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Abstract. Graph partitioning algorithms have yet to be improved, be-
cause graph-based local optimization algorithms do not compute smooth
and globally-optimal frontiers, while global optimization algorithms are
too expensive to be of practical use on large graphs. This paper presents
a way to integrate a global optimization, diffusion algorithm in a banded
multi-level framework, which dramatically reduces problem size while
yielding balanced partitions with smooth boundaries. Since all of these
algorithms do parallelize well, high-quality parallel graph partitioners
built using these algorithms will have the same quality as state-of-the-
art sequential partitioners.

1 Introduction

Graph partitioning is an ubiquitous technique which has applications in many
fields of computer science and engineering, such as workload balancing in parallel
computing, database storage, VLSI design or bio-informatics. It is mostly used
to help solving domain-dependent optimization problems modeled in terms of
weighted or unweighted graphs, where finding good solutions amounts to com-
puting, eventually recursively in a divide-and-conquer framework, small vertex
or edge cuts that balance evenly the weights of the graph parts.

Many algorithms have been proposed to compute efficient partitions of any
graphs, such as graph or evolutionary algorithms, spectral methods, or linear
optimization methods. Basically, all of these methods belong to two distinct
classes: global methods, which consider all of the graph data, and local opti-
mization heuristics, which try to improve locally a preexisting partition. Global
methods often yield better results, but their costs dramatically increases along
with problem size, which makes them practically impossible to use for graphs
comprising several tens million vertices, which are the graphs now being consid-
ered in many scientific engineering problems.

The multi-level approach [5,6] has been a quite successful attempt to com-
bine both approaches. It consists in repeatedly computing a set of increasingly
coarser albeit topologically similar versions of the graph to partition, by finding
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Fig. 1. Multi-level framework for computing a bipartition of a graph.

matchings which collapse vertices and edges, until the coarsest graph obtained
is no larger than a few hundreds of vertices, then computing a separator on this
coarsest graph, and projecting back this separator, from coarser to finer graphs,
up to the original graph. Most often, a local optimization algorithm, such as
Kernighan-Lin [7] or Fiduccia-Mattheyses [4] (FM), is used in the uncoarsening
phase to refine the partition that is projected back at every level, such that the
granularity of the solution is the one of the original graph and not the one of the
coarsest graph, as illustrated in Figure 1. This approach improves quality over
plain graph algorithms, and speed over plain global optimization algorithms, by
taking the best of both worlds. Global optimization algorithms can be used on
small graphs to give the general direction of the partition to set, and inexpensive
local optimization algorithms can be used at low cost on finer graphs with tens
of million vertices.

However, the quality of partitions produced by this approach is not as good
as the one that would be yielded by plain global optimization algorithms. Coars-
ening artifacts, as well as the meshing topology of the original graphs, trap local
optimization algorithms in local optima of their cost functions, such that fron-
tiers are often made of non-optimal sets of segments, as illustrated in Figure 5.a.

This paper describes an efficient way to integrate diffusion schemes into a
multi-level framework, so as to compute partitions with small and smooth fron-
tiers in a time equivalent in magnitude to the one of state-of-the-art local op-
timization algorithms. It is organized as follows. After presenting related works
in Section 2, we introduce in Section 3 our multi-level banded diffusion scheme,
and show some partitioning and mapping results, obtained with SCOTCH 5.0, in
Section 4. Then comes the conclusion.

2 Related works

Many authors had already noticed that partitions yielded by local optimization
algorithms were not optimal. One of the most vocal communities was the one
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of the users of iterative linear system solving methods [12], which experienced
that such partitions were not fitted for their purpose, as subdomains with longer
frontiers or irregular shapes resulted in a larger number of iterations to achieve
convergence. To measure the quality of each of the parts, several authors defined
a metric called aspect ratio, which can be thought in 2D as a measure of the
perimeter of a part with respect to the square root of its area. The more compact
a part is, the smaller its aspect ratio value is, as ideal parts are of circular shape
in the Euclidean space.

In [3], Diekmann et al. evidenced such a behavior, and proposed both a
measure of the aspect ratio of the parts, as well as a set of heuristics to create and
refine the partitions, with the objective of decreasing their aspect ratio. Among
these algorithms is a “bubble-growing” algorithm. This algorithm is based on the
observation that sets of soap bubbles self-organize so as to minimize the surface of
their interfaces, which is indeed what is expected from a partitioning algorithm.
Consequently, the authors’ idea was to grow, from as many seed vertices as
the desired number of parts, a collection of expanding bubbles, by performing
breadth-first traversals rooted at these seed vertices. Once every graph vertex
has been assigned to some part, each part computes its center based on the
graph distance metric. These center vertices are taken as new seeds and the
expansion process is started again, until it converges, that is, until centers of
subdomains no longer move. An important drawback of this method is that it
does not guarantee that all parts will hold the same number of vertices, which
requires to call other heuristics in turn to perform load balancing. Also, all of
the graph vertices must be visited many times, which makes this algorithm quite
expensive, all the more it is combined with costly algorithms such as simulated
annealing, and the computation of the aspect ratio requires some knowledge on
the geometry of the graphs, which is not always available.

In [8], Meyerhenke and Schamberger further explore the bubble model, and
devise a way to grow the bubbles by solving, possibly in parallel, systems of
linear equations, instead of iteratively computing bubble centers. This method
yields partitions of high quality too, but is very slow, even in parallel [9], and
the load balancing problem is also not addressed, which requires to resort to a
greedy load balancing algorithm afterwards.

In [13], Wan et al. explore a diffusive model, called the influence model, where
vertices impact their neighbors by diffusing them information on their current
state. This model also does not handle load balancing properly.

3 Multi-level banded diffusion scheme

In spite of their better quality, all of the above diffusion schemes have two draw-
backs: first, they do not naturally balance loads between parts and second, they
are expensive as they involve all of the graph vertices. The method that we
propose in this paper addresses both of these problems.
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Fig. 2. Sketch of our diffusion model.

3.1 The jug of the Danaides

The diffusion scheme that we propose can apply to an arbitrary number of
parts, but for the sake of clarity we will describe it in the context of graph
bipartitioning, that is, with two parts only. We model the graph to bipartition
in the following way, depicted in Figure 2. Nodes are represented as barrels of
infinite capacity, which leak such that one unit of liquid at most drips per unit
of time. When graph vertices are weighted, always with integer weights, the
maximum quantity of liquid to be lost per unit of time is equal to the weight of
the vertex. Graph edges are modeled by pipes of section equal to their weight.
In both parts, a source vertex is chosen, to which a source pipe is connected,
which flows in |—‘2/‘ units of liquid per unit of time. Two sorts of liquids are in fact
injected in the system: scotch in the first pipe, and anti-scotch in the second pipe,
such that when some quantity of scotch mixes with the same quantity of anti-
scotch, both vanish. To ease the writing of the algorithm in the bipartitioning
case, scotch is represented by positive quantities and anti-scotch is represented
by negative ones, so that mutual destruction naturally takes place when adding
any two quantities of opposite signs.

The diffusion algorithm performs as outlined in Figure 3. For each time step,
and for each vertex, the amount of liquid (whether scotch or anti-scotch) which
remains after some has leaked is spread across the connecting pipes towards
the neighboring barrels, according to their relative sections. This process could
be iterated until convergence, but in fact it is only performed for a number of
steps sufficient to achieve sign stability. Indeed, we are not interested in complete
convergence, but in the stability of the signs of all content quantities borne by
graph vertices, which indicate whether scotch or anti-scotch dominates in the
barrels, that is, if some vertex belongs to part 0 or 1.

Since |V| units of both liquids are injected on the whole per unit of time, and
since all of the barrels can leak the same overall amount in the same time, the
system is bound to converge, all the more that liquid can disappear by collision
of scotch and anti-scotch. As in the bubble schemes, what is expected is that a
smooth front will be created between the two parts. The purpose of the algorithm
is more to have a global smoothing of the frontier than a strict minimization of
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while (number of passes to do) {
reset contents of new array to 0;
old[so] < old[so] — |V|/2; /* Refill source barrels */
old[s1] < old[s1] + |V|/2;
for (all vertices v in graph) {

¢« old[v]; /* Get contents of barrel */
if (|¢| > weight[v]) { /* If not all contents have leaked */
¢ < ¢ — weight[v] x sign(c); /* Compute what will remain */
the:(v,v,)weight[e]; /* Sum weights of all adjacent edges */
for (all edges e = (v,v')) { /% For all edges adjacent to v */
f < cxweightle]/o; /* Fraction to be spread to v’ */
new[v'] « new[v'] + f; /* Accumulate spreaded contributions */
}
}

swap old and new arrays;

}

Fig. 3. Sketch of the jug-of-the-Danaides diffusion algorithm. Scotch, represented as
positive quantities, flows from the source of part 1, while anti-scotch, represented as
negative quantities, flows from the source of part 0. For each step, the current and new
contents of every vertex are stored in arrays old and new, respectively.

the cut. In fact, unlike all of the algorithms presented in the previous section, our
method privileges load balancing over cut minimization. For this latter criterion,
we rely on an additional feature of our scheme, as explained below.

3.2 Band graphs in a multi-level scheme

Our diffusion algorithm, as such, presents two weaknesses: nothing is said about
the selection of the seed vertices, and performing such iterations over all of
the graphs vertices is very expensive compared to local optimization algorithms
which only consider vertices in the immediate vicinity of the frontiers.

To address these two problems concurrently, we use a method we have de-
veloped in [1], illustrated in Figure 4. It consists in using a multi-level scheme
in which refinement algorithms are not applied to the full graphs but to band
graphs that contain vertices that are at most at some small distance, typically
3, from the projected separator. In these band graphs, two additional “anchor”
vertices represent all of the removed vertices of each part, and are connected to
the last band layers of vertices of each of the parts. The vertex weight of the
anchor vertices is equal to the sum of the vertex weights of all of the vertices
they replace, to preserve the balance of the two band parts.

The underlying reasoning of this pre-constrained banding scheme is that since
every refinement is classically performed by means of a local algorithm, which
perturbs only in a limited way the position of the projected separator, local
refinement algorithms need only to be passed a subgraph that contains the ver-
tices that are very close to the projected separator. We have experimented that,
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Fig. 4. Multi-level banded refinement scheme. A band graph of small width is cre-
ated around the projected finer separator, with anchor vertices representing all of the
removed vertices in each part. After some optimization algorithm (whether local or
global) is applied, the refined band separator is projected back to the full graph, and
the uncoarsening process goes on.

when performing Fiduccia-Mattheyses refinement on band graphs that contain
only vertices that are at distance at most 3 from the projected separators, the
quality of the finest separator not only remains constant, but even significantly
improves in most cases. OQur interpretation is that this pre-constrained banding
prevents local optimization algorithms from exploring and being trapped in local
optima that would be too far from the global optimum sketched at the coarsest
level of the multi-level process.

Such a banded scheme is ideal for using our diffusion scheme, as anchor
vertices represent a natural choice to be taken as seed vertices. Indeed, the most,
important problem for bubble-growing algorithms is the determination of the
seed vertices from which bubbles are grown, which requires expensive processes
involving all of the graph vertices [3, 8]. Since anchor vertices are connected to
all of the vertices of the last layers, the diffused liquids flow as a front as if they
originated from the farthest vertices from the frontier, which is indeed what
would happen if they flowed from the center of a bubble having the frontier as
its perimeter.

3.3 Parallelization

Our diffusion algorithm has the additional interest of being highly scalable. If we
assume that full graphs, as well as band graphs, are distributed across processors
such that every processor holds a fraction of the graph vertices along with their
adjacency lists, like what is done for instance in PT-ScoTcH [2], the parallel
version of SCOTCH, the parallel version of the algorithm is straightforward. Ev-
ery processor performs its local update and computes the contributions it has
to spread to distant neighbors, after which these contributions are sent to their
destination processors in order to be aggregated. In order to cover communica-
tion by computations, vertices that have distant neighbors can be processed first,
then communications are started, and vertices with purely local adjacency lists
can be processed in the mean time, before received contributions are aggregated.
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Table 1. Description of the test graphs that we use, which all relate to 3D problems,
except thread. |V| and |E| are the vertex and edge cardinalities, in thousands.

Graph Size (x10°)[Average Graph Size (x10°)[Average

|V|| |E] degree [V] | |E| | degree
altrd 26 163 12.50( [conespherelm||1055| 8023 15.21
audikwl(|944| 38354 81.28| |ocean 143 410 5.71
auto 449 3315 14.77| |oilpan 74| 1762 47.77
bmw32 ||227 5531 48.65||pwt 37 145 7.93
body 45 164 7.26||thread 301 2220 149.32
bracket || 63 367 11.71

4 Experimental results

The diffusion algorithm discussed above has been implemented, as a sequential
graph bipartitioning method, in version 5.0 the Scorch [10] graph partition-
ing and static mapping software. Its k-way implementation is not yet available,
because it requires more coding, including a k-way band extraction algorithm
which does not exist to date. All of the necessary floating-point arithmetic has
been implemented in single precision.

The tests were run on a Lenovo ThinkPad T60 laptop, with an Intel dual-
core T2400 processor running at 1.8 MHz and 1 Gb of memory. As we ran
sequential tests only, the dual-core feature of the processor is not relevant. The
test graphs we have used in our experiments are listed in Table 1. These graphs
were partitioned into 2 to 128 parts, and the three quality metrics that we
consider are the number of cut edges, called Cut, a load imbalance ratio equal
to the size of the largest part divided by the average size, called MaCut, and the
maximum diameter of the parts, referred to as MDi, which is an indirect metric
of the shape of the partition, and is usable even in the case of graphs of unknown
or nonexistent geometry. This latter metric is insufficient, as it does not really
capture the smoothness of the interfaces, since irregularly shaped parts can still
have small diameters; the best proof would have been to run an iterative solver
and measure convergence rates basing on the numbers of iterations. This work
is in progress.

Three diffusion heuristics were compared against the classical strategy im-
plemented in SCOTCH 4.0, referred to as RMF in the following, which performs
recursive bipartitioning with bipartitions computed in a multi-level way, using
FM refinement.

The first method, RMBD, uses the same recursive bipartitioning and multi-
level strategy, but banded diffusion is performed during the multi-level refine-
ment, steps. The results achieved with this method validate our approach: the
obtained partitions have very smooth boundaries (see Figure 5.b), and are ad-
equately balanced if the number of diffusion iterations is sufficiently high, as
shown in Table 2.
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Table 2. Evolution of the cut size (ACut), of the load imbalance ratio (AMaCut)
and of the maximum diameter of the parts (AMD1) produced by various partitioning
heuristics with respect to the RMF strategy, averaged over all test graphs and numbers
of parts. Figures below partitioning strategy names indicate the number of diffusion
steps performed.

Method RMBD RMBDF_|[RMBaDF
500 | 200 | 100 | 40 | 500 | 40 10

ACut (%)  [[+-19.51]+20.01]+18.15]+21.49]+2.26[+3.10] _ -3.17

AMaCut (%)|| +0.58] +1.12] 11.80] +9.76] -0.95[ -0.29]  -0.21

AMDi (%) || +3.86] 11.92] 14.69] 15.43|12.26[:3.10] 3.4

ATime (x) 21.31] 9.33] 5.33] 2.93[21.47] 2.9 3.07

When performing 100 diffusion steps, the average MaCut value for RMBD is
1.046, only 1.80 % higher than the one of RMF. However, the maximum diameter
Mdi is not significantly reduced, and is even increased on average by 4.69% with
respect to RMF. This method is also 5.33 times slower than RMF and increases
the cut by about 20%, which makes it of little practical use.

We have therefore experimented a second method, RMBDF, where the clas-
sical FM algorithm is applied to the band graph after the diffusion algorithm.
The idea of this strategy is to benefit from the global optimization capabil-
ities brought by the diffusion algorithm, while locally optimizing the frontier
afterward. Even when performing 40 diffusion steps only, the smoothness of the
boundaries is preserved and parts are more balanced, while the cut is only in-
creased by 3.10% with respect to RMF. This strategy is also only three times
slower than RMF, which is extremely fast for a diffusion-based algorithm.

In order to favor the minimization of diameters, we have modified our diffu-
sion method so as to double at each step the amount of liquid borne by every
vertex, in an “avalanche™like process. This method is referred to as “aD”. It is no
longer bound to converge, and indeed causes overflows for large numbers of dif-
fusion steps, but gives good results for small numbers of iterations. As a matter
of facts, we can see in Table 2 that the RMBaDF method is the most efficient
one on average, and yields better results than the classical RMF method while
still providing smooth boundaries, as evidenced in Figure 5.c.

For the sake of comparison, we compare in Table 3 some of our results against
the ones obtained with K-MENS. K-MEIS uses direct k-way partitioning in-
stead of recursive bipartitioning, which usually makes it more efficient when
the number of parts increases, and also much faster (from 10 to 20 times). As
analyzed in [11], the performance of recursive bipartitioning methods tends to
decrease when the number of parts increases, which should limit the efficiency
of RMBDF methods for large numbers of parts. A full k-way diffusion algorithm
is therefore required.
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Table 3. Comparison of the results, in terms of cut size (Cut) and maximum diameter
of the parts (MDi), between three heuristics: multi-level with FM refinement (RMF,
as implemented in ScoTcH 4.0), multi-level with banded diffusion and FM refinements
(RMBaDF), and K-MEgTIS.

Test Number of parts
case 2 | 4 | 8 | 16 | 32 | 64 128
altr4
RMF Cut || 1688 | 3197 | 4978 | 7788 | 11905 | 17656 | 24478
‘ MDif| 50 52 40 33 25 21 14
RMBaD(40)F Cut. 1621 | 3203 | 5017 | 7776 | 11980 | 17669 | 24831
MDi|| 48 46 41 30 25 18 14
KMeTiS Cut. 1670 | 3233 | 4981 | 8115 | 12147 | 17355 | 24058
MDi|| 48 45 41 34 26 22 14
bmw32
RMF Cut || 17271 [{54424| 84222 |120828|181844(267427|394418
MDif| 93 116 130 106 74 120 68
RMBaD(40)F Cut‘ 16032 | 54446 |83422| 124945 | 183454 | 275594 | 411154
MDi|| 91 130 96 84 68 63 56
KMeTiS Cut |[15529( 55506 | 92658 | 125686 | 193169 | 286111 | 420965
' MDi|| 87 108 99 87 70 61 68

5 Conclusion and future work

In this paper, we have presented a diffusion algorithm which, used in a multi-
level banded framework, results in smoother partition frontiers and more com-
pact parts. Used in our banded context, this algorithm is fast enough to be used
on very large graphs, as it is only about three times slower than classical lo-
cal optimization schemes. The 2-way sequential version has been integrated in
version 5.0 of SCOTCH.

This algorithm is also easily parallelizable and highly scalable, which makes
it a very good candidate for the realization of a fast and efficient parallel graph
partitioner, taking advantage of the parallel multi-level and band graph extrac-
tion routines already developed in PT-SCOTCH in the context of sparse matrix
reordering.

Even more than classical FM-like algorithms, this algorithm is constrained
by the greedy nature of the recursive bipartitioning scheme, which prevents the
global improvement of frontiers computed at previous stages. A full k-way version
of the algorithm is therefore under development, which extends the 2-way model
by considering k different liquids having the same mutual annihilation properties,
such that when p different liquids are mixed in the same barrel, only the most
abundant one remains. This behavior is equivalent to the one of our algorithm
in the 2-way case. Using a native k-way scheme should also significantly reduce
running times compared to recursive bipartitioning. A parallel version is also
being developed.
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a. RMF. b. RMBD. c. RMBaDF.

Fig. 5. Partition of graph altr4 into 8 parts using three different strategies. The seg-
mented frontiers produced by FM-like algorithms are clearly evidenced in Figure a.
RMBD produces the smoothest boundaries, as shown in Figure b. RMBaDF takes the
best of both worlds, in Figure c.
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