization algorithm, suh asKernighan-Lin [7℄ or Fiduia-Mattheyses [4℄ (FM), is used in the unoarseningphase to re�ne the partition that is projeted bak at every level, suh that thegranularity of the solution is the one of the original graph and not the one of theoarsest graph, as illustrated in Figure 1. This approah improves quality overplain graph algorithms, and speed over plain global optimization algorithms, bytaking the best of both worlds. Global optimization algorithms an be used onsmall graphs to give the general diretion of the partition to set, and inexpensiveloal optimization algorithms an be used at low ost on �ner graphs with tensof million verties.However, the quality of partitions produed by this approah is not as goodas the one that would be yielded by plain global optimization algorithms. Coars-ening artifats, as well as the meshing topology of the original graphs, trap loaloptimization algorithms in loal optima of their ost funtions, suh that fron-tiers are often made of non-optimal sets of segments, as illustrated in Figure 5.a.This paper desribes an e�ient way to integrate di�usion shemes into amulti-level framework, so as to ompute partitions with small and smooth fron-tiers in a time equivalent in magnitude to the one of state-of-the-art loal op-timization algorithms. It is organized as follows. After presenting related worksin Setion 2, we introdue in Setion 3 our multi-level banded di�usion sheme,and show some partitioning and mapping results, obtained with Soth 5.0, inSetion 4. Then omes the onlusion.2 Related worksMany authors had already notied that partitions yielded by loal optimizationalgorithms were not optimal. One of the most voal ommunities was the one

ha
l-0

03
01

42
7,

 v
er

si
on

 1
 - 

21
 J

ul
 2

00
8



of the users of iterative linear system solving methods [12℄, whih experienedthat suh partitions were not �tted for their purpose, as subdomains with longerfrontiers or irregular shapes resulted in a larger number of iterations to ahieveonvergene. To measure the quality of eah of the parts, several authors de�neda metri alled aspet ratio, whih an be thought in 2D as a measure of theperimeter of a part with respet to the square root of its area. The more ompata part is, the smaller its aspet ratio value is, as ideal parts are of irular shapein the Eulidean spae.In [3℄, Diekmann et al. evidened suh a behavior, and proposed both ameasure of the aspet ratio of the parts, as well as a set of heuristis to reate andre�ne the partitions, with the objetive of dereasing their aspet ratio. Amongthese algorithms is a �bubble-growing� algorithm. This algorithm is based on theobservation that sets of soap bubbles self-organize so as to minimize the surfae oftheir interfaes, whih is indeed what is expeted from a partitioning algorithm.Consequently, the authors' idea was to grow, from as many seed verties asthe desired number of parts, a olletion of expanding bubbles, by performingbreadth-�rst traversals rooted at these seed verties. One every graph vertexhas been assigned to some part, eah part omputes its enter based on thegraph distane metri. These enter verties are taken as new seeds and theexpansion proess is started again, until it onverges, that is, until enters ofsubdomains no longer move. An important drawbak of this method is that itdoes not guarantee that all parts will hold the same number of verties, whihrequires to all other heuristis in turn to perform load balaning. Also, all ofthe graph verties must be visited many times, whih makes this algorithm quiteexpensive, all the more it is ombined with ostly algorithms suh as simulatedannealing, and the omputation of the aspet ratio requires some knowledge onthe geometry of the graphs, whih is not always available.In [8℄, Meyerhenke and Shamberger further explore the bubble model, anddevise a way to grow the bubbles by solving, possibly in parallel, systems oflinear equations, instead of iteratively omputing bubble enters. This methodyields partitions of high quality too, but is very slow, even in parallel [9℄, andthe load balaning problem is also not addressed, whih requires to resort to agreedy load balaning algorithm afterwards.In [13℄, Wan et al. explore a di�usive model, alled the in�uene model, whereverties impat their neighbors by di�using them information on their urrentstate. This model also does not handle load balaning properly.3 Multi-level banded di�usion shemeIn spite of their better quality, all of the above di�usion shemes have two draw-baks: �rst, they do not naturally balane loads between parts and seond, theyare expensive as they involve all of the graph verties. The method that wepropose in this paper addresses both of these problems.
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Fig. 2. Sketh of our di�usion model.3.1 The jug of the DanaidesThe di�usion sheme that we propose an apply to an arbitrary number ofparts, but for the sake of larity we will desribe it in the ontext of graphbipartitioning, that is, with two parts only. We model the graph to bipartitionin the following way, depited in Figure 2. Nodes are represented as barrels ofin�nite apaity, whih leak suh that one unit of liquid at most drips per unitof time. When graph verties are weighted, always with integer weights, themaximum quantity of liquid to be lost per unit of time is equal to the weight ofthe vertex. Graph edges are modeled by pipes of setion equal to their weight.In both parts, a soure vertex is hosen, to whih a soure pipe is onneted,whih �ows in |V |
2

units of liquid per unit of time. Two sorts of liquids are in fatinjeted in the system: soth in the �rst pipe, and anti-soth in the seond pipe,suh that when some quantity of soth mixes with the same quantity of anti-soth, both vanish. To ease the writing of the algorithm in the bipartitioningase, soth is represented by positive quantities and anti-soth is representedby negative ones, so that mutual destrution naturally takes plae when addingany two quantities of opposite signs.The di�usion algorithm performs as outlined in Figure 3. For eah time step,and for eah vertex, the amount of liquid (whether soth or anti-soth) whihremains after some has leaked is spread aross the onneting pipes towardsthe neighboring barrels, aording to their relative setions. This proess ouldbe iterated until onvergene, but in fat it is only performed for a number ofsteps su�ient to ahieve sign stability. Indeed, we are not interested in ompleteonvergene, but in the stability of the signs of all ontent quantities borne bygraph verties, whih indiate whether soth or anti-soth dominates in thebarrels, that is, if some vertex belongs to part 0 or 1.Sine |V | units of both liquids are injeted on the whole per unit of time, andsine all of the barrels an leak the same overall amount in the same time, thesystem is bound to onverge, all the more that liquid an disappear by ollisionof soth and anti-soth. As in the bubble shemes, what is expeted is that asmooth front will be reated between the two parts. The purpose of the algorithmis more to have a global smoothing of the frontier than a strit minimization of
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while (number of passes to do) {reset ontents of new array to 0;
old[s0]← old[s0]− |V |/2; /* Refill soure barrels */
old[s1]← old[s1] + |V |/2;for (all verties v in graph) {

c← old[v]; /* Get ontents of barrel */if (|c| > weight[v]) { /* If not all ontents have leaked */
c← c− weight[v] ∗ sign(c); /* Compute what will remain */
σ ←

∑
e=(v,v′)

weight[e]; /* Sum weights of all adjaent edges */for (all edges e = (v, v′)) { /* For all edges adjaent to v */
f ← c ∗ weight[e]/σ; /* Fration to be spread to v' */
new[v′]← new[v′] + f ; /* Aumulate spreaded ontributions */}}}swap old and new arrays;}Fig. 3. Sketh of the jug-of-the-Danaides di�usion algorithm. Soth, represented aspositive quantities, �ows from the soure of part 1, while anti-soth, represented asnegative quantities, �ows from the soure of part 0. For eah step, the urrent and newontents of every vertex are stored in arrays old and new, respetively.the ut. In fat, unlike all of the algorithms presented in the previous setion, ourmethod privileges load balaning over ut minimization. For this latter riterion,we rely on an additional feature of our sheme, as explained below.3.2 Band graphs in a multi-level shemeOur di�usion algorithm, as suh, presents two weaknesses: nothing is said aboutthe seletion of the seed verties, and performing suh iterations over all ofthe graphs verties is very expensive ompared to loal optimization algorithmswhih only onsider verties in the immediate viinity of the frontiers.To address these two problems onurrently, we use a method we have de-veloped in [1℄, illustrated in Figure 4. It onsists in using a multi-level shemein whih re�nement algorithms are not applied to the full graphs but to bandgraphs that ontain verties that are at most at some small distane, typially

3, from the projeted separator. In these band graphs, two additional �anhor�verties represent all of the removed verties of eah part, and are onneted tothe last band layers of verties of eah of the parts. The vertex weight of theanhor verties is equal to the sum of the vertex weights of all of the vertiesthey replae, to preserve the balane of the two band parts.The underlying reasoning of this pre-onstrained banding sheme is that sineevery re�nement is lassially performed by means of a loal algorithm, whihperturbs only in a limited way the position of the projeted separator, loalre�nement algorithms need only to be passed a subgraph that ontains the ver-ties that are very lose to the projeted separator. We have experimented that,
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Fig. 4. Multi-level banded re�nement sheme. A band graph of small width is re-ated around the projeted �ner separator, with anhor verties representing all of theremoved verties in eah part. After some optimization algorithm (whether loal orglobal) is applied, the re�ned band separator is projeted bak to the full graph, andthe unoarsening proess goes on.when performing Fiduia-Mattheyses re�nement on band graphs that ontainonly verties that are at distane at most 3 from the projeted separators, thequality of the �nest separator not only remains onstant, but even signi�antlyimproves in most ases. Our interpretation is that this pre-onstrained bandingprevents loal optimization algorithms from exploring and being trapped in loaloptima that would be too far from the global optimum skethed at the oarsestlevel of the multi-level proess.Suh a banded sheme is ideal for using our di�usion sheme, as anhorverties represent a natural hoie to be taken as seed verties. Indeed, the mostimportant problem for bubble-growing algorithms is the determination of theseed verties from whih bubbles are grown, whih requires expensive proessesinvolving all of the graph verties [3, 8℄. Sine anhor verties are onneted toall of the verties of the last layers, the di�used liquids �ow as a front as if theyoriginated from the farthest verties from the frontier, whih is indeed whatwould happen if they �owed from the enter of a bubble having the frontier asits perimeter.3.3 ParallelizationOur di�usion algorithm has the additional interest of being highly salable. If weassume that full graphs, as well as band graphs, are distributed aross proessorssuh that every proessor holds a fration of the graph verties along with theiradjaeny lists, like what is done for instane in PT-Soth [2℄, the parallelversion of Soth, the parallel version of the algorithm is straightforward. Ev-ery proessor performs its loal update and omputes the ontributions it hasto spread to distant neighbors, after whih these ontributions are sent to theirdestination proessors in order to be aggregated. In order to over ommunia-tion by omputations, verties that have distant neighbors an be proessed �rst,then ommuniations are started, and verties with purely loal adjaeny listsan be proessed in the mean time, before reeived ontributions are aggregated.
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Table 1. Desription of the test graphs that we use, whih all relate to 3D problems,exept thread. |V | and |E| are the vertex and edge ardinalities, in thousands.Graph Size (×103) Average
|V | |E| degreealtr4 26 163 12.50audikw1 944 38354 81.28auto 449 3315 14.77bmw32 227 5531 48.65body 45 164 7.26braket 63 367 11.71

Graph Size (×103) Average
|V | |E| degreeonesphere1m 1055 8023 15.21oean 143 410 5.71oilpan 74 1762 47.77pwt 37 145 7.93thread 30 2220 149.324 Experimental resultsThe di�usion algorithm disussed above has been implemented, as a sequentialgraph bipartitioning method, in version 5.0 the Soth [10℄ graph partition-ing and stati mapping software. Its k-way implementation is not yet available,beause it requires more oding, inluding a k-way band extration algorithmwhih does not exist to date. All of the neessary �oating-point arithmeti hasbeen implemented in single preision.The tests were run on a Lenovo ThinkPad T60 laptop, with an Intel dual-ore T2400 proessor running at 1.8 MHz and 1 Gb of memory. As we ransequential tests only, the dual-ore feature of the proessor is not relevant. Thetest graphs we have used in our experiments are listed in Table 1. These graphswere partitioned into 2 to 128 parts, and the three quality metris that weonsider are the number of ut edges, alled Cut, a load imbalane ratio equalto the size of the largest part divided by the average size, alledMaCut, and themaximum diameter of the parts, referred to asMDi, whih is an indiret metriof the shape of the partition, and is usable even in the ase of graphs of unknownor nonexistent geometry. This latter metri is insu�ient, as it does not reallyapture the smoothness of the interfaes, sine irregularly shaped parts an stillhave small diameters; the best proof would have been to run an iterative solverand measure onvergene rates basing on the numbers of iterations. This workis in progress.Three di�usion heuristis were ompared against the lassial strategy im-plemented in Soth 4.0, referred to as RMF in the following, whih performsreursive bipartitioning with bipartitions omputed in a multi-level way, usingFM re�nement.The �rst method, RMBD, uses the same reursive bipartitioning and multi-level strategy, but banded di�usion is performed during the multi-level re�ne-ment steps. The results ahieved with this method validate our approah: theobtained partitions have very smooth boundaries (see Figure 5.b), and are ad-equately balaned if the number of di�usion iterations is su�iently high, asshown in Table 2.
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Table 2. Evolution of the ut size (∆Cut), of the load imbalane ratio (∆MaCut)and of the maximum diameter of the parts (∆MDi) produed by various partitioningheuristis with respet to the RMF strategy, averaged over all test graphs and numbersof parts. Figures below partitioning strategy names indiate the number of di�usionsteps performed.Method RMBD RMBDF RMBaDF500 200 100 40 500 40 40
∆Cut (%) +19.51 +20.01 +18.15 +21.49 +2.26 +3.10 -3.17
∆MaCut (%) +0.58 +1.12 +1.80 +9.76 -0.95 -0.29 -0.21
∆MDi (%) +3.86 +1.92 +4.69 +5.43 +2.26 +3.10 -3.24
∆Time (×) 21.31 9.33 5.33 2.93 21.47 2.99 3.07

When performing 100 di�usion steps, the averageMaCut value for RMBD is
1.046, only 1.80 % higher than the one of RMF. However, the maximum diameterMdi is not signi�antly redued, and is even inreased on average by 4.69% withrespet to RMF. This method is also 5.33 times slower than RMF and inreasesthe ut by about 20%, whih makes it of little pratial use.We have therefore experimented a seond method, RMBDF, where the las-sial FM algorithm is applied to the band graph after the di�usion algorithm.The idea of this strategy is to bene�t from the global optimization apabil-ities brought by the di�usion algorithm, while loally optimizing the frontierafterward. Even when performing 40 di�usion steps only, the smoothness of theboundaries is preserved and parts are more balaned, while the ut is only in-reased by 3.10% with respet to RMF. This strategy is also only three timesslower than RMF, whih is extremely fast for a di�usion-based algorithm.In order to favor the minimization of diameters, we have modi�ed our di�u-sion method so as to double at eah step the amount of liquid borne by everyvertex, in an �avalanhe�-like proess. This method is referred to as �aD�. It is nolonger bound to onverge, and indeed auses over�ows for large numbers of dif-fusion steps, but gives good results for small numbers of iterations. As a matterof fats, we an see in Table 2 that the RMBaDF method is the most e�ientone on average, and yields better results than the lassial RMF method whilestill providing smooth boundaries, as evidened in Figure 5..For the sake of omparison, we ompare in Table 3 some of our results againstthe ones obtained with K-MeTiS. K-MeTiS uses diret k-way partitioning in-stead of reursive bipartitioning, whih usually makes it more e�ient whenthe number of parts inreases, and also muh faster (from 10 to 20 times). Asanalyzed in [11℄, the performane of reursive bipartitioning methods tends toderease when the number of parts inreases, whih should limit the e�ienyof RMBDF methods for large numbers of parts. A full k-way di�usion algorithmis therefore required.
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Table 3. Comparison of the results, in terms of ut size (Cut) and maximum diameterof the parts (MDi), between three heuristis: multi-level with FM re�nement (RMF,as implemented in Soth 4.0), multi-level with banded di�usion and FM re�nements(RMBaDF), and K-MeTiS.Test Number of partsase 2 4 8 16 32 64 128altr4RMF Cut 1688 3197 4978 7788 11905 17656 24478MDi 50 52 40 33 25 21 14RMBaD(40)F Cut 1621 3203 5017 7776 11980 17669 24831MDi 48 46 41 30 25 18 14KMeTiS Cut 1670 3233 4981 8115 12147 17355 24058MDi 48 45 41 34 26 22 14bmw32RMF Cut 17271 54424 84222 120828 181844 267427 394418MDi 93 116 130 106 74 120 68RMBaD(40)F Cut 16032 54446 83422 124945 183454 275594 411154MDi 91 130 96 84 68 63 56KMeTiS Cut 15529 55506 92658 125686 193169 286111 420965MDi 87 108 99 87 70 61 685 Conlusion and future workIn this paper, we have presented a di�usion algorithm whih, used in a multi-level banded framework, results in smoother partition frontiers and more om-pat parts. Used in our banded ontext, this algorithm is fast enough to be usedon very large graphs, as it is only about three times slower than lassial lo-al optimization shemes. The 2-way sequential version has been integrated inversion 5.0 of Soth.This algorithm is also easily parallelizable and highly salable, whih makesit a very good andidate for the realization of a fast and e�ient parallel graphpartitioner, taking advantage of the parallel multi-level and band graph extra-tion routines already developed in PT-Soth in the ontext of sparse matrixreordering.Even more than lassial FM-like algorithms, this algorithm is onstrainedby the greedy nature of the reursive bipartitioning sheme, whih prevents theglobal improvement of frontiers omputed at previous stages. A full k-way versionof the algorithm is therefore under development, whih extends the 2-way modelby onsidering k di�erent liquids having the same mutual annihilation properties,suh that when p di�erent liquids are mixed in the same barrel, only the mostabundant one remains. This behavior is equivalent to the one of our algorithmin the 2-way ase. Using a native k-way sheme should also signi�antly reduerunning times ompared to reursive bipartitioning. A parallel version is alsobeing developed.
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a. RMF. b. RMBD. . RMBaDF.Fig. 5. Partition of graph altr4 into 8 parts using three di�erent strategies. The seg-mented frontiers produed by FM-like algorithms are learly evidened in Figure a.RMBD produes the smoothest boundaries, as shown in Figure b. RMBaDF takes thebest of both worlds, in Figure .Referenes1. C. Chevalier and F. Pellegrini. Improvement of the e�ieny of geneti algorithmsfor salable parallel graph partitioning in a multi-level framework. In Pro. Eu-ropar, pages 243�252, 2006. http://www.labri.fr/�pelegrin/papers/soth_effiientga.pdf.2. C. Chevalier and F. Pellegrini. PT-Soth: A tool for e�ient parallel graphordering. Submitted to Parallel Computing, de 2006. http://www.labri.fr/�pelegrin/papers/soth_parallelordering_paromp.pdf.3. R. Diekmann, R. Preis, F. Shlimbah, and C. Walshaw. Aspet ratio for meshpartitioning. In Pro. Europar'98, LNCS 1470, pages 347�351, 1998.4. C. M. Fiduia and R. M. Mattheyses. A linear-time heuristi for improving net-work partitions. In Pro. 19th Design Automat. Conf., pages 175�181. IEEE, 1982.5. B. Hendrikson and R. Leland. A multilevel algorithm for partitioning graphs. InProeedings of Superomputing, 1995.6. G. Karypis and V. Kumar. A fast and high quality multilevel sheme for parti-tioning irregular graphs. SIAM J. on Sienti� Computing, 20(1):359�392, 1998.7. B. W. Kernighan and S. Lin. An e�ient heuristi proedure for partitionninggraphs. BELL System Tehnial Journal, 49:291�307, feb 1970.8. H. Meyerhenke and S. Shamberger. Balaning parallel adaptive FEM omputa-tions by solving systems of linear equations. In Pro. Europar, pages 209�219,2005.9. H. Meyerhenke and S. Shamberger. A parallel shape optimizing load balaner. InPro. Europar'2006, LNCS 4128, pages 232�242, 2006.10. Soth: Stati mapping, graph partitioning, and sparse matrix blok orderingpakage. http://www.labri.fr/�pelegrin/soth/.11. H. D. Simon and S.-H. Teng. How good is reursive bipartition. SIAM J. Sienti�Computing, 18(5):1436�1445, sep 1997.12. R. Vanderstraeten, R. Keunings, and C. Farhat. Beyond onventional mesh parti-tioning algorithms. In SIAM Conf. on Par. Pro., pages 611�614, 1995.13. Y. Wan, S. Roy, A. Saberi, and B. Lesieutre. A stohasti automaton-based algo-rithm for �exible and distributed network partitioning. In Pro. Swarm IntelligeneSymposium, pages 273�280. IEEE, 2005.
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