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A parallelisable multi-level banded di�usions
heme for 
omputing balan
ed partitions withsmooth boundariesFrançois PellegriniENSEIRB, LaBRI and INRIA FutursUniversité Bordeaux I351, 
ours de la Libération, 33405 TALENCE, FRANCEpelegrin�labri.frAbstra
t. Graph partitioning algorithms have yet to be improved, be-
ause graph-based lo
al optimization algorithms do not 
ompute smoothand globally-optimal frontiers, while global optimization algorithms aretoo expensive to be of pra
ti
al use on large graphs. This paper presentsa way to integrate a global optimization, di�usion algorithm in a bandedmulti-level framework, whi
h dramati
ally redu
es problem size whileyielding balan
ed partitions with smooth boundaries. Sin
e all of thesealgorithms do parallelize well, high-quality parallel graph partitionersbuilt using these algorithms will have the same quality as state-of-the-art sequential partitioners.1 Introdu
tionGraph partitioning is an ubiquitous te
hnique whi
h has appli
ations in many�elds of 
omputer s
ien
e and engineering, su
h as workload balan
ing in parallel
omputing, database storage, VLSI design or bio-informati
s. It is mostly usedto help solving domain-dependent optimization problems modeled in terms ofweighted or unweighted graphs, where �nding good solutions amounts to 
om-puting, eventually re
ursively in a divide-and-
onquer framework, small vertexor edge 
uts that balan
e evenly the weights of the graph parts.Many algorithms have been proposed to 
ompute e�
ient partitions of anygraphs, su
h as graph or evolutionary algorithms, spe
tral methods, or linearoptimization methods. Basi
ally, all of these methods belong to two distin
t
lasses: global methods, whi
h 
onsider all of the graph data, and lo
al opti-mization heuristi
s, whi
h try to improve lo
ally a preexisting partition. Globalmethods often yield better results, but their 
osts dramati
ally in
reases alongwith problem size, whi
h makes them pra
ti
ally impossible to use for graphs
omprising several tens million verti
es, whi
h are the graphs now being 
onsid-ered in many s
ienti�
 engineering problems.The multi-level approa
h [5, 6℄ has been a quite su

essful attempt to 
om-bine both approa
hes. It 
onsists in repeatedly 
omputing a set of in
reasingly
oarser albeit topologi
ally similar versions of the graph to partition, by �nding

ha
l-0

03
01

42
7,

 v
er

si
on

 1
 - 

21
 J

ul
 2

00
8

Author manuscript, published in "EuroPar, Rennes : France (2007)"
 DOI : 10.1007/978-3-540-74466-5_22

http://dx.doi.org/10.1007/978-3-540-74466-5_22
http://hal.archives-ouvertes.fr/hal-00301427/fr/
http://hal.archives-ouvertes.fr


Coarsening
phase

Uncoarsening
phase

Initial partitioning

Projected partition

Refined partition

Fig. 1. Multi-level framework for 
omputing a bipartition of a graph.mat
hings whi
h 
ollapse verti
es and edges, until the 
oarsest graph obtainedis no larger than a few hundreds of verti
es, then 
omputing a separator on this
oarsest graph, and proje
ting ba
k this separator, from 
oarser to �ner graphs,up to the original graph. Most often, a lo
al optimization algorithm, su
h asKernighan-Lin [7℄ or Fidu

ia-Mattheyses [4℄ (FM), is used in the un
oarseningphase to re�ne the partition that is proje
ted ba
k at every level, su
h that thegranularity of the solution is the one of the original graph and not the one of the
oarsest graph, as illustrated in Figure 1. This approa
h improves quality overplain graph algorithms, and speed over plain global optimization algorithms, bytaking the best of both worlds. Global optimization algorithms 
an be used onsmall graphs to give the general dire
tion of the partition to set, and inexpensivelo
al optimization algorithms 
an be used at low 
ost on �ner graphs with tensof million verti
es.However, the quality of partitions produ
ed by this approa
h is not as goodas the one that would be yielded by plain global optimization algorithms. Coars-ening artifa
ts, as well as the meshing topology of the original graphs, trap lo
aloptimization algorithms in lo
al optima of their 
ost fun
tions, su
h that fron-tiers are often made of non-optimal sets of segments, as illustrated in Figure 5.a.This paper des
ribes an e�
ient way to integrate di�usion s
hemes into amulti-level framework, so as to 
ompute partitions with small and smooth fron-tiers in a time equivalent in magnitude to the one of state-of-the-art lo
al op-timization algorithms. It is organized as follows. After presenting related worksin Se
tion 2, we introdu
e in Se
tion 3 our multi-level banded di�usion s
heme,and show some partitioning and mapping results, obtained with S
ot
h 5.0, inSe
tion 4. Then 
omes the 
on
lusion.2 Related worksMany authors had already noti
ed that partitions yielded by lo
al optimizationalgorithms were not optimal. One of the most vo
al 
ommunities was the one
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of the users of iterative linear system solving methods [12℄, whi
h experien
edthat su
h partitions were not �tted for their purpose, as subdomains with longerfrontiers or irregular shapes resulted in a larger number of iterations to a
hieve
onvergen
e. To measure the quality of ea
h of the parts, several authors de�neda metri
 
alled aspe
t ratio, whi
h 
an be thought in 2D as a measure of theperimeter of a part with respe
t to the square root of its area. The more 
ompa
ta part is, the smaller its aspe
t ratio value is, as ideal parts are of 
ir
ular shapein the Eu
lidean spa
e.In [3℄, Diekmann et al. eviden
ed su
h a behavior, and proposed both ameasure of the aspe
t ratio of the parts, as well as a set of heuristi
s to 
reate andre�ne the partitions, with the obje
tive of de
reasing their aspe
t ratio. Amongthese algorithms is a �bubble-growing� algorithm. This algorithm is based on theobservation that sets of soap bubbles self-organize so as to minimize the surfa
e oftheir interfa
es, whi
h is indeed what is expe
ted from a partitioning algorithm.Consequently, the authors' idea was to grow, from as many seed verti
es asthe desired number of parts, a 
olle
tion of expanding bubbles, by performingbreadth-�rst traversals rooted at these seed verti
es. On
e every graph vertexhas been assigned to some part, ea
h part 
omputes its 
enter based on thegraph distan
e metri
. These 
enter verti
es are taken as new seeds and theexpansion pro
ess is started again, until it 
onverges, that is, until 
enters ofsubdomains no longer move. An important drawba
k of this method is that itdoes not guarantee that all parts will hold the same number of verti
es, whi
hrequires to 
all other heuristi
s in turn to perform load balan
ing. Also, all ofthe graph verti
es must be visited many times, whi
h makes this algorithm quiteexpensive, all the more it is 
ombined with 
ostly algorithms su
h as simulatedannealing, and the 
omputation of the aspe
t ratio requires some knowledge onthe geometry of the graphs, whi
h is not always available.In [8℄, Meyerhenke and S
hamberger further explore the bubble model, anddevise a way to grow the bubbles by solving, possibly in parallel, systems oflinear equations, instead of iteratively 
omputing bubble 
enters. This methodyields partitions of high quality too, but is very slow, even in parallel [9℄, andthe load balan
ing problem is also not addressed, whi
h requires to resort to agreedy load balan
ing algorithm afterwards.In [13℄, Wan et al. explore a di�usive model, 
alled the in�uen
e model, whereverti
es impa
t their neighbors by di�using them information on their 
urrentstate. This model also does not handle load balan
ing properly.3 Multi-level banded di�usion s
hemeIn spite of their better quality, all of the above di�usion s
hemes have two draw-ba
ks: �rst, they do not naturally balan
e loads between parts and se
ond, theyare expensive as they involve all of the graph verti
es. The method that wepropose in this paper addresses both of these problems.
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Fig. 2. Sket
h of our di�usion model.3.1 The jug of the DanaidesThe di�usion s
heme that we propose 
an apply to an arbitrary number ofparts, but for the sake of 
larity we will des
ribe it in the 
ontext of graphbipartitioning, that is, with two parts only. We model the graph to bipartitionin the following way, depi
ted in Figure 2. Nodes are represented as barrels ofin�nite 
apa
ity, whi
h leak su
h that one unit of liquid at most drips per unitof time. When graph verti
es are weighted, always with integer weights, themaximum quantity of liquid to be lost per unit of time is equal to the weight ofthe vertex. Graph edges are modeled by pipes of se
tion equal to their weight.In both parts, a sour
e vertex is 
hosen, to whi
h a sour
e pipe is 
onne
ted,whi
h �ows in |V |
2

units of liquid per unit of time. Two sorts of liquids are in fa
tinje
ted in the system: s
ot
h in the �rst pipe, and anti-s
ot
h in the se
ond pipe,su
h that when some quantity of s
ot
h mixes with the same quantity of anti-s
ot
h, both vanish. To ease the writing of the algorithm in the bipartitioning
ase, s
ot
h is represented by positive quantities and anti-s
ot
h is representedby negative ones, so that mutual destru
tion naturally takes pla
e when addingany two quantities of opposite signs.The di�usion algorithm performs as outlined in Figure 3. For ea
h time step,and for ea
h vertex, the amount of liquid (whether s
ot
h or anti-s
ot
h) whi
hremains after some has leaked is spread a
ross the 
onne
ting pipes towardsthe neighboring barrels, a

ording to their relative se
tions. This pro
ess 
ouldbe iterated until 
onvergen
e, but in fa
t it is only performed for a number ofsteps su�
ient to a
hieve sign stability. Indeed, we are not interested in 
omplete
onvergen
e, but in the stability of the signs of all 
ontent quantities borne bygraph verti
es, whi
h indi
ate whether s
ot
h or anti-s
ot
h dominates in thebarrels, that is, if some vertex belongs to part 0 or 1.Sin
e |V | units of both liquids are inje
ted on the whole per unit of time, andsin
e all of the barrels 
an leak the same overall amount in the same time, thesystem is bound to 
onverge, all the more that liquid 
an disappear by 
ollisionof s
ot
h and anti-s
ot
h. As in the bubble s
hemes, what is expe
ted is that asmooth front will be 
reated between the two parts. The purpose of the algorithmis more to have a global smoothing of the frontier than a stri
t minimization of
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while (number of passes to do) {reset 
ontents of new array to 0;
old[s0]← old[s0]− |V |/2; /* Refill sour
e barrels */
old[s1]← old[s1] + |V |/2;for (all verti
es v in graph) {

c← old[v]; /* Get 
ontents of barrel */if (|c| > weight[v]) { /* If not all 
ontents have leaked */
c← c− weight[v] ∗ sign(c); /* Compute what will remain */
σ ←

∑
e=(v,v′)

weight[e]; /* Sum weights of all adja
ent edges */for (all edges e = (v, v′)) { /* For all edges adja
ent to v */
f ← c ∗ weight[e]/σ; /* Fra
tion to be spread to v' */
new[v′]← new[v′] + f ; /* A

umulate spreaded 
ontributions */}}}swap old and new arrays;}Fig. 3. Sket
h of the jug-of-the-Danaides di�usion algorithm. S
ot
h, represented aspositive quantities, �ows from the sour
e of part 1, while anti-s
ot
h, represented asnegative quantities, �ows from the sour
e of part 0. For ea
h step, the 
urrent and new
ontents of every vertex are stored in arrays old and new, respe
tively.the 
ut. In fa
t, unlike all of the algorithms presented in the previous se
tion, ourmethod privileges load balan
ing over 
ut minimization. For this latter 
riterion,we rely on an additional feature of our s
heme, as explained below.3.2 Band graphs in a multi-level s
hemeOur di�usion algorithm, as su
h, presents two weaknesses: nothing is said aboutthe sele
tion of the seed verti
es, and performing su
h iterations over all ofthe graphs verti
es is very expensive 
ompared to lo
al optimization algorithmswhi
h only 
onsider verti
es in the immediate vi
inity of the frontiers.To address these two problems 
on
urrently, we use a method we have de-veloped in [1℄, illustrated in Figure 4. It 
onsists in using a multi-level s
hemein whi
h re�nement algorithms are not applied to the full graphs but to bandgraphs that 
ontain verti
es that are at most at some small distan
e, typi
ally

3, from the proje
ted separator. In these band graphs, two additional �an
hor�verti
es represent all of the removed verti
es of ea
h part, and are 
onne
ted tothe last band layers of verti
es of ea
h of the parts. The vertex weight of thean
hor verti
es is equal to the sum of the vertex weights of all of the verti
esthey repla
e, to preserve the balan
e of the two band parts.The underlying reasoning of this pre-
onstrained banding s
heme is that sin
eevery re�nement is 
lassi
ally performed by means of a lo
al algorithm, whi
hperturbs only in a limited way the position of the proje
ted separator, lo
alre�nement algorithms need only to be passed a subgraph that 
ontains the ver-ti
es that are very 
lose to the proje
ted separator. We have experimented that,
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Fig. 4. Multi-level banded re�nement s
heme. A band graph of small width is 
re-ated around the proje
ted �ner separator, with an
hor verti
es representing all of theremoved verti
es in ea
h part. After some optimization algorithm (whether lo
al orglobal) is applied, the re�ned band separator is proje
ted ba
k to the full graph, andthe un
oarsening pro
ess goes on.when performing Fidu

ia-Mattheyses re�nement on band graphs that 
ontainonly verti
es that are at distan
e at most 3 from the proje
ted separators, thequality of the �nest separator not only remains 
onstant, but even signi�
antlyimproves in most 
ases. Our interpretation is that this pre-
onstrained bandingprevents lo
al optimization algorithms from exploring and being trapped in lo
aloptima that would be too far from the global optimum sket
hed at the 
oarsestlevel of the multi-level pro
ess.Su
h a banded s
heme is ideal for using our di�usion s
heme, as an
horverti
es represent a natural 
hoi
e to be taken as seed verti
es. Indeed, the mostimportant problem for bubble-growing algorithms is the determination of theseed verti
es from whi
h bubbles are grown, whi
h requires expensive pro
essesinvolving all of the graph verti
es [3, 8℄. Sin
e an
hor verti
es are 
onne
ted toall of the verti
es of the last layers, the di�used liquids �ow as a front as if theyoriginated from the farthest verti
es from the frontier, whi
h is indeed whatwould happen if they �owed from the 
enter of a bubble having the frontier asits perimeter.3.3 ParallelizationOur di�usion algorithm has the additional interest of being highly s
alable. If weassume that full graphs, as well as band graphs, are distributed a
ross pro
essorssu
h that every pro
essor holds a fra
tion of the graph verti
es along with theiradja
en
y lists, like what is done for instan
e in PT-S
ot
h [2℄, the parallelversion of S
ot
h, the parallel version of the algorithm is straightforward. Ev-ery pro
essor performs its lo
al update and 
omputes the 
ontributions it hasto spread to distant neighbors, after whi
h these 
ontributions are sent to theirdestination pro
essors in order to be aggregated. In order to 
over 
ommuni
a-tion by 
omputations, verti
es that have distant neighbors 
an be pro
essed �rst,then 
ommuni
ations are started, and verti
es with purely lo
al adja
en
y lists
an be pro
essed in the mean time, before re
eived 
ontributions are aggregated.
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Table 1. Des
ription of the test graphs that we use, whi
h all relate to 3D problems,ex
ept thread. |V | and |E| are the vertex and edge 
ardinalities, in thousands.Graph Size (×103) Average
|V | |E| degreealtr4 26 163 12.50audikw1 944 38354 81.28auto 449 3315 14.77bmw32 227 5531 48.65body 45 164 7.26bra
ket 63 367 11.71

Graph Size (×103) Average
|V | |E| degree
onesphere1m 1055 8023 15.21o
ean 143 410 5.71oilpan 74 1762 47.77pwt 37 145 7.93thread 30 2220 149.324 Experimental resultsThe di�usion algorithm dis
ussed above has been implemented, as a sequentialgraph bipartitioning method, in version 5.0 the S
ot
h [10℄ graph partition-ing and stati
 mapping software. Its k-way implementation is not yet available,be
ause it requires more 
oding, in
luding a k-way band extra
tion algorithmwhi
h does not exist to date. All of the ne
essary �oating-point arithmeti
 hasbeen implemented in single pre
ision.The tests were run on a Lenovo ThinkPad T60 laptop, with an Intel dual-
ore T2400 pro
essor running at 1.8 MHz and 1 Gb of memory. As we ransequential tests only, the dual-
ore feature of the pro
essor is not relevant. Thetest graphs we have used in our experiments are listed in Table 1. These graphswere partitioned into 2 to 128 parts, and the three quality metri
s that we
onsider are the number of 
ut edges, 
alled Cut, a load imbalan
e ratio equalto the size of the largest part divided by the average size, 
alledMaCut, and themaximum diameter of the parts, referred to asMDi, whi
h is an indire
t metri
of the shape of the partition, and is usable even in the 
ase of graphs of unknownor nonexistent geometry. This latter metri
 is insu�
ient, as it does not really
apture the smoothness of the interfa
es, sin
e irregularly shaped parts 
an stillhave small diameters; the best proof would have been to run an iterative solverand measure 
onvergen
e rates basing on the numbers of iterations. This workis in progress.Three di�usion heuristi
s were 
ompared against the 
lassi
al strategy im-plemented in S
ot
h 4.0, referred to as RMF in the following, whi
h performsre
ursive bipartitioning with bipartitions 
omputed in a multi-level way, usingFM re�nement.The �rst method, RMBD, uses the same re
ursive bipartitioning and multi-level strategy, but banded di�usion is performed during the multi-level re�ne-ment steps. The results a
hieved with this method validate our approa
h: theobtained partitions have very smooth boundaries (see Figure 5.b), and are ad-equately balan
ed if the number of di�usion iterations is su�
iently high, asshown in Table 2.
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Table 2. Evolution of the 
ut size (∆Cut), of the load imbalan
e ratio (∆MaCut)and of the maximum diameter of the parts (∆MDi) produ
ed by various partitioningheuristi
s with respe
t to the RMF strategy, averaged over all test graphs and numbersof parts. Figures below partitioning strategy names indi
ate the number of di�usionsteps performed.Method RMBD RMBDF RMBaDF500 200 100 40 500 40 40
∆Cut (%) +19.51 +20.01 +18.15 +21.49 +2.26 +3.10 -3.17
∆MaCut (%) +0.58 +1.12 +1.80 +9.76 -0.95 -0.29 -0.21
∆MDi (%) +3.86 +1.92 +4.69 +5.43 +2.26 +3.10 -3.24
∆Time (×) 21.31 9.33 5.33 2.93 21.47 2.99 3.07

When performing 100 di�usion steps, the averageMaCut value for RMBD is
1.046, only 1.80 % higher than the one of RMF. However, the maximum diameterMdi is not signi�
antly redu
ed, and is even in
reased on average by 4.69% withrespe
t to RMF. This method is also 5.33 times slower than RMF and in
reasesthe 
ut by about 20%, whi
h makes it of little pra
ti
al use.We have therefore experimented a se
ond method, RMBDF, where the 
las-si
al FM algorithm is applied to the band graph after the di�usion algorithm.The idea of this strategy is to bene�t from the global optimization 
apabil-ities brought by the di�usion algorithm, while lo
ally optimizing the frontierafterward. Even when performing 40 di�usion steps only, the smoothness of theboundaries is preserved and parts are more balan
ed, while the 
ut is only in-
reased by 3.10% with respe
t to RMF. This strategy is also only three timesslower than RMF, whi
h is extremely fast for a di�usion-based algorithm.In order to favor the minimization of diameters, we have modi�ed our di�u-sion method so as to double at ea
h step the amount of liquid borne by everyvertex, in an �avalan
he�-like pro
ess. This method is referred to as �aD�. It is nolonger bound to 
onverge, and indeed 
auses over�ows for large numbers of dif-fusion steps, but gives good results for small numbers of iterations. As a matterof fa
ts, we 
an see in Table 2 that the RMBaDF method is the most e�
ientone on average, and yields better results than the 
lassi
al RMF method whilestill providing smooth boundaries, as eviden
ed in Figure 5.
.For the sake of 
omparison, we 
ompare in Table 3 some of our results againstthe ones obtained with K-MeTiS. K-MeTiS uses dire
t k-way partitioning in-stead of re
ursive bipartitioning, whi
h usually makes it more e�
ient whenthe number of parts in
reases, and also mu
h faster (from 10 to 20 times). Asanalyzed in [11℄, the performan
e of re
ursive bipartitioning methods tends tode
rease when the number of parts in
reases, whi
h should limit the e�
ien
yof RMBDF methods for large numbers of parts. A full k-way di�usion algorithmis therefore required.
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Table 3. Comparison of the results, in terms of 
ut size (Cut) and maximum diameterof the parts (MDi), between three heuristi
s: multi-level with FM re�nement (RMF,as implemented in S
ot
h 4.0), multi-level with banded di�usion and FM re�nements(RMBaDF), and K-MeTiS.Test Number of parts
ase 2 4 8 16 32 64 128altr4RMF Cut 1688 3197 4978 7788 11905 17656 24478MDi 50 52 40 33 25 21 14RMBaD(40)F Cut 1621 3203 5017 7776 11980 17669 24831MDi 48 46 41 30 25 18 14KMeTiS Cut 1670 3233 4981 8115 12147 17355 24058MDi 48 45 41 34 26 22 14bmw32RMF Cut 17271 54424 84222 120828 181844 267427 394418MDi 93 116 130 106 74 120 68RMBaD(40)F Cut 16032 54446 83422 124945 183454 275594 411154MDi 91 130 96 84 68 63 56KMeTiS Cut 15529 55506 92658 125686 193169 286111 420965MDi 87 108 99 87 70 61 685 Con
lusion and future workIn this paper, we have presented a di�usion algorithm whi
h, used in a multi-level banded framework, results in smoother partition frontiers and more 
om-pa
t parts. Used in our banded 
ontext, this algorithm is fast enough to be usedon very large graphs, as it is only about three times slower than 
lassi
al lo-
al optimization s
hemes. The 2-way sequential version has been integrated inversion 5.0 of S
ot
h.This algorithm is also easily parallelizable and highly s
alable, whi
h makesit a very good 
andidate for the realization of a fast and e�
ient parallel graphpartitioner, taking advantage of the parallel multi-level and band graph extra
-tion routines already developed in PT-S
ot
h in the 
ontext of sparse matrixreordering.Even more than 
lassi
al FM-like algorithms, this algorithm is 
onstrainedby the greedy nature of the re
ursive bipartitioning s
heme, whi
h prevents theglobal improvement of frontiers 
omputed at previous stages. A full k-way versionof the algorithm is therefore under development, whi
h extends the 2-way modelby 
onsidering k di�erent liquids having the same mutual annihilation properties,su
h that when p di�erent liquids are mixed in the same barrel, only the mostabundant one remains. This behavior is equivalent to the one of our algorithmin the 2-way 
ase. Using a native k-way s
heme should also signi�
antly redu
erunning times 
ompared to re
ursive bipartitioning. A parallel version is alsobeing developed.
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a. RMF. b. RMBD. 
. RMBaDF.Fig. 5. Partition of graph altr4 into 8 parts using three di�erent strategies. The seg-mented frontiers produ
ed by FM-like algorithms are 
learly eviden
ed in Figure a.RMBD produ
es the smoothest boundaries, as shown in Figure b. RMBaDF takes thebest of both worlds, in Figure 
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